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1 Motivation

Glorious days of information economics

George A. Akerlof, A. Michael Spence, Joseph E. Stiglitz,Nobel-prize winners 2001

Glorious days of contract theory

Oliver Hart, Bengt Holmström,Nobel-prize winners 2016
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2 Background

The world is not always what it seems at �rst glance.

There are hidden secrets.

In this course you will learn to understand the di�erence between

Moral Hazard

Adverse Selection

The Value of Information
Signaling
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2.1 Some Examples

� The goal of this course is the provision of economic analysis of such problems.

� To accomplish this goal we start with the analysis of some examples.

Robinson Crusoe's problem to sell a goat

� Robinson Crusoe owns a goat yielding s liters of milk every day. He can imagine
to sell the goat at a reasonable price.

� Friday thinks of buying the goat. He does not know whether the goat is milking
well or not.

�

UR =

{
2s, if he keeps the goat
p, if he sells the goat

�

UF =

{
0, if does not buy the goat
3s− p, if he buys the goat

� Friday knows that some goats milk well and others don't.

� He knows the distribution of the amount of milk s a goat usually yields. s is equally
distributed on the interval [0, 10].

� Friday is risk neutral. He uses the expected value of se as an estimator of the true
yield of milk.

� A priori the estimator is se = 5.

� Robinson Crusoe is willing to o�er the goat at a fair price pfair.

� Friday concludes, that pfair ≥ 2s, in other words 0 ≤ s ≤ pfair/2.

� Hence Friday alines his estimator se(pfair) = pfair/4.

� He will accept Crusoe's o�er, if 3se(pfair) ≥ pfair.

� However, 3se(pfair) = 3 pfair/4 < pfair !

� Whatever Crusoe may regard as a fair price, Friday will (mis-)interpret his o�er
and reject it.

Does the result hinge on the parameters of the example?
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One can set up a slightly more general model of the problem. For that, consider the
following matrix of outcomes:

Robinson's outcome

{
p
uR(s)

trade
no trade

Friday's outcome

{
uF (s)− p
0

trade
no trade

� uR(s) and uF (s) are the respective values of milk for Robinson and Friday.

� Robinson knows the exact value of uR(s), but Friday has to use an estimate uF (s
e).

� If Robinson is willing to sell his goat at price pfair, then pfair ≥ uR(s), and Friday
concludes s ≤ u−1

R (pfair).

� Friday's estimate will be se = u−1
R (pfair)/2.

� On the other hand Friday accepts pfair if uF (s
e) ≥ pfair.

� So pfair has to satisfy uF (u
−1
R (pfair)/2) ≥ pfair.

� One further transformation yields u−1
R (pfair)/2 ≥ u−1

F (pfair).

� In other words, Friday will accept a o�er if the gain of trade outweighs the risk of
overestimation of s.
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0

0.5

1

1.5
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2.5

3

3.5

s

p uR(s)

uF (s)

u−1
R (p)/2

u−1
R (p)~

u−1(p)~ F

u−1
R (pfair)/2 ≥ u−1

F (pfair)
� If uF is not much larger than uR, the risk of buying a low quality spoils the deal.

Is this a real problem?

You may be aware of the fact, that a while ago large German car producers ran into
problems because for years their management had been cheating on the declaration of
pollutant emission of their diesel vehicles. The public discussion of the problem caused a
(slight) disarrangement of car markets world wide.

A car market obstacle
In a radio broadcast I heard the following statement:

Obviously demand will decrease as prices go down!

One may be puzzled because usually we expect demand to decrease with prices.
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� The broadcast statement is suggesting the opposite

� However, here the question arises what the true value of a car may be?

� Even if the producer of the car may have to pay for part of the extra costs to solve
the problem with the car, the resale value will probably decline.

� Current prices for new cars of this brand are likely to decrease because buyers are
expecting inconveniences.

� The lower the current price of the car the more the potential buyers will expect the
resale price to drop.

� Even worse: Potential buyers may be afraid that the current seller wants to get rid
of the car because he is afraid the problem may be more severe than admitted by
the seller.

� Hence, at least some buyers may refrain from buying this brand. And its is unlikely
that you �nd new potential buyers.

