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These notes are more or less a one two one print version of the slides of the
course. The lecture provides a lot of additional information, instructions, and
discussions beyond the content of the slides. They are essential although not
included in the slides.
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2 Theories of Economic Growth

Robert Solow, who may be regarded as the founder of the research behind this literature, once called his
contribution a "parable" and not a theory. In today’s diction, I would call it a narrative.

The body of this literature consists of a collection of mathematical models that share a number of
basic assumptions, but have different emphases. The results of the analysis of these models point to
some connections and mechanisms that are by no means self-evident. In this sense, the contributions
deepen and consolidate the understanding of economic growth.

2.1 Capital Accumulation and Maximization of Intertemporal Utility

Optimal growth with exogenous technical progress
This section is based on contributions by
R. Solow (1956), T. Swan (1956), F.P. Ramsey (1928) - D. Cass (1965) - T.C. Koopmans (1965)

Key features are
e Closed economy

e Saving equals investment

Neoclassical production function

e Exogenous technical progress

Intertemporal utility maximization

There are three fundamental dynamic effects assumed in this kind of model. Factor supply is changed
over time by

e exogenous population growth,
e accumulation of physical capital, and
e exogenous human capital growth.

The three dynamic elements interact and jointly change GDP per capita.

Several issues are addressed by this kind of model

e Accumulation of physical capital changes the endogenous capital intensity, the relation between
capital and labor.

e Population growth and exogenous human capital growth affect the capital intensity as well.
e How do savings affect GDP per capita?
e What determines the propensity to save?

One can also discuss balance, stability, and convergence.
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The neoclassical macroeconomic production function
Y =F(K,L) eg Y=K*L'"®
The marginal product of each factor is positive and decreasing

OF/OK >0 , 0?°F/0K? <0
OF/OL >0 ,  0°F/OL* <0

F is linear homogeneous (constant returns to scale)
FOAK,A\L)=\X-F(K,L)

and satisfies the Inada conditions

1' = 1 =
i (Fie) = Jim (Fp) = oo
K—o00 L—oo

A neoclassical production function
The pictures below illustrate the properties of a neoclassical production function by curves of constant
output, curves of constant input of labor L, and of lines of constant ratios of inputs

The model in terms of intensities
The capital intensity k is the ratio of capital over labor

k=K/L
Constant returns to scale give rise to expressing output as a function of capital intensities
Y=FK,L)=L-F(K/L,1)=L-F(k,1)=L- f(k)
Hence, production per capita is given by

y=Y/L= f(k)
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Example: Cobb-Douglas production
Y = F(K,L)=K*L'™

yields
Y/L = KL “=(K/L)*

o y= k) =k

Marginal productivities

OF(K,L) dL-f(K/L) PN
D) AL TY g = £

OF(K,L) ron K

O = )~ L /()75 =

Hence the following identity holds

and

f(k) = k- f'(k)

k-Fx(K,L)+ Fr(K,L)= f(k)
Example:
(K, L) = f/(k) = ak*~" = af(k)/k

Fr(K, L) = f(k) — af(k) = (1 - ) f(k)

f(k) = &

(_>
(ﬁ

Profit maximization
Wage rate w, interest rate r; commodity price index p =1

n}}aLXH:F(K,L)—(r#—(S)-K—w-L

is equivalent to
IEaLXH:L(f(k) —(r+90) -k —w)

The solution in terms of L is not determined, but in terms of &
= fl(k)=(r+9)

Hence r determines the capital intensity k.
For a market equilibrium Il = 0 must hold, otherwise L equals 0 or co

= w=f(k) = (r+0)k=f(k) - kf'(k)

Maximizing utility
Let ¢ = C/L denote per capita consumption, u(c) utility of ¢, p the discou nt rate of utility, and n the
population growth rate. Assume p > n.

The objective function of consumers is

/ u(c) e Pt dt
0

For technical reasons we consider a special case of a utility function: C’RRAEI
|
u(c) = ——7
Assume: 6 > 0.
Note that u(c) — In(c) as § — 1.

