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These notes are more or less a one two one print version of the slides of the
course. The lecture provides a lot of additional instructions, information, and
discussions beyond the content of the slides.
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FIGURE 1.3. Estimates of the population-weighted distribution of countries
according to log GDP per capita (PPP-adjusted) in 1960, 1980 and 2000.

Figure 1: Estimates of the population-weighted distribution of countries according to log GDP per capita
(PPP-adjusted) in 1960, 1980 and 2000; source: Acemoglu 2008.
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FIGURE 1.7. Estimates of the distribution of countries according to the
growth rate of GDP per worker (PPP-adjusted) in 1960, 1980 and 2000.

Figure 2: Estimates of the distribution of countries according to the growth rate of GDP per worker
(PPP-adjusted) in 1960, 1980 and 2000; source: Acemoglu 2008.
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FIGURE 1.8. The evolution of income per capita in the United States, United
Kingdom, Spain, Singapore, Brazil, Guatemala, South Korea, Botswana,
Nigeria and India, 1960-2000.

Figure 3: The evolution of income per capita in the United States, United Kingdom, Spain, Singapore,
Brazil, Guatemala, South Korea, Botswana, Nigeria and India, 1960-2000; source: Acemoglu 2008.
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FIGURE 1.9. Log GDP per worker in 2000 versus log GDP per worker in 1960,
together with the 45° line.

Figure 4: Log GDP per worker in 2000 versus log GDP per worker in 1960 together with the 45° line;
source: Acemoglu 2008.
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FI1GURE 1.14. Annual growth rate of GDP per worker between 1960 and 2000
versus log GDP per worker in 1960 for core OECD countries.

Figure 5: Annual growth rate of GDP per worker between 1960 and 2000 versus log GDP per worker in
1960 for core OECD countries; source: Acemoglu 2008.
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FIGURE 1.15. The relationship between average growth of GDP per capita
and average growth of investments to GDP ratio, 1960-2000.

Figure 6: The relationship between average growth of GDP per capita and average growth of investments
to GDP ratio, 1960-2000; source: Acemoglu 2008.
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Figure 7: The relationship between average growth of GDP per capita and average years of schooling,
1960-2000; source: Acemoglu 2008.

2 Introduction

2.1 Goals and Methods

Growth rates in discrete time
Consider a variable changing over time

Yer1=1+9) v
We can solve for g, the growth rate of y in year ¢

g:M—l
Yt

Extending the calculation into the future we get

yer = (14+9) yeyr—1
(14 9)* yror—2

= (1+9" u



Mean growth
Based on the data of only the initial year and the final year we can always compute the mean growth

rate over T years from ¢ to t + T
1/T
Yi+1
gt t+T = ( s ) -1

Yt

Of course, considering the constant mean growth rate does not exclude that during the period of investi-
gation the true growth rate varied. There may have been fluctuation for example due to business cycles
or any kind of shocksﬂ

Growth rates in continuous time

Assume y(t) is a continuous, differentiable function of time.
At time ¢ we may define the relative change of y by
dy(t)

W/y(t) =7(t)

We call this the instantaneous growth rate of y at t. We may drop the term instantaneous if this does
not cause any confusion.

In case of a given initial value y(0) and a positive, constant instantaneous growth rate v the following
exponential function solves this equation for all ¢ > (ﬂ

y(t) = y(0) -

Growth rates in continuous time
Moreover we find

y(t+T)/y(t) ="
and finally

Iny(t+7T)—Iny(t)
Y= T

This formula for v regularly is used in empirical work for technical convenienceEI

Differential equations
An ordinary one-dimensional differential equation of first order looks as followﬁ

dx
)

A solution is a function z(t) solving this equation.

Notation p
. x N .
#(t)=—  2(t)=a(t)/x(t)
Linear differential equations
t=A-x+ B

with

e A and B being real numbers

IWe sometimes use explicit notations of growth rates with a time index. Quite often we drop them.

