
max

∫ ∞

0

(
c1−θ − 1

1− θ

)
· e−ρt dt

1950 1960 1970 1980 1990 2000

0
0.5

1
1.5

2
2.5

3

0
0.2

0.4
0.6

0.8
1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

kh

c

Economic Growth

Master Course WS 2024/25
Prof Dr. Karl-Josef Koch

University of Siegen



These notes are more or less a one two one print version of the slides of the
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2 Theories of Economic Growth

Robert Solow, who may be regarded as the founder of the research behind this literature, once called his
contribution a "parable" and not a theory. In today's diction, I would call it a narrative.

The body of this literature consists of a collection of mathematical models that share a number of
basic assumptions, but have di�erent emphases. The results of the analysis of these models point to
some connections and mechanisms that are by no means self-evident. In this sense, the contributions
deepen and consolidate the understanding of economic growth.

2.1 Capital Accumulation and Maximization of Intertemporal Utility

Optimal growth with exogenous technical progress

This section is based on contributions by

R. Solow (1956), T. Swan (1956), F.P. Ramsey (1928) - D. Cass (1965) - T.C. Koopmans (1965)

Key features are

� Closed economy

� Saving equals investment

� Neoclassical production function

� Exogenous technical progress

� Intertemporal utility maximization

There are three fundamental dynamic e�ects assumed in this kind of model. Factor supply is changed
over time by

� exogenous population growth,

� accumulation of physical capital, and

� exogenous human capital growth.

The three dynamic elements interact and jointly change GDP per capita.

Several issues are addressed by this kind of model

� Accumulation of physical capital changes the endogenous capital intensity, the relation between
capital and labor.

� Population growth and exogenous human capital growth a�ect the capital intensity as well.

� How do savings a�ect GDP per capita?

� What determines the propensity to save?

One can also discuss balance, stability, and convergence.
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The neoclassical macroeconomic production function

Y = F (K,L) e.g. Y = Kα L1−α

The marginal product of each factor is positive and decreasing

∂F/∂K > 0 , ∂2F/∂K2 < 0

∂F/∂L > 0 , ∂2F/∂L2 < 0

F is linear homogeneous (constant returns to scale)

F (λK, λL) = λ · F (K,L)

and satis�es the Inada conditions

lim
K→0

(FK) = lim
L→0

(FL) = ∞

lim
K→∞

(FK) = lim
L→∞

(FL) = 0

A neoclassical production function
The pictures below illustrate the properties of a neoclassical production function by curves of constant
output, curves of constant input of labor L, and of lines of constant ratios of inputs

The model in terms of intensities
The capital intensity k is the ratio of capital over labor

k = K/L

Constant returns to scale give rise to expressing output as a function of capital intensities

Y = F (K,L) = L · F (K/L, 1) = L · F (k, 1) = L · f(k)

Hence, production per capita is given by

y = Y/L = f(k)
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Example: Cobb-Douglas production

Y = F (K,L) = Kα L1−α

yields

Y/L = Kα L−α = (K/L)α

↪→ y = f(k) = kα

Marginal productivities
∂F (K,L)

∂K
=

dL · f(K/L)

dK
= L · f ′(k)

1

L
= f ′(k)

and
∂F (K,L)

∂L
= f(k)− L · f ′(k)

K

L2
= f(k)− k · f ′(k)

Hence the following identity holds

k · FK(K,L) + FL(K,L) = f(k)

Example:

f(k) = kα ↪→ FK(K,L) = f ′(k) = αkα−1 = αf(k)/k

↪→ FL(K,L) = f(k)− αf(k) = (1− α)f(k)

Pro�t maximization
Wage rate w, interest rate r; commodity price index p = 1

max
K,L

Π = F (K,L)− (r + δ) ·K − w · L

is equivalent to
max
k,L

Π = L (f(k)− (r + δ) · k − w)

The solution in terms of L is not determined, but in terms of k

↪→ f ′(k) = (r + δ)

Hence r determines the capital intensity k.
For a market equilibrium Π = 0 must hold, otherwise L equals 0 or ∞

↪→ w = f(k)− (r + δ)k = f(k)− kf ′(k)

Maximizing utility
Let c = C/L denote per capita consumption, u(c) utility of c, ρ the discou nt rate of utility, and n the
population growth rate. Assume ρ > n.

The objective function of consumers is∫ ∞

0

u(c) e−(ρ−n)t dt

For technical reasons we consider a special case of a utility function: CRRA1

u(c) =
c1−θ − 1

1− θ

Assume: θ > 0.
Note that u(c) → ln(c) as θ → 1.