LCRRA stands for constant relative risk aversion in expected utility theory. The concept goes back to Arrow (1965)
and Pratt(1964)
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Intertemporal elasticity of substitution
0 =—u"(c)-c/u'(c) is called the relative risk aversion in the context of decisions under uncertainty.

strong aversion against

0 large — . % . .
variation of consumption over time.

o =1/0 is the intertemporal elasticity of substitution

Intertemporal elasticity of substitution and smooth consumption
The utility function we consider is strictly concave for # > 0 and linear in the limit for 8 — 0.

u(c)
1,5

1
0,5

0

15 2
0,5 -

1

1,5

-2

-2,5

In case of only two periods instead of a time continuum it is obvious what 6 implies for average and
dispersion of consumption.
For 6 > 0 we see

e #ce =  aule)+ (1 —a)uler) <ulac; + (1 —a)es)

Average utility of consumption is smaller than utility of average consumption if there is dispersion. In
other words, consumers dislike variation of consumption over time.

and smooth consumption

ufc)
15 .
average consumption
14 ac;+(1-a) c,
05 - —
. [ s c,
io0s 1 s 2 ¢
0,5 : e
: utility of gy(rage consumption
-1 /
7
s /0’ average of utility of consumption
2
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Accumulation of wealth through savings
Let A be the total amount of assets held by households at some time, w the wage rate, r the interest
rate, and n the rate of population growth.

The change of assets holdings is equal to total net savings:

A=wL+rA-C together with a = A/L yields

a=w+ra—c—na
Indeed, from R
A=wL/A+r—-C/[A=w/a+r—c/a

together with @ = A — n we get the desired result.

Intertemporal utility maximization

oo 1—6 _
max / e -1 e~ (Pt gt
c(t) 0 1-46

subject to the dynamic constraint for a
ie.a=w+ra—c—na
and initial condition a(0) = ag

e Notice that we assume Lo = 1 without loss of generality.

e p > 0 is the rate of time preference.

Solution technique: The Maximum Principle of Pontryagin
Define the Hamiltonian function (in current value form)

H =u(c)e™ + Mw+ (r —n)a—c)
‘H is a function
e of the state variable a,
e the control variable (co-state variable) ¢, and
e the shadow price .

The Maximum Principle yields first order conditions and a transversality condition.

1. H.=0 maximum property
2. Hoy=—\+ Ap Euler equation
3. limyvoo e P Aa=0 transversality condition

e We know the differential equation for a and initial condition ag.
e The evolution of a depends on ¢
e We look for the differential equation for ¢ and the initial condition cg.

e It is not necessary to determine the evolution of the shadow price .
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yields

1. Ho=c %" — X=0 maximum property
2. Ho=A(r—n)=—A+Xp Euler equation
3. limy o e PAa=0 transversality condition

Differentiate (1) with respect to t:

4. —0c 40 ¢ent 4 e Opent — X =0
Substitute —\ from (2) :

5. —0c= U+ cent 4 c=ne™ £ \r—n—p)=0
Substitute ¢=% e from (1) :

6. (~Octé+ (r—p)A=0

The Keynes-Ramsey-Rule
As X is positive the last line simplifies to

1
¢ = g(r —p) the Keynes-Ramsey-Rule

Equilibrium
There is only one asset households can use to invest their savings in: a = k at any point of time.

a=w+ra—c—na
Together with w + rk = f(k) — 0k this turns into
(1) k=fk)—c—(n+0)k

The Keynes-Ramsey-rule appears to be

@ =) -5-p)c

Phase diagram
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Technical side notes
Current value and present value form of the Hamiltonian function

The present value form of the Hamiltonian is linked to the current value form by a transformation of

coordinates.
erresent — e—pt rchrTent

The shadow price in present values v turns into the current value shadow price A by A = e”*v. The
derivatives with respect to time are

