
max

∫ ∞

0

(
c1−θ − 1

1− θ

)
· e−ρt dt
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These notes are more or less a one two one print version of the slides of the
course. The lecture provides a lot of additional instructions, information, and
discussions beyond the content of the slides.
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1 Introduction

1.1 Goals and Methods

1.1 Goals and Methods

Figure 1: Estimates of the population-weighted distribution of countries according to log GDP per capita
(PPP-adjusted) in 1960, 1980 and 2000; source: Acemoglu 2008.
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Figure 2: Estimates of the distribution of countries according to the growth rate of GDP per worker
(PPP-adjusted) in 1960, 1980 and 2000; source: Acemoglu 2008.
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Figure 3: The evolution of income per capita in the United States, United Kingdom, Spain, Singapore,
Brazil, Guatemala, South Korea, Botswana, Nigeria and India, 1960-2000; source: Acemoglu 2008.
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Figure 4: Log GDP per worker in 2000 versus log GDP per worker in 1960 together with the 45◦ line;
source: Acemoglu 2008.
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Figure 5: Annual growth rate of GDP per worker between 1960 and 2000 versus log GDP per worker in
1960 for core OECD countries; source: Acemoglu 2008.
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Figure 6: The relationship between average growth of GDP per capita and average growth of investments
to GDP ratio, 1960-2000; source: Acemoglu 2008.
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Figure 7: The relationship between average growth of GDP per capita and average years of schooling,
1960-2000; source: Acemoglu 2008.

2 Introduction

2.1 Goals and Methods

Growth rates in discrete time

Consider a variable changing over time

yt+1 = (1 + g) · yt

We can solve for g, the growth rate of y in year t

g =
yt+1

yt
− 1

Extending the calculation into the future we get

yt+T = (1 + g) · yt+T−1

= (1 + g)2 · yt+T−2

...

= (1 + g)T · yt
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Mean growth

Based on the data of only the initial year and the �nal year we can always compute the mean growth
rate over T years from t to t+ T

gt,t+T =

(
yt+T

yt

)1/T

− 1

Of course, considering the constant mean growth rate does not exclude that during the period of investi-
gation the true growth rate varied. There may have been �uctuation for example due to business cycles
or any kind of shocks1.

Growth rates in continuous time

Assume y(t) is a continuous, di�erentiable function of time.
At time t we may de�ne the relative change of y by

d y(t)

d t

/
y(t) = γ(t)

We call this the instantaneous growth rate of y at t. We may drop the term instantaneous if this does
not cause any confusion.

In case of a given initial value y(0) and a positive, constant instantaneous growth rate γ the following
exponential function solves this equation for all t > 02

y(t) = y(0) · eγt

Growth rates in continuous time

Moreover we �nd
y(t+ T )/y(t) = eγT

and �nally

γ =
ln y(t+ T )− ln y(t)

T

This formula for γ regularly is used in empirical work for technical convenience.3

Di�erential equations

An ordinary one-dimensional di�erential equation of �rst order looks as follows4

d x

d t
= f(x(t))

A solution is a function x(t) solving this equation.

Notation

ẋ(t) =
d x

d t
x̂(t) = ẋ(t)/x(t)

Linear di�erential equations

ẋ = A · x+B

with

� A and B being real numbers

1We sometimes use explicit notations of growth rates with a time index. Quite often we drop them.
2It is easy to show that this is the only solution given y(0). This generalizes easily to the case of a given value y(T ) at

any positive point of time T due to y(0) = y(T )/eγT .

3Notice that the discrete time growth rate di�ers from the instantaneous growth rate. Evaluation of g =
(

yt+T

yt

)1/T
−1

for the exponential function gives γ = ln(g + 1). I.e. γ is a logarithmic approximation of g and both values coincide at

γ = g = 0.
4We consider autonomous di�erential equations here. We could allow for non-autonomous di�erential equations where

f directly depends on t.
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� A is a quadratic matrix and B a vector of real numbers.

Linear di�erential equations have exponential solutions.

As the most simple example we consider the one-dimensional ordinary linear di�erential equation with
constant coe�cients. The di�erential equation

ẋ = ax+ b

has solution
x(t) = (x(0) + b/a) eat − b/a

Indeed

ẋ(t) =
dx(t)

dt
= (x(0) + b/a) a eat

= a (x(t) + b/a)

= a x(t) + b

Phase diagrams
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Endogenous optimal growth with a saddlepoint stable balanced growth path

2.2 Regularity and Balance

1.2 Regularity and Balance

Regularity

� What is a reasonable model for the description of economic growth in the long run?

� Are growth rates per capita constant in the long run?
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� What is the di�erence between adjusted dynamics and long run dynamics?

� From the theoretical point of view could be concluded, how long the adjustment can take and
which long run trends can be observed: convergence speed (see chapter 1.3).

� Economic models should be developed in a �exible shape to enable the explanation of di�erent
trends in the long run.

� Important is the development of methods for the description of di�erent trends in the long run.