1CRRA stands for constant relative risk aversion in expected utility theory. The concept goes back to Arrow (1965)
and Pratt(1964)
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Intertemporal elasticity of substitution
θ = −u′′(c) · c/u′(c) is called the relative risk aversion in the context of decisions under uncertainty.

θ large −→ strong aversion against
variation of consumption over time.

σ = 1/θ is the intertemporal elasticity of substitution

Intertemporal elasticity of substitution and smooth consumption
The utility function we consider is strictly concave for θ > 0 and linear in the limit for θ → 0.
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c
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 = 0
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In case of only two periods instead of a time continuum it is obvious what θ implies for average and
dispersion of consumption.

For θ > 0 we see

c1 ̸= c2 =⇒ αu(c1) + (1− α)u(c2) < u(αc1 + (1− α)c2)

Average utility of consumption is smaller than utility of average consumption if there is dispersion. In
other words, consumers dislike variation of consumption over time.

and smooth consumption
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Accumulation of wealth through savings
Let A be the total amount of assets held by households at some time, w the wage rate, r the interest
rate, and n the rate of population growth.

The change of assets holdings is equal to total net savings:

Ȧ = wL+ rA− C together with a = A/L yields

ȧ = w + ra− c− na

Indeed, from
Â = wL/A+ r − C/A = w/a+ r − c/a

together with â = Â− n we get the desired result.

Intertemporal utility maximization

max
c(t)

∫ ∞

0

c1−θ − 1

1− θ
e−(ρ−n)t dt

subject to the dynamic constraint for a

i.e. ȧ = w + ra− c− na

and initial condition a(0) = a0

� Notice that we assume L0 = 1 without loss of generality.

� ρ > 0 is the rate of time preference.

Solution technique: The Maximum Principle of Pontryagin
De�ne the Hamiltonian function (in current value form)

H = u(c)ent + λ(w + (r − n)a− c)

H is a function

� of the state variable a,

� the control variable (co-state variable) c, and

� the shadow price λ.

The Maximum Principle yields �rst order conditions and a transversality condition.

1. Hc = 0 maximum property

2. Ha = −λ̇+ λρ Euler equation

3. limt→∞ e−ρtλ a = 0 transversality condition

� We know the di�erential equation for a and initial condition a0.

� The evolution of a depends on c

� We look for the di�erential equation for c and the initial condition c0.

� It is not necessary to determine the evolution of the shadow price λ.
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yields

1. Hc = c−θent − λ = 0 maximum property

2. Ha = λ (r − n) = −λ̇+ λρ Euler equation

3. limt→∞ e−ρtλ a = 0 transversality condition

Di�erentiate (1) with respect to t:

4. −θc−(1+θ) ċ ent + c−θn ent − λ̇ = 0

Substitute −λ̇ from (2) :

5. −θc−(1+θ) ċ ent + c−θn ent + λ(r − n− ρ) = 0

Substitute c−θ ent from (1) :

6.
(
−θc−1 ċ + (r − ρ)

)
λ = 0

The Keynes-Ramsey-Rule
As λ is positive the last line simpli�es to

ĉ =
1

θ
(r − ρ) the Keynes-Ramsey-Rule

Equilibrium
There is only one asset households can use to invest their savings in: a = k at any point of time.

ȧ = w + ra− c− na

Together with w + rk = f(k)− δk this turns into

(1) k̇ = f(k)− c− (n+ δ)k

The Keynes-Ramsey-rule appears to be

(2) ċ =
1

θ
(f ′(k)− δ − ρ) c

Phase diagram

k

c

ċ = 0

k̇ = 0
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Technical side notes

Current value and present value form of the Hamiltonian function

The present value form of the Hamiltonian is linked to the current value form by a transformation of
coordinates.

Hpresent = e−ρt Hcurrent

The shadow price in present values ν turns into the current value shadow price λ by λ = eρtν. The
derivatives with respect to time are

λ̇ = ρeρt ν + eρtν̇

= ρλ+ eρtν̇

λ̇− ρλ = eρtν̇

From
∂Hcurrent

∂x
= λ̇− ρλ = eρtν̇ together with

∂Hpresent

∂x
= e−ρt ∂Hcurrent

∂x

we get the �rst order condition for a control variable x from the present value Hamiltonian

∂Hpresent

∂x
= −ν̇

Transversality in the Ramsey-Cass-Koopmans Model

In terms of the present value shadow price ν = e−ρtλ the transversality condition is given by

lim
t→∞

a(t)ν(t) = 0

The Euler equation induces a change of ν of form

ν̇ = −(r(t)− n)ν

Integration of the Euler equation yields

ν(t) = ν(0)e−
∫ ∞
0

(r(τ)−n)dτ

ν(0) is equal to c(0)−θ due to the maximum property. So it is a positive constant and irrelevant for the
validity of the transversality condition.