A = peft v + efty
= pA\+eftp
A—pr = e’v
From 5 . 5 . 5 .
HC’U.T‘T’&’TL . HPT‘ESE"I'L HC’LLT"I”QTL
———— =\ — pA=e”'U together with ——— =¢ P
ox P & Ox Ox
we get the first order condition for a control variable x from the present value Hamiltonian
8Hpresent
—_— =7
Oz

Transversality in the Ramsey-Cass-Koopmans Model

In terms of the present value shadow price v = e~ P!\ the transversality condition is given by

lim a(t)v(t) =0

t—o0

The Euler equation induces a change of v of form
v=—(r(t)—n)v
Integration of the Euler equation yields
v(t) = v(0)e Jo~ (r(m)=m)dr

v(0) is equal to ¢(0)~Y due to the maximum property. So it is a positive constant and irrelevant for the
validity of the transversality condition.
Using the average interest rate

the transversality condition finally reduces to

lim a(t)e”TH-t — ¢

t—o00

Le. in the long run per capita wealth has to grow with a rate smaller than ¥ — n. We may evaluate the
transversality condition explicitly

1% —v(r—mn)
—v(f'(k)—d—mn)
and hence
v o= —(f'(k)—5—n)

In the capital accumulation equation we use the maximum property ¢=? e~ (?=™ — 1 = 0 to eliminate
¢. The time scaled shadow price u = e(»~™*y with property ji = (p —n) + U makes the dynamics even
more transparent.
-0 _ _(p—m)t ., __
c ' =e v=pu
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E o= fk)—c—(n+0)k
= f(k) —pV — (n+ 0k
We have
fr="_(p—n)p—(f'(k) =0 —n)p=—p(f'(k) —p—9)
and hence the system
o= )= p )
ko= f(k)—(n+0)k—p

with transversality condition
lim e~ "™tk =0

t—o0

0,70
0,60

du/dt= 0
0,50 -

0,30 7

dkidt = 0
0,20 /
e [ T ——
0,10
0,00 ‘ ‘ : : : ‘
0,00 10,00 20,00 30,00 40,00 50,00 60,00

Consumption smoothing

oo 1—6
max / L ot gy
et) Jo 1-46

e A large 0 means a strong aversion against, intertemporal variation of consumption

Numerical simulation of the model with the following parameters
a=025, n=0.01, §=0.1, p=0.02, § =0.4,0 = 10 resp.

Below we demonstrate the role of the intertemporal elasticity of substitution by comparing simulations
for the two values of § and a constant savings ratio.

The constant savings ratio is calibrated such that in the long run the same capital intensity k£* is reached
with and without intertemporal optimization.

fromé=0 weget (k) '=(6+p)/
from k=0 weget s-(k*)* '=n+6

and hence s = M
O+p

33



0.8

0.6

04!

Savings rate

0.2-

40 60 80

time

Capital

60 80

time

20 40

34



Output

time

Consumption

0.4

0.2

time
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Per capita output growth rate
0.2

0.18 *‘
0.16
0.14
0.12-
0.1
0.08+ ¢ =0.4
0.06

Exogenous technical progress

Without technical progress labor as an input factor was simply measured by the number of persons
employed

F(K,L) = K“L'™@
= K/L
f(k) = F(k1)

In order to add labor augmenting technical progress to the model we define human capital by H =
FE-L= Eoe“ - L.

FE is a scale factor measuring the efficiency of labor and is growing with exogenous rate z. We get

k = K/H=Fk/E=E,'e "
F(K,H) = K*H'"°
fk) F(k,1)

Exogenous technical progress: The Cobb-Douglas case
Without progress we had

F(K,L) KoL~
Labor in efficiency units: H = E - L
F(K,H) = K*H'™®

The Cobb-Douglas case in relative terms

f(k) = k°
or with k= Ek per efficiency unit of labor
fk) = &
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Exogenous technical progress: Details
K=Y -C-06K

Use k = K/EL and get

Use the time derivative of k
KEL - KFEL - KEL
(EL)?