Regularity in a European comparison
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Figure 8: source: Own calculation on the basis of World Historical Data

Regularity in a European comparison
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Regularity in a European comparison
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Regularity and time horizon: German data
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13



1950 1960 1970 1980 1990 2000 2010
8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

lo
g(

B
IP

)

source: Own calculation on the basis of World Historical Data

The descriptive model for regular growth

x(t) =
(
aβ0 + a · β · t

)1/β

Take the derivative of x(t) with respect to time t

ẋ(t) =
1

β

(
aβ0 + a · β · t

)(1−β)/β

· a · β

which can be expressed in terms of x(t)

ẋ(t) = a x(t)1−β a Bernoulli di�erential equation

Similarly we get the second derivative

ẍ(t) = a(1− β)x(t)−β ẋ(t)

De�nition of �rst and second order growth rates

g1 = ẋ/x g2 = ġ1/g1

We calculate

g2 =
ẍ · x− ẋẋ

x2

/
ẋ

x
=

ẍ

ẋ
− ẋ

x

= a(1− β)x(t)−β − ax(t)−β

= a(−β)x(t)−β

= −βg1

De�nition:

Growth of x(t) is regular if g2 = −βg1 for some constant β.

The prototype of regular growth

x(t) =
(
aβ0 + a · β · t

)1/β
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Balance and imbalance
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Shrinking Population I
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Shrinking Population II

2.3 Stability

Dynamic models sometimes have rest points, also called stationary points. I.e. they have values of
variables where the rules of dynamics allow the system to stay.

A simple linear model with a stationary point is the following:

ẋ = −β(x− x∗) for some positive constant parameter β

At x = x∗ the right hand side is equal to zero, i.e. the system is stationary. We may call this the dynamic
equilibrium.

If the system is pushed out of equilibrium by some shock, the question arises whether x will return
to equilibrium. A check of the sign of the right hand side indicates stability.

But even without referring to the mathematical literature on stability analysis we can say a little bit
more.

half-life

Will it take a long time for the system to return to equilibrium?
The solution

x(t) = x∗ + (x(0)− x∗)e−βt

converges to x∗ with t → ∞.
Heads up: It is correct to use the term "converge" in this situation but in the next chapter we use

"convergence" in a di�erent sense.

Half-life is the time required to halve the distance from a starting point x(0) to x∗ = x(∞).
We can compute this length of time:

x(t)− x∗ = (x(0)− x∗)/2

(x(0)− x∗)e−βt = (x(0)− x∗)/2

eβt = 2

βt = ln(2)

t = ln(2)/β

As you can see, half-life is inversely proportional to the absolute value of the convergence rate from x to
x∗;
The proportionality factor is ln(2).
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The convergence coe�cient

In the framework of the Solow-Swan model there is growth of the capital intensity

k̇ = sf(k)− (n+ δ)k

and hence the growth rate is
γ = k̂ = sf(k)/k − (n+ δ)

k in the long run converges to a constant value k∗, solving the following equation

sf(k)/k = (n+ δ)

.

Approximation

� The di�erential equation is non-linear.

� Mathematical theory suggests to simplify the stability analysis by linear approximation.
This is su�cient to characterize the convergence behavior near k∗

We compute the Taylor approximation of k̇ near k = k∗:

k̇ ≈ [sf(k∗)− (n+ δ)k∗] + [sf ′(k∗)− (n+ δ)] (k − k∗)

= [sf ′(k∗)− (n+ δ)] (k − k∗)

= −β (k − k∗)

with β = −(sf ′(k∗)− (n+ δ))

Notice that one can show that β is positive!
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Example: Cobb Douglas production function f(k) = kα

� We obtain f ′(k∗) = α(k∗)α−1 = αf(k∗)/k∗.

� Recalling sf(k∗)/k∗ = (n+ δ) we have

β = (n+ δ)− sαf(k∗)/k∗ = (1− α)(n+ δ)

Although we started by approximating the nominal change k̇ we can interpret the result in terms of the
growth rate k̂

k̇ ≈ −β (k − k∗)

k̂ ≈ −β
k − k∗

k

� The nominal change approximately decomposes into the negative of the product of the convergence
rate and the deviation from equilibrium.

Equivalently

� The growth rate approximately decomposes into the negative of the product of the convergence
rate and the relative deviation from equilibrium.

� Linear approximation of a system near a rest point: Jacobian matrix, eigenvalues and eigenvectors
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� Stable Manifold Theorem, Hartman-Grobman Theorem (Lawrence Perko 2001, Di�erential Equa-
tions and Dynamical Systems)
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2.4 Convergence

Growth regressions

Assume e�ciency of labor is given by E(t), and is growing with constant exogenous rate g.
Rede�ne

k(t) = K(t)/E(t)L(t)

to measure capital intensity incorporating e�ciency of labor.
Per capita output now is given by the augmented production function production

y(t) = E(t) f(k(t))

� y is still measured in per capital terms.

� k is measured incorporating e�ciency of labor.