Using the average interest rate

r̄(t) =
1

t

∫ ∞

0

r(τ)dτ

the transversality condition �nally reduces to

lim
t→∞

a(t)e−(r̄(t)−n) t = 0

I.e. in the long run per capita wealth has to grow with a rate smaller than r̄ − n. We may evaluate the
transversality condition explicitly

ν̇ = −ν (r − n)

= −ν (f ′(k)− δ − n)

and hence

ν̂ = −(f ′(k)− δ − n)

In the capital accumulation equation we use the maximum property c−θ e−(ρ−n)t − ν = 0 to eliminate
c. The time scaled shadow price µ = e(ρ−n)tν with property µ̂ = (ρ − n) + ν̂ makes the dynamics even
more transparent.

c−θ = e(ρ−n)t ν = µ
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k̇ = f(k)− c− (n+ δ)k

= f(k)− µ−1/θ − (n+ δ)k

We have
µ̇ = (ρ− n)µ− (f ′(k)− δ − n)µ = −µ(f ′(k)− ρ− δ)

and hence the system

µ̇ = −µ(f ′(k)− ρ− δ)

k̇ = f(k)− (n+ δ)k − µ−1/θ

with transversality condition
lim
t→∞

e−(ρ−n)tµk = 0

dk/dt = 0

dm/dt = 0
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k

m

Consumption smoothing

max
c(t)

∫ ∞

0

c1−θ − 1

1− θ
e(n−ρ)t dt

� A large θ means a strong aversion against intertemporal variation of consumption

Numerical simulation of the model with the following parameters

α = 0.25 , n = 0.01 , δ = 0.1 , ρ = 0.02 , θ = 0.4 , θ = 10 resp.

Below we demonstrate the role of the intertemporal elasticity of substitution by comparing simulations
for the two values of θ and a constant savings ratio.

The constant savings ratio is calibrated such that in the long run the same capital intensity k∗ is reached
with and without intertemporal optimization.

from ĉ = 0 we get (k∗)
α−1

= (δ + ρ)/α

from k̂ = 0 we get s · (k∗)α−1
= n+ δ

and hence s =
α(δ + n)

δ + ρ
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Exogenous technical progress
Without technical progress labor as an input factor was simply measured by the number of persons
employed

F (K,L) = KαL1−α

k = K/L

f(k) = F (k, 1)

In order to add labor augmenting technical progress to the model we de�ne human capital by H =
E · L = E0e

xt · L.
E is a scale factor measuring the e�ciency of labor and is growing with exogenous rate x. We get

k̃ = K/H = k/E = E−1
0 e−xtk

F (K,H) = KαH1−α

f(k̃) = F (k̃, 1)

Exogenous technical progress: The Cobb-Douglas case
Without progress we had

F (K,L) = KαL1−α

Labor in e�ciency units: H = E · L
F (K,H) = KαH1−α

The Cobb-Douglas case in relative terms

f(k) = kα

or with k = E k̃ per e�ciency unit of labor

f(k̃) = k̃α
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Exogenous technical progress: Details
K̇ = Y − C − δK

Use k̃ = K/EL and get

K̇

EL
=

Y − C − δK

EL

= ỹ − c̃− δk̃

Use the time derivative of k̃

˙̃
k =

K̇EL−KĖL−KEL̇

(EL)2

=
K̇

EL
− k̃x− k̃n

Substitute to get the accumulation equation for k̃

˙̃
k = ỹ − c̃− (x+ n+ δ)k̃

Set up the Hamiltonian to develop the Keynes - Ramsey rule

H =
c̃1−θE1−θ − 1

1− θ
ent + λ

(
ỹ − c̃− (x+ n+ δ)k̃

)
Compute and evaluate the FOC's

Hc̃ = 0 :: c̃−θE1−θent = λ

⇒ λ̂ = −θˆ̃c+ (1− θ)x+ n

Hk̃ = −λ̇+ λρ :: λ
(
αk̃α−1 − (x+ n+ δ)