2Tt is easy to show that this is the only solution given y(0). This generalizes easily to the case of a given value y(T) at
any positive point of time T due to y(0) = y(T")/e7.

v 1/T
t+T ) 1

Yt
for the exponential function gives v = In(g + 1). I.e. « is a logarithmic approximation of g and both values coincide at
v=g9=0.

4We consider autonomous differential equations here. We could allow for non-autonomous differential equations where
f directly depends on t.

3Notice that the discrete time growth rate differs from the instantaneous growth rate. Evaluation of g = (



e A is a quadratic matrix and B a vector of real numbers.

Linear differential equations have exponential solutions.

As the most simple example we consider the one-dimensional ordinary linear differential equation with
constant coefficients. The differential equation

Tr=ax+b

has solution
z(t) = (z(0) + b/a) e* —b/a

Indeed
dx(t
i(t) = Zi ) (2(0) + b/a)aet
= a(z(t) +b/a)
= ax(t)+b
Phase diagrams
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2.2 Regularity and Balance
1.2 Regularity and Balance
Regularity

e What is a reasonable model for the description of economic growth in the long run?

e Are growth rates per capita constant in the long run?

10



What is the difference between adjusted dynamics and long run dynamics?

From the theoretical point of view could be concluded, how long the adjustment can take and
which long run trends can be observed: convergence speed (see chapter 1.3).

Economic models should be developed in a flexible shape to enable the explanation of different
trends in the long run.

Important is the development of methods for the description of different trends in the long run.

Regularity in a European comparison

UK: initial growth rate =2.2%, damping factor =0.093068
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Figure 8: source: Own calculation on the basis of World Historical Data

Regularity in a European comparison
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Ireland: initial growth rate =1.5%, damping factor =-0.93567
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Regularity and time horizon: German data
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Regularity and time horizon: German data
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Regularity and time horizon: German data
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The descriptive model for regular growth
/B
x(t) = (ag—i—wﬁ-t)
Take the derivative of z:(¢) with respect to time ¢

1 (1-8)/8
i(t) == (a€+a-ﬁ-t)

5 ca-B

which can be expressed in terms of x(t)
#(t) = axz(t)!=? a Bernoulli differential equation
Similarly we get the second derivative

#(t) = a(l = B)a(t) =" i(t)

Definition of first and second order growth rates
g =t/z  g2=gq/n

We calculate

92 = 72 — = - = —
x x T oz
— a1 - Ba)’ — av(t)’
= a(=p)x(t)”’
= —Bgn
Definition:
Growth of z(t) is regular if go = —3g; for some constant 3.

The prototype of regular growth
1/
z(t) = <a§+a~6-t)

14
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Balance and imbalance
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Shrinking Population II
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07

03 I I I |
1000 1500 2000 2500 3000 3500

KNOWLEDGE PER PERSON, x

2.3 Stability

Dynamic models sometimes have rest points, also called stationary points. IL.e. they have values of
variables where the rules of dynamics allow the system to stay.
A simple linear model with a stationary point is the following:

&= —B(x —x*) for some positive constant parameter 3

At x = a* the right hand side is equal to zero, i.e. the system is stationary. We may call this the dynamic
equilibrium.

If the system is pushed out of equilibrium by some shock, the question arises whether = will return
to equilibrium. A check of the sign of the right hand side indicates stability.

But even without referring to the mathematical literature on stability analysis we can say a little bit
more.

half-life
Will it take a long time for the system to return to equilibrium?
The solution
z(t) = 2 + (2(0) — z*)e P
converges to x* with t — oo.
Heads up: It is correct to use the term "converge" in this situation but in the next chapter we use
"convergence" in a different sense.

Half-life is the time required to halve the distance from a starting point 2(0) to x* = x(00).
We can compute this length of time:

z(t) —z" = (z(0)—2z")/2

(2(0) —z")e " = (2(0) - z*)/2
M= 2
gt = In(2)
t = n(2)/8

As you can see, half-life is inversely proportional to the absolute value of the convergence rate from z to
x*;

The proportionality factor is in(2).

