Economic Growth

Problems Sets

Winter Semester 2024

Karl-Josef Koch

Barro Regressions

Structural equations

(1) Recall the system of structural equations for a sample of countries i = 1, ..., n over a period of years t = 1, ..., T.

$$\ln y_{i,t} - \ln y_{i,t-1} = b^0 + b^1 \ln y_{i,t-1} + \varepsilon_{i,t}$$

and the OLS estimators for b^1 and b^0

$$\hat{b}^1 = \frac{cov(\ln y_{i,t} - \ln y_{i,t-1}, \ln y_{i,t})}{var(\ln y_{i,t-1})}$$

$$\widehat{b^0} = \overline{\ln y_{i,t} - \ln y_{i,t-1}} - \widehat{b^1} \overline{\ln y_{i,t-1}}$$

(2) consider the ountry specific regression for conditional convergence

$$\ln y_{i,t} - \ln y_{i,t-1} = b_i^0 + b^1 \ln y_{i,t-1} + \varepsilon_{i,t}$$

(3) Derive the country fixed effects estimators

Solution: Form the averages country by country

$$\overline{\ln y_i} - \overline{\ln y_{i-}} = b_i^0 + b^1 \overline{\ln y_{i-}} + \overline{\varepsilon_i} \qquad \text{for country } i$$

Subtract the average equations from the original one and get an equation without fixed effects

$$(\ln y_{i,t} - \ln y_{i,t-1}) - (\overline{\ln y_i} - \overline{\ln y_{i-1}}) = b^1 (\ln y_{i,t-1} - \overline{\ln y_{i-1}}) + (\varepsilon_{i,t} - \overline{\varepsilon_i})$$

Notice that the term $\overline{\ln y_i} - \overline{\ln y_i}$ reduces to $(\ln y_{i,T} - \ln y_{i,1})/T$ which is country i's average growth rate over the period $1, \ldots, T$. In other words we regress the deviation of growth rates from the respective country's average growth rate on the deviation of logarithms of gdp from the respective country's average logarithm of gdp.