)
= −λ̇+ λρ

⇒ λ̂ = −αk̃α−1 + (x+ n+ ρ+ δ)

Eliminate λ̂ and solve for the growth rate of c̃:

−θˆ̃c+ (1− θ)x = −αk̃α−1 + (x+ ρ+ δ)

ˆ̃c =
1

θ

(
αk̃α−1 − (δ + θx)− ρ

)

Dynamic implications of exogenous technical progress
The link between the dynamics of the model with stationary equilibrium and the model with exogenous
technical progress is now established. In terms of growth rates it can be demonstrated through the
example of k and c

c̃ = cE−1
0 e−xt, k̃ = k E−1

0 e−xt ⇒ ˆ̃
k = k̂ − x , ˆ̃c = ĉ− x

or the other way around

c = c̃ E0e
xt, k = k̃ E0e

xt ⇒ k̂ =
ˆ̃
k + x , ĉ = ˆ̃c+ x
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Di�erential equations

˙̃
k = k̃α − c̃− (n+ δ + x)k̃

˙̃c =
1

θ

(
αk̃α−1 − (δ + ρ+ θx)

)
c̃

Stationary equilibria and the intertemporal elasticity of substitution

� The stationary value of k̃ depends on θ as ˙̃c depends on θ

� Through k̃∗ the stationary value of c̃ depends on θ too.2

Stationary equilibria

k̃∗ =

(
δ + ρ+ θx

α

) 1
α−1

c̃∗ =
(
k̃∗

)α

− (n+ δ + x)k̃∗

=

((
k̃∗

)α−1

− (n+ δ + x)

)
k̃∗

=

[
δ + ρ+ θx

α
− (n+ δ + x)

]
k̃∗

Di�erent values of θ result in di�erent saddle points. The respective stable manifolds are not shown in the

picture below.
k̃

c̃̃c

˙̃c = 0

˙̃
k = 0

large θ

˙̃
k = 0

small θ

2In order that an equilibrium exists ρ must be large enough: ρ > n+ (1− θ)x.
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Going back to true per capita variables
There is a persistent level e�ect of growth with di�erent intertemporal rates of substitution due to
(exogenous) technical progress. It can be demonstrated by the following inspection of capital intensities
k.

� Assume E0 = 1. A di�erent value of E0 would only rescale all results.

� At t = 0 all variables in e�ciency units and in per capita units coincide as E0e
x0 = 1.

� In particular this holds for k̃∗ and the corresponding k(t) in balanced growth. Recall that k̃∗ is
larger if θ is smaller. Now, let time advance continuously. k̃(t) will stay at the equilibrium level
whereas k(t) will start to grow with rate x.

Capital intensity with exogenous progress

0 2 4 6 8 10 12 14

time

k(t)

large θ

k̃∗ for large θ

small θ

k̃∗ for small θ

The broken lines in red color depict exponential growth with rate x starting from the respective levels
k̃∗ for di�erent θ.

Consumption with exogenous progress
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Capital and consumption with exogenous progress
Recall the relation between k̃∗ and c̃∗

c̃∗ =

[
δ + ρ+ θx

α
− (n+ δ + x)

]
k̃∗

Multiplication of both sides with E0e
xt turns the saddlepoint condition for (k̃, c̃) into a balanced growth

condition for (k(t), c(t)).
Notice that we can omit t at the (stationary) saddlepoint, but keep it in the relation for balanced

growth (with positive growth rate x)

c(t) =

[
δ + ρ+ θx

α
− (n+ δ + x)

]
k(t)

k

c
small θ

large θ
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2.2 Human Capital Accumulation: The Approach of Uzawa and Lucas

In his 1957 paper Robert Solow already introduced the idea of exogenous labor augmenting technical
progress. We discussed the the importance of this engine of growth in an extension of the Ramsey-Cass-
Koopmans model. Lucas(1988) draws on Uzawa (1965) when he endogenizes this idea as a second engine
of growth.

The questions to be asked in the analysis of this model will be

� What are the technical implications of scale e�ects in this model?

� Does time preference play a similar role as in the Ramsey-Cass-Koopmans model?

� How do initial endowments a�ect transition and long run performance?

