

Games and Information

Problems Sets

Summer Semester 2025

Karl-Josef Koch

Problem Set 3

Exercise 4

Recall the concept of stochastic dominance, as presented in the lecture.

- (1) What is the formal definition that a distribution p^H for returns $x_1 \le x_2 \le \cdots \le x_n$ stochastically dominates p^L of the first order?
- (2) The distributions p^H and p^L give rise to continuous distributions $prob^H$ and $prob^L$ such that $prob^H\{x \leq \bar{x}\}$ is the probability that, according to p^H , the variable x assumes any value less than or equal to \bar{x} . Similarly, $prob^L\{x \leq \bar{x}\}$ is defined in relation to p^L .

Relate this definition to the statement

$$prob^{H} \{x \leq x_i\} < prob^{L} \{x \leq x_i\}$$
 for all $x > 0$ and $x_i, i < n$

Exercise 5

A very simple case of the moral hazard setting discussed in the lecture is the one with two effort levels $e^H > e^L$, and two levels of outcome $x_1 < x_2$. The outcome probabilities are p_i^H and p_i^L .

Moreover, let us consider specific utility and dis-utility functions $u(w) = \ln(w)$ and $v(e) = e^2$.

- (1) Recall the condition for the principal to have higher expected revenue in case of high effort and reduce the inequality to a simple condition in terms of p_1^L and p_1^H .
- (2) Assume the condition of 1. is satisfied, extend the comparison to the case of the principal's profit, and comment on the result.
- (3) Write down the participation constraint (PC) for the utility and disutility functions specified above assuming that high effort is preferred by the principal.
- (4) Write down the incentive compatibility constraint (ICC) for the utility and disutility functions specified above, and reduce it to a simple form.
- (5) Interpret the graph below. In particular, mark the domain where the inequalities of (PC) and (ICC) are satisfied.