� This phenomenon is called adverse selection.

� Can you build a little model to check whether the argument goes through?

Auctions

Now, Morteza wants to buy a very unique mug with the Ei�el Tower painted on it from
a special souvenir shop. The shop owner is aware of his position as a monopolist, but
has no idea about Morteza's willingness to pay and that of other potential clients. The
number of interested customers is not very large, but too large to negotiate with each
customer individually.

Therefore, he decides to auction o� this special mug.

There are many forms of auctions. Here is the short list of the basic ones

� English Auction: Bidding starts at a low price and is raised incrementally as pro-
gressively higher bids are solicited, until no higher bids are received.
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� Dutch Auction: Bidding starts with a high price and is decreased step by step by
the auctioneer until the bid is accepted by a buyer.

What form of auction should the seller choose in order to maximize his revenue?

Assume that each bidder privately and independently forms an opinion of the value of
the mug. Consider at �rst the case of an English Auction.

� Morteza and other bidders continue to participate until the price reaches their own
private values.

� The auction stops when the bidder with the second-highest value drops out.

� Therefore, the seller's expected price is the expected value of the second-highest
private value (plus the marginal increment of the last bidder).

Now consider the Dutch Auction.

� Morteza and his competitors plan to call out when the price has fallen slightly below
their private valuations.

� The seller's expected price is the expected value of the highest private value minus
the incremental amount by which this bidder allows the price to drop below his
private value.

� Again, the seller's expected price turns out to be close to the expected the second-
highest private value.

Which form of auctioning should the shop owner choose?

� In the case of an independent private value model, it doesn't matter!

� The result is known as the revenue equivalence theorem1.

3 Basics of Game Theory

3.1 Normal Form Games

De�nition of Games2

� What do we need to describe games?

1. Actors (players)

2. Set of possible actions

1A formal statement and proof needs a more elaborate speci�cation of the framework.
2In this section we only recall fundamentals and terminology. You are supposed to know the basic

concepts and you should be able to apply them.
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3. Rules of the game

4. Strategy matters (at least in more sophisticated games)

5. Outcome with results for each single actor (payo�s)

6. Social interaction: the outcome of each player depends on the actions/strategy
chosen by the others (strategic interdependence)

7. More or less information about all these aspects

� So a game is a rule-governed situation with a well-de�ned outcome, characterized
by strategic interdependence.

Setting up a game takes several very di�erent steps

� Choose a topic

� Name the players and de�ne their goals

� List the actions they can take

� Describe the sequential structure

� De�ne the information sets and think about uncertainties

� Declare the payo�s

Last not least you arrange all this in the appropriate form. At the core of a game you
now have

� Action sets, strategy sets, a dynamic structure, an information structure and prob-
abilities or beliefs

The goal of the approach of game theory is to make reasonable statements about

� Strategy pro�les or strategy-belief pro�les

� The development of the game

� The outcome of the game and the payo�s

At any instant of a game, i.e. whenever a player is called up to decide on or to make
a move, she picks an action out of the set of actions available.

De�nition

A strategy si of player i is a particular choice of actions out of the set of available actions.
3

The strategy space Si of player i is the set of all strategies available to her.

3In sequential games actions have to be taken ät each instant of the game �. We will extend the

de�nition later

7



A strategy pro�le s = (s1, . . . , sn) is a list of strategies for all players.

Heads up!

In simple games a player may be called up to make a move only once. In particular all
players may be called up to decide on their strategy simultaneously at the beginning of
the game. In this context, choosing a strategy is equivalent to choosing an action!

In more complex games, players may have to make their moves sequentially and when
they exercise their move, they may have more or less information about their situation.
We will have to update our de�nition for such games.

An equilibrium of a game is a strategy pro�le selected by some rule out of the set E of
all strategy pro�les .

In other words: An equilibrium picks a strtagey for each player. At the moment the
question which pair is chosen is still open.