Model framework
The model is in particular characterized by the following properties

� no growth of population

� physical capital K and human capital H are accumulated

� constant economies of scale concerning the accumulation of human capital3

� economies of scale of physical capital are endogenous and depend on the development of human
capital

� u decision of households regarding the application of human capital

Y = AKα(uH)1−α, 0 < α, u < 1

K̇ = Y − C − δK, K(0) > 0

Ḣ = B(1− u)H − δH, B > 0,

U0 =

∫ ∞

0

c1−θ − 1

1− θ
e−ρtdt

4

H =
c1−θ − 1

1− θ
+ λ(Y − C − δK) + µ(B(1− u)H − δH)

De�ne L = uH to denote labor employed in production measured in e�ciency units, and use the
following shorthands.

MPK =
dY

dK
= αY/K = αAPK = α(uH/K)1−α

MPL =
dY

dL
= (1− α)Y/uH

The marginal productivity of a factor is equal to the product of
elasticity and average productivity.

3Lucas allows for externalities of individual human capital on the aggregate human capital without changing the outcome
of the model substantially.

4Notice that we can drop the size of the population from the objective function because there is no population growth
in this model.
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The maximum principle (current value)

H =
c1−θ − 1

1− θ
+ λ(Y − C − δK) + µ(B(1− u)H − δH)

(1) Hc = 0 ↪→ c−θ = λ

(2) Hu = 0 ↪→ λMPL ·H − µB ·H = 0

}
Max. property

(3) Hk = −λ̇+ λρ ↪→

λ(MPK − δ) = −λ̇+ λρ

λ̂ = ρ+ δ −MPK
(4) HH = −µ̇+ µρ ↪→

λMPL · u+ µ(B(1− u)− δ) = −µ̇+ µρ

µ̂ = ρ+ δ −B(1− u)− λ
µMPL · u


Euler-eq.

with (2) we get

(2′)
λ

µ
MPL = B

and hence with (4)

(4′) µ̂ = ρ+ δ −B(1− u)−Bu = ρ+ δ −B

Furthermore, computing growth rates in (1) we get

λ̂ = −θĈ

Finally, from (3)

Ĉ =
1

θ
(MPK − δ − ρ) Keynes-Ramsey rule

The (long run) marginal productivity of capital does not only depend on a certain value of u∗. To
determine u∗, the di�erential equation of u is needed.

Calculation of û
Turn (2') into growth rates

λ̂− µ̂+ M̂PL = 0

Then recall (3) and (4') and combine them to get another expression for the di�erence of shadow price
growth rates. Alltogether this yields:

MPK −B = M̂PL

Turn MPL into growth rates

M̂PL = Ŷ − û− Ĥ

= αK̂ + (1− α)û+ (1− α)Ĥ − û− Ĥ

= αK̂ − αû− αĤ

= MPK − αC/K − αδ − αû− α(B(1− u)− δ)

Hence

MPK −B = MPK − αC/K − αδ − αû− α(B(1− u)− δ)

αû = B − αB(1− u)− αC/K

û =
B

α
−B(1− u)− C/K
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The growth rates of k, h, c and u
We get the following growth rates in per capita terms5

k̂ = APK − c/k − δ

ĥ = B(1− u)− δ

ĉ =
1

θ
(MPK − δ − ρ)

û =
B

α
−B(1− u)− c/k

Along the balanced growth path we conclude

� ĉ = constant implies MPK, and hence APK are constant.

� k̂ = as well as APK are constant implies that k̂ = ĉ.

� This implies u = constant, i.e. û = 0.

� Together with APK = constant this yields k̂ = ĥ.

The balanced growth path is a straight line as k̂ = ĥ = ĉ6

Determination of the common rate of balanced growth γ of k, h and c

0 =
B

α
−B(1− u)− c

k
(from û)

=
B

α
− γ − δ − c

k
(from ĥ)

=
B

α
−APK or B = αAPK (from k̂)

the rate of return of human capital investments is equal

to the rate of return of investments in physical capital

γ =
1

θ
(B − δ − ρ) (from ĉ)

Computation of u∗

Solve ĥ = γ for 1− u∗ and substitute γ:

1− u∗ =
1

B
(γ + δ)

=
1

B

(
1

θ
(B − δ − ρ) + δ

)
=

1

θ
− 1

θB
(ρ+ (1− θ)δ)

Computation of (c/k)
∗
at balanced growth

û = 0 yields ( c

k

)∗
=

B

α
−B(1− u∗)

5As there is no population growth there is no di�erence between nominal and per capita growth rates (e.g.: K̂ = k̂).
6The externalities of individual human capital Lucas allows for yield di�erent growth rates of k and h.

