Economic Growth

Problems Sets

Winter Semester 2025

Karl-Josef Koch

Problem Set 2

Population growth

Labor is one of the most important factors of production. So let's take a look at some simple models of population growth. Let N(t) be the size of the population, which can change over time. Let time run from zero to infinity, and $N_0 = N(0)$ the initial size of N.

Exercise 1 Assume that N changes with t in the following way

$$\dot{N}(t) = \nu N(t)$$
 or in short notation $\dot{N} = \nu N$

- (1) What is the growth rate \hat{N} of N?
- (2) Is $N(t) = N_0 e^{\nu \cdot t}$ the function matching the dynamic assumption, i.e. solving the differential equation?

Exercise 2 Now assume that N changes with t in a different way

$$N(t) = N^* + (N_0 - N^*)e^{-\beta t}$$

with some positive constant β .

- (1) What is the growth rate?
- (2) What is the differential equation $\dot{N} = \dots$ of this process?
- (3) Describe the difference between the first model and the second in words!

Exercise 3 An empirically plausible formal dynamic model of N matching recent data is the logistic model of the following form

$$N(t) = \frac{N_{max}}{1 + \frac{N_{max} - N_0}{N_0} e^{-\nu t}}$$

with initial value N_0 as before and a maximum value N_{max}

- (1) What is the limit of N(t) for $t \longrightarrow \infty$?
- (2) Draw a rough sketch of N(t)!
- (3) Show that N(t) as given above solves the following differential equation

$$\dot{N} = \nu N \left(1 - \frac{N}{N_{max}} \right)$$

(4) What is the limit of $\hat{N}(t)$ for $t \longrightarrow \infty$?