� In the augmented Solow-Swan model k will grow like per capita capital of a population growing
with rate g + n.

� In the long run the growth rate of k will be equal to zero, whereas y will be growing with rate g.

Recall the Solow-Swan growth equation now augmented by e�ciency growth

k̂(t) = sf(k(t))/k(t)− δ − g − n

The growth rate of ŷ relates to k̂ as follows5

ŷ(t) = g + f̂(k(t))

= g + εf (k(t)) k̂(t)

Approximation

In order to compute the Taylor approximation of k̂ w.r.t. log k we need to compute the derivative of
f(k)/k w.r.t. log k:

d f(k)
k

d log(k)
=

d f(k)
k

d k
· k

=
f ′(k) · k − f(k)

k2
· k

=
f ′(k) · k − f(k)

k

=

(
f ′(k) · k
f(k)

− 1

)
f(k)/k

= (εf (k)− 1)f(k)/k

5

d log(f(k(t))

d t
=

1

f(k(t))
f ′(k(t)) k̇(t)

=
k(t)

f(k(t))
f ′(k(t))

k̇(t)

k(t)

= εf (k(t)) k̂(t)
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Approximation of input growth

k̂(t) ≈ (sf(k∗)/k∗ − δ − g − n)

+s(εf (k
∗)− 1)

f(k∗)

k∗
(log k(t)− log k∗)

≈ −(1− εf (k
∗))(δ + g + n)(log k(t)− log k∗)

Approximation of per capita output growth

ŷ(t) ≈ g + f̂(k(t))

≈ g − εf (k
∗)(1− εf (k

∗))(δ + g + n)(log k(t)− log k∗)

≈ g − (1− εf (k
∗))(δ + g + n)(log y(t)− log y∗)

and in the case of a Cobb-Douglas production function

≈ g − (1− α)(δ + g + n)(log y(t)− log y∗)

Barro regression

This equation gives rise to a discrete time regression with an N (0, σ2
ε) distributed error term. γ denotes

the GDP growth rate.
γi,t = b0 + b1 log yi,t + εi,t

It is not di�cult to see that the left hand side can be replaced by the average growth rate over a number
of years. In that case the error term is the corresponding accumulated error.

β convergence

The analysis of the Solow-Swan model suggests g = b0 + b1 log y∗ if g and y∗ are identical in all the
countries considered.

Moreover, the right hand side is larger (smaller) than g if y is smaller (larger) than y∗.
In particular it suggests the hypothesis b1 < 0. It re�ects the fact that countries with higher GDP

should have smaller growth rates.
In the literature the test of this hypothesis is called test for unconditional β convergence.

σ convergence

In the Barro regression we can approximate the growth rate by the di�erence of log GDP and rearrange
the equation

log yi,t − log yi,t−1 = b0 + b1 log yi,t−1 + εi,t

log yi,t = b0 + (1 + b1) log yi,t−1 + εi,t

This gives rise to a di�erence equation for the variance σ of y and ση of the the error terms

σ2
t = (1 + b1)2 σ2

t−1 + σ2
η

The observation and discussion of this issue goes back to a paper by Danny Quah (Quah 1993, The
Scandinavian Journal of Economics).
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σ versus β convergence

� If b1 < 0 the growth process is called β convergent and y∗ is stable.

� If σ2
t < σ2

t−1 the cross section analysis of the growth process is called σ convergent.

� σ2
t < σ2

t−1 can only hold only if b1 < 0.

� If the growth process is only modestly β-convergent, σ-convergence may be violated due the dom-
inance of σ2

η.

Conditional β convergence

Country speci�c regression
γi,t = b0i + b1 log yi,t + εi,t

General formal estimation equation

If b0i is decomposed into a number of speci�c economic e�ects, the regression is called a f ormal growth
regression. The components mays be disaggregate accumulation activities, research and development
expenditure, institutional e�ciency, and the like.

General informal estimation equation

The generalized regression without a structural decomposition of country speci�c e�ects is called informal
regression.

With a vector of further explaining variables Xi,t and a vector of coe�cients b0 the model takes the
form

gi,t = X ′
i,tb

0 + b1 log yi,t + εi,t

A remark on stability and convergence

In economic literature the terms stability and convergence are not always clearly separated. From a
formal point of view the terms should be used the following way

� If the solutions of a di�erential equation converge to a particular dynamic equilibrium point (at
least locally), the equilibrium is called (locally) stable.

� If a sample of initially di�erent values become less di�erent over time, the sample may be called
convergent.

The Barro regression of a large sample of countries
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Quelle: Acemoglu 2008

The Barro regression of a selection of countries:
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Quelle: Acemoglu 2008
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Stability and Convergence
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Figure 9: Optimal growth paths of the Lucas-Uzawa model

� At the core of this model there is a particular path with constant growth rates, the balanced growth
path (BGP).

� All other optimal paths starting from unbalanced initial states converge towards this path.Non-
optimal paths will miss it: The BGP is saddlepoint stable.

� Some ptimal growth paths converge pointwise to one another, others don't.
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