K ~ ~

Substitute to get the accumulation equation for k

k=g—c—(z+n+0)k

Set up the Hamiltonian to develop the Keynes - Ramsey rule

Gl-0p1-0 _ 1 - L B

Compute and evaluate the FOC’s
He=0 = ¢ B0 =)
=A=—0c+(1-0)z+n
Hi=-A+Xp = )\(afc“’l - (w+n+5)) = A+ Xp
=A=—ak® 4 (z+n+p+9)

Eliminate A and solve for the growth rate of ¢:

—0e+(1—-0)x = —ak* '+ (z4p+9)

c

% (oc/;a71 — (6 +0x) — p)

Dynamic implications of exogenous technical progress
The link between the dynamics of the model with stationary equilibrium and the model with exogenous
technical progress is now established. In terms of growth rates it can be demonstrated through the

example of £ and ¢

i=cEyjte™ k=kEjle™ = k=k-uz,é=¢—x
or the other way around

c=¢Eye™, k=kEye™ = k=k+x,é=c+x
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Differential equations

ko= B —é— (n+d6+a)k
1/ -
§<aw—ﬁ—w+p+9m)é

o
I

Stationary equilibria and the intertemporal elasticity of substitution
e The stationary value of k depends on 8 as ¢ depends on 6

e Through k* the stationary value of ¢ depends on 6 too
Stationary equilibria
B <(5 +p+ Qx)
& = (*) (n+0+2)k*
((* n+6+))é*

[6+p+miwn+5+@}k

Different values of # result in different saddle points. The respective stable manifolds are not shown in the

™
Il
]

v

k=0 k=0
large 0 small 0

picture below.

2In order that an equilibrium exists p must be large enough: p > n + (1 — 6)z.
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Going back to true per capita variables

There is a persistent level effect of growth with different intertemporal rates of substitution due to
(exogenous) technical progress. It can be demonstrated by the following inspection of capital intensities
k.

e Assume Ey = 1. A different value of Ey would only rescale all results.
e At ¢t = 0 all variables in efficiency units and in per capita units coincide as Eye*? = 1.

e In particular this holds for &* and the corresponding k(t) in balanced growth. Recall that E* is
larger if € is smaller. Now, let time advance continuously. k(t) will stay at the equilibrium level
whereas k(t) will start to grow with rate z.

Capital intensity with exogenous progress

k* for small 0

k* for large 0

time

The broken lines in red color depict exponential growth with rate x starting from the respective levels
k* for different 6.

Consumption with exogenous progress
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time

Capital and consumption with exogenous progress
Recall the relation between £* and ¢*

&= [(5+p+0:c

- —(n+6+x)]/%*

Multiplication of both sides with Eye®? turns the saddlepoint condition for (l~€, ¢) into a balanced growth
condition for (k(t), c(t)).

Notice that we can omit ¢ at the (stationary) saddlepoint, but keep it in the relation for balanced
growth (with positive growth rate x)

o(t) = [M

- —(n+(5+x)] k(t)

large 0
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2.2 Human Capital Accumulation: The Approach of Uzawa and Lucas

In his 1957 paper Robert Solow already introduced the idea of exogenous labor augmenting technical
progress. We discussed the the importance of this engine of growth in an extension of the Ramsey-Cass-
Koopmans model. Lucas(1988) draws on Uzawa (1965) when he endogenizes this idea as a second engine
of growth.

The questions to be asked in the analysis of this model will be

e What are the technical implications of scale effects in this model?
e Does time preference play a similar role as in the Ramsey-Cass-Koopmans model?

e How do initial endowments affect transition and long run performance?

Model framework
The model is in particular characterized by the following properties

e no growth of population

physical capital K and human capital H are accumulated
e constant economies of scale concerning the accumulation of human capital]

e economies of scale of physical capital are endogenous and depend on the development of human
capital

e u decision of households regarding the application of human capital

Y AK*(uH)'™, O<a,u<l
K = Y-C-0K, K(0)>0
H = B(1-uwH-6H, B>0,

oo o101
Uy = / T gy
-

1—9_1
H= g + MY —C = 6K) + u(B(1 —w)H — iH)

Define L = uH to denote labor employed in production measured in efficiency units, and use the
following shorthands.