17
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The convergence coefficient
In the framework of the Solow-Swan model there is growth of the capital intensity

k=sf(k)— (n+0)k

and hence the growth rate is R
v=k=sf(k)/k—(n+0)

k in the long run converges to a constant value k*, solving the following equation

sf(k)/k = (n+9)

Approximation
e The differential equation is non-linear.

e Mathematical theory suggests to simplify the stability analysis by linear approximation.
This is sufficient to characterize the convergence behavior near £*

We compute the Taylor approximation of k near k = k*:

o~ [sf(EY) = (n+ 0k + [sf' (k*) — (n+0)] (k — k*)
= [sf'(k") = (n+0)] (k— k")
= —B(k—k")
with 8 = —(sf'(k*) — (n + )

Notice that one can show that 3 is positive!

18
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Example: Cobb Douglas production function f(k) = k¢
e We obtain f/(k*) = a(k*)*~! = af (k*)/k*.
e Recalling sf(k*)/k* = (n + J) we have
B=(n+0)—saf(k*)/k*=(1-a)(n+9)

Although we started by approximating the nominal change k we can interpret the result in terms of the
growth rate k

w.
Q

—B(k—Fk")
A k— k*

e The nominal change approximately decomposes into the negative of the product of the convergence
rate and the deviation from equilibrium.

Equivalently

e The growth rate approximately decomposes into the negative of the product of the convergence
rate and the relative deviation from equilibrium.

e Linear approximation of a system near a rest point: Jacobian matrix, eigenvalues and eigenvectors
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e Stable Manifold Theorem, Hartman-Grobman Theorem (Lawrence Perko 2001, Differential Equa-
tions and Dynamical Systems)
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2.4 Convergence

Growth regressions
Assume efficiency of labor is given by E(t), and is growing with constant exogenous rate g.
Redefine
k(t) = K(t)/E(t)L(t)

to measure capital intensity incorporating efficiency of labor.
Per capita output now is given by the augmented production function production

y(t) = E(t) f(k(1))

y is still measured in per capital terms.

k is measured incorporating efficiency of labor.

e In the augmented Solow-Swan model k will grow like per capita capital of a population growing
with rate g + n.

e In the long run the growth rate of £ will be equal to zero, whereas y will be growing with rate g.

Recall the Solow-Swan growth equation now augmented by efficiency growth

—

k(t) = sf(k(®)/k(t) =0 —g—n
The growth rate of § relates to k as follow

— o —

y(?) g+ f(k(t))

—

t
= g+es(k(t) k(t)

Approximation A
In order to compute the Taylor approximation of k£ w.r.t. logk we need to compute the derivative of
f(k)/k w.r.t. logk:

e d%.k
dlog(k) dk
_ SRk fR)
k2
_ f'(k) -k — f(k)
k
f'(k) -k
(P 1) oo

= (e7(k) =D f(R)/k

dlog(Fk(®) 1
U = ) KO
kW) kW)

= Feay! FO ke

= es(k(1) k(®)
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Approximation of input growth

iy
Q

(sf(K*)/k" =6 —g—n)
+s(ep(k*) —1) fgi )(log k(t) —log k™)
~ —(1—ep(k")(6+ g+ n)(ogk(t) —logk™)

Approximation of per capita output growth

i)~ g+ fkQ©)
~ g—ep(K*)(1—ef(k"))(0+ g+ n)(logk(t) — log k™)
g— (1 —ep(k"))(04g+n)(ogy(t) —logy™)

and in the case of a Cobb-Douglas production function
g—(1=a)(d+g+n)(logy(t) —logy")

Q

Barro regression
This equation gives rise to a discrete time regression with an A/(0,02) distributed error term. v denotes
the GDP growth rate.