43



The computation of (k/h)
∗
at balanced growth

The comparison of the Keynes-Ramsey rule and the �nal equation for γ leads to MPK = B and hence7

αA

(
uh

k

)1−α

= B(
k

h

)∗

=

(
αA

B

) 1
1−α

u

Imbalance of initial states
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For the calculation of this picture u(t) was chosen optimally.

State variables and optimal decision
The adjustment can be depicted in terms of the level of state variables. The control variables c and u
are chosen optimally.
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State variables and optimal decision

� The di�erences in the adjustment are only totally comprehensible, if the dependence on time is
taken into account.

7The externalities of individual human capital mentioned before imply di�erent growth rates of k and h and therefore
the balanced growth path is no longer a straight line! Instead it is a smooth curve of form kµ = h for some positive constant
µ. In the computations for the pictures in the remainder of this section I used a µ between zero and 1.
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� The adjustment to the balanced growth path must be observed in the short and long run. Addi-
tionally intertemporal e�ects should be investigated.

� In the short run the acceptance of regulatory measures is an important point of view.

� In the long run aspects of sustainability play an important role.

� In total the intergenerational balance is important.

Imbalanced initial conditions of growth
A state (k, h) completely determines the optimal path starting from this state. This includes the near
future and the very far. This means, there are di�erent aspects we can focus on when we compare states
with each other.

The fact that any optimal path approaches the balanced growth path (BGP) does not make all paths
alike. And, most obviously, two di�erent states on the balanced growth path will grow apart - although
along the (BGP)!

Comparison of di�erent (initial) states involves comparison of optimal growth paths. It involves the
solution of optimal growth problems by numerical methods.

Criteria for classi�cation of imbalanced states

1. Convergence: Economies with di�erent initial states may undergo di�erent transition but become
more and more equal in the long run. In terms of state variables and therefore with respect any
aspect concerning their remaining future they converge.

2. Initial utility: Consider the initial utility u(c(0)) of an economy starting to grow optimally
from state (k, h). Di�erent optimal initial utility is important for the current generation, but is
no indicator for superior long run performance. Catching up and overtaking may happen along
optimal growth paths.

3. Discounted utility: Discounted utility
∫∞
0

u(c(t))e−ρt dt is the objective function for optimal
growth in this model. It comprises initial utility as well as long run performance. In a particular
way integration with discounting combines criterion (1) and (2).

Classi�cation of imbalanced states
We distinguish three concepts of classi�cation.

1. Convergence classes Two states i und j belong to the same
convergence class if

lim
t−→∞

∥ (ki(t), hi(t))− (kj(t), hj(t)) ∥= 0

The states of two initially di�erent economies belonging to the same convergence class are identical
in the long run. As a consequence the optimal controls converge as well. The economies align to
each other.
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2. initial utility classes Two states i and j belong to the same
initial utility class if

u(ci(0)) = u(cj(0))

The states of two initially di�erent economies belonging to the same initial utility class imply the
same optimal initial consumption, and of course the same utility of consumption. However the
consumption paths will develop towards di�erent levels.

3. discounted utility classes Two states i and j belong to the same
discounted utility class if∫ ∞

0

u(ci(t))e
−ρt dt =

∫ ∞

0

u(cj(t))e
−ρt dt

The growth paths of two economies belonging to the same discounted utility class are di�erent in
the short and the long run. But the integral over all generations� utilities are identical.

The following two graphs depict the utility in a logarithmic scale towards time. Several initial states are
evaluated with respect to one of the mentioned classi�cations. Each picture evaluates states belonging
to one of the classes. It is straight forward to �nd out which classes are depicted.8
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8Hint: One is an initial utility class, one a discounted utility class.
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The following graph depictures the classes relative to a common point of reference. Call it the base
point of comparison.
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Shocks can have very di�erent short run and long run e�ects. This becomes most obvious when we
consider a combination of positive and negative shocks in k and h, respectively.
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A shock is a sudden change in state variables. It can be characterized by the relative change of state
variables and its intensity.

It can be evaluated with respect to the criteria underlying the de�nition of classes de�ned above.

� Negative shocks in either single state variable have negative e�ects in terms of all criteria.

� A combination of shocks to physical as well as human capital (e.g. due to a war and subsequent
foreign aid) may yield di�erent results when the evaluation is based on di�erent criteria.

� Consider a balanced state as point of reference. Call it the base point of comparison.

� Draw the curves of the three classes through the base point. They decompose the (k, h) plane into
di�erent segments.

� After the shock the state may be above some and below other curves. I.e. the shock improves the
economy with respect to some critaria and damage it with respect to others.
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