MPK = ;l—IY{:aY/K:aAPK:a(uH/K)l_O‘
dy

MPL = “— = (1-a)Y/uH
7 = 1-a)Y/u

The marginal productivity of a factor is equal to the product of
elasticity and average productivity.
3Lucas allows for externalities of individual human capital on the aggregate human capital without changing the outcome
of the model substantially.
4Notice that we can drop the size of the population from the objective function because there is no population growth
in this model.
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The maximum principle (current value)

-0
’H:%+)\(Y—C’—6K)+,u(B(1—u)H—6H)
(1) He=0 <= c =)
(2) Hu=0 <> AMPL-H —uB-H=0
B) Hp=-A+rp o
MMPK — §) = —A+ \p

A=p+6— MPK

} Max. property

@) Hu=—fitpp o Euler-eq.
AMPL -u+ p(B(1 —w) —8) = —f1 + up
fr=p+6—B(l—u)— 3 MPL-u
with (2) we get
(2" éMPL =B
and hence with (4) g
4" p=p+d—-B(l—-u)—Bu=p+J—B

Furthermore, computing growth rates in (1) we get

A=—-0C

Finally, from (3)

A 1
C= E(MPK —d—p) Keynes-Ramsey rule

The (long run) marginal productivity of capital does not only depend on a certain value of u*. To
determine u*, the differential equation of u is needed.

Calculation of @
Turn (2’) into growth rates

A—fi+MPL =0
Then recall (3) and (4’) and combine them to get another expression for the difference of shadow price
growth rates. Alltogether this yields:

MPK — B = MPL

Turn M PL into growth rates

MPL = Y-a-H
= aK+(1-a)i+(1—-a)H-0-H
= ok — i —oH
= MPK —aC/K —ad —at — a(B(1l —u) —9)
Hence
MPK —-B = MPK -aC/K —ad —aii—a(B(1 —u) —9)
at = B—-—aB(l-u)—aC/K
a = g—B(l—u)—C/K
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The growth rates of k, h, c and u
We get the following growth rates in per capita termsﬂ

k = APK —c/k—9§

h = B(l—u)—20

¢ = %(MPK—&—p)
B

i = a—B(l—u)—c/k

Along the balanced growth path we conclude

e ¢ = constant implies M PK, and hence APK are constant.

o k= as well as APK are constant implies that k = ¢.

e This implies u = constant, i.e. & = 0.

o Together with APK = constant this yields k= h.
The balanced growth path is a straight line as k = h = dﬂ

Determination of the common rate of balanced growth v of k£, h and ¢

B
0 = E—B(l—u)—% (from @)
B .
— 5_7_5_% (from h)
B .
= — - APK or B=aAPK (from k)
a

the rate of return of human capital investments is equal

to the rate of return of investments in physical capital

1 R
v = g(B—é—p) (from ¢)

ComHutation of u*
Solve h = 7 for 1 — u* and substitute :

1—u* = % (v +9)
= % 2(3—5—p)+6)
= o=l (1))
Computation of (c/k)" at balanced growth
4 = 0 yields
@ - 2o

5As there is no population growth there is no difference between nominal and per capita growth rates (e.g.: K = l%)
6The externalities of individual human capital Lucas allows for yield different growth rates of k and h.
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The computation of (k/h)" at balanced growth
The comparison of the Keynes-Ramsey rule and the final equation for v leads to M PK = B and henceﬂ

(3 -
6 - )

Imbalance of initial states

For the calculation of this picture u(t) was chosen optimally.

State variables and optimal decision
The adjustment can be depicted in terms of the level of state variables. The control variables ¢ and u
are chosen optimally.

08f

06f

0.4f

02t

State variables and optimal decision

e The differences in the adjustment are only totally comprehensible, if the dependence on time is
taken into account.