Yig =00+ b logy; s + &

It is not difficult to see that the left hand side can be replaced by the average growth rate over a number
of years. In that case the error term is the corresponding accumulated error.

£ convergence
The analysis of the Solow-Swan model suggests g = b° + b'logy* if g and y* are identical in all the
countries considered.

Moreover, the right hand side is larger (smaller) than ¢ if y is smaller (larger) than y*.

In particular it suggests the hypothesis b' < 0. It reflects the fact that countries with higher GDP
should have smaller growth rates.

In the literature the test of this hypothesis is called test for unconditional 8 convergence.

o convergence
In the Barro regression we can approximate the growth rate by the difference of log GDP and rearrange
the equation

logyis —logyir—1 = b +b'logyi1+eis
logy;: = b0+ (1+b")log Yit—1 1 Eit

This gives rise to a difference equation for the variance o of y and o, of the the error terms

or =(1+bH)202 | + 0727

The observation and discussion of this issue goes back to a paper by Danny Quah (Quah 1993, The
Scandinavian Journal of Economics).
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g versus B convergence
o If b! < 0 the growth process is called 8 convergent and y* is stable.
o If 07 < o7, the cross section analysis of the growth process is called o convergent.
e 02 < 02, can only hold only if b* < 0.

e If the growth process is only modestly B-convergent, o-convergence may be violated due the dom-
inance of o7 .

Conditional 8 convergence
Country specific regression
Vi = b) + b log yi ¢ + £it

General formal estimation equation

If 1Y is decomposed into a number of specific economic effects, the regression is called a formal growth
regression. The components mays be disaggregate accumulation activities, research and development
expenditure, institutional efficiency, and the like.

General informal estimation equation
The generalized regression without a structural decomposition of country specific effects is called informal
regression.
With a vector of further explaining variables X, ; and a vector of coefficients b0 the model takes the
form
Git = Xz(,tbo +b'logyis + €y

A remark on stability and convergence
In economic literature the terms stability and convergence are not always clearly separated. From a
formal point of view the terms should be used the following way

e If the solutions of a differential equation converge to a particular dynamic equilibrium point (at
least locally), the equilibrium is called (locally) stable.

e If a sample of initially different values become less different over time, the sample may be called
convergent.

The Barro regression of a large sample of countries

22



INTRODUCTION TO MODERN ECcoNOMIC GROWTH

©

8

HKG
KOR
° THA
o JPN IRL
= S CHN  pom MWE)S
|
o IDN sye g LUX
@ coG PAK " GPV creE A,
9’_) IND s_I:( SFAF?
o LSO E BRA SRR
2 Lka VAR
oA " PAN
g5 MWI NPL BGD IRN USA
=
< L WE ECUGTMOR  MEX SWRIAN
[e] BFA GMB CIV PHL
5 s £y e
o KERHA PRIOL
= ETH BEN GIN SL¥RI ARG NZL
© CMR HND
= BDI RWAGO JAM
o BOL  PER
©
wHaZ P
MLl VEN
NER
NGA NIC

o

(:! -

| T T T T T

6 7 8 9 10

log gdp per worker 1960

FIGURE 1.13. Annual growth rate of GDP per worker between 1960 and 2000
versus log GDP per worker in 1960 for the entire world.

Quelle: Acemoglu 2008

The Barro regression of a selection of countries:
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FIGURE 1.14. Annual growth rate of GDP per worker between 1960 and 2000
versus log GDP per worker in 1960 for core OECD countries.

Quelle: Acemoglu 2008
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Stability and Convergence

Figure 9: Optimal growth paths of the Lucas-Uzawa model

e At the core of this model there is a particular path with constant growth rates, the balanced growth
path (BGP).

e All other optimal paths starting from unbalanced initial states converge towards this path.Non-
optimal paths will miss it: The BGP is saddlepoint stable.

e Some ptimal growth paths converge pointwise to one another, others don’t.
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