"The externalities of individual human capital mentioned before imply different growth rates of k and h and therefore
the balanced growth path is no longer a straight line! Instead it is a smooth curve of form k#* = h for some positive constant
. In the computations for the pictures in the remainder of this section I used a p between zero and 1.
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The adjustment to the balanced growth path must be observed in the short and long run. Addi-
tionally intertemporal effects should be investigated.

In the short run the acceptance of regulatory measures is an important point of view.

In the long run aspects of sustainability play an important role.

In total the intergenerational balance is important.

Imbalanced initial conditions of growth

A state (k, h) completely determines the optimal path starting from this state. This includes the near
future and the very far. This means, there are different aspects we can focus on when we compare states
with each other.

The fact that any optimal path approaches the balanced growth path (BGP) does not make all paths
alike. And, most obviously, two different states on the balanced growth path will grow apart - although
along the (BGP)!

Comparison of different (initial) states involves comparison of optimal growth paths. It involves the
solution of optimal growth problems by numerical methods.

Criteria for classification of imbalanced states

1. Convergence: Economies with different initial states may undergo different transition but become
more and more equal in the long run. In terms of state variables and therefore with respect any
aspect, concerning their remaining future they converge.

2. Initial utility: Consider the initial utility u(c(0)) of an economy starting to grow optimally
from state (k,h). Different optimal initial utility is important for the current generation, but is
no indicator for superior long run performance. Catching up and overtaking may happen along
optimal growth paths.

3. Discounted utility: Discounted utility [~ u(c(t))e™?" dt is the objective function for optimal
growth in this model. It comprises initial utility as well as long run performance. In a particular
way integration with discounting combines criterion (1) and (2).

Classification of imbalanced states
We distinguish three concepts of classification.

1. Convergence classes Two states ¢ und j belong to the same
convergence class if

| (ki(t), ha(t)) — (k5 (2), h; (1)) |= 0

The states of two initially different economies belonging to the same convergence class are identical
in the long run. As a consequence the optimal controls converge as well. The economies align to
each other.

lim |
t— o0
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2. initial utility classes Two states ¢ and j belong to the same
initial utility class if
u(ci(0)) = u(c;(0))

The states of two initially different economies belonging to the same initial utility class imply the
same optimal initial consumption, and of course the same utility of consumption. However the
consumption paths will develop towards different levels.

3. discounted utility classes Two states i and j belong to the same
discounted utility class if

/000 u(c;(t))e Pt dt = /OOO u(c;(t))e "t dt

The growth paths of two economies belonging to the same discounted utility class are different in
the short and the long run. But the integral over all generations” utilities are identical.

The following two graphs depict the utility in a logarithmic scale towards time. Several initial states are
evaluated with respect to one of the mentioned classifications. Each picture evaluates states belonging
to one of the classes. It is straight forward to find out which classes are depicted[|

log utility

2 4 6 8 10 12 14 16
time

8Hint: One is an initial utility class, one a discounted utility class.
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The following graph depictures the classes relative to a common point of reference. Call it the base
point of comparison.

initial utility cl
“Ia Wttty class Balanced Growth Path

discounted utility class

convergence class

Shocks can have very different short run and long run effects. This becomes most obvious when we
consider a combination of positive and negative shocks in k and h, respectively.

initial utility class
\ v Balanced Growth Path

discounted utility class

convergence class

47



A shock is a sudden change in state variables. It can be characterized by the relative change of state
variables and its intensity.
It can be evaluated with respect to the criteria underlying the definition of classes defined above.

Negative shocks in either single state variable have negative effects in terms of all criteria.

A combination of shocks to physical as well as human capital (e.g. due to a war and subsequent
foreign aid) may yield different results when the evaluation is based on different criteria.

Consider a balanced state as point of reference. Call it the base point of comparison.

Draw the curves of the three classes through the base point. They decompose the (k, h) plane into
different segments.

After the shock the state may be above some and below other curves. ILe. the shock improves the
economy with respect to some critaria and damage it with respect to others.
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