An equilibrium concept or solution concept is a rule that de�nes a single equilibrium
or a several equilibria based on the possible strategy pro�les and the payo� functions.4

F : {S1, . . . , Sn, π1, . . . , πn} −→ E

Player i's best response or best reply to the strategies s−i is the strategy si that yields
him the greatest payo� given the strategy pro�le s−i of the other players

πi(si, s−i) ≥ πi(s̃i, s−i) ∀s̃i

This rather formal de�nition has a simple intuition: Given the choice of strategy of
all other players, player i has no advantage from deviating from a best response.

Detailed notation makes the dependency on the other players' strategies explicit

si(s−i)

The best response is strongly best if no other strategies are equally good, and weakly
best otherwise.

Nash Equilibrium

The strategy pro�le s∗ is a Nash equilibrium if no player has an incentive to deviate
from his strategy given that the other players do not deviate. Formally,

πi(s
∗
i , s

∗
−i) ≥ πi(s̃i, s

∗
−i), ∀i, s̃i.

Heads up!

Make sure you are aware of a few details

4Notice that we use the word rule which is somehow informal. We avoid to go one step further and

de�ne a mapping from the set of games to the set of sets of pro�les.
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� A Nash equilibrium is a strategy pro�le, i.e. it is de�ned in terms of strategies, not
in terms of actions nor in terms of payo�s! However, an equilibrium strategy pro�le
generates equilibrium payo�s.

� The de�nition is a rule selecting one or perhaps more than one strategy pro�le.
However, it may happen that no pro�le satis�es the equilibrium conditions.

� Nash equilibrium is not derived from maximizing behavior of players who only
observe their environment! Nevertheless, it has a strong, deep rationale. A player
maximizes given the other maximize as well.

Normal Form Games I

Player I is infectious carrying a dangerous virus. Player S is susceptible, she could
become infected. They live at di�erent places. For the weekend they had planned to go
hiking together. Otherwise they could stay at home and study.

I
go hiking study

go hiking (-300, 200) (100, 50)
S

study (50, 100) (50, 50)

� Analyze the game!

Solution:

� First assume S chooses go hiking. The best answer of I is go hiking as well:
sI(go hiking) = go hiking.

� But sS(go hiking) = study. Hence, there is no Nash-equilibrium where S chooses
go hiking.

� Now assume S choses study. The best answer of I again is go hiking: sI(study) =
go hiking.

� And sS(go hiking) = study. Hence, the strategy pro�le (study, go hiking) forms the
Nash-equilibrium of the game. The pro�le is a pair of mutually best responses.

There is an easier way to �nd this Nash-equilibrium:

� For player I the strategy hike always is the best answer! It is a dominant strategy.

� Seeing this S has to �nd his best answer to this dominant strategy only.

� Of course we get the same equilibrium (study, go hiking).

Normal Form Games II

Consider the game with a di�erent pattern of outcomes:
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I
go hiking study

go hiking (-300, 200) (30, 50)
S

study (50, 30) (50, 50)

� Analyze the game!

� Compare to the former version!

Normal Form Games III

Consider the game with a third pattern of outcomes:
I

go hiking study

go hiking (-300, -50) (100, 40)
S

study (40, 100) (50, 50)

� Analyze the game and compare to the former versions!

3.2 Extensive Form Games

Extensive form: Game tree

An elegant, common model to organize the di�erent elements de�ning a sequential game
is a game tree.5

� A node is a point in the game at which some player or Nature takes an action, or
the game ends.

� A successor to node X is a node that may occur later in the game if X has been
reached.

� A predecessor to node X is a node that must be reached before X can be reached.

� A starting node is a node with no predecessors.

� An end node or end point is a node with no successors.

5This section is closely related to Rasmusen, chapter 2.
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� A branch is associated with a single action in a player's action set at a particular
node.

� A sequence of nodes and branches leading from the starting node to an end node is
called a path.6

� A game tree is a con�guration of nodes and branches running without any closed
loops from the starting node to its end nodes.

Subgames

Any single node apart from end notes de�nes a subgame starting from this node.

Notation

� Nodes are labeled with the name of the player. If a player is supposed to move
several times we may add and index to the label

� Branches are labeled with the name of the action.

� End nodes are labeled with a list of payo�s for all players.

At any node of a game some player is called up to make a move. She picks an action
out of the set of actions available at this node.

De�nition

A strategy si of player i is a list of actions out of the set of the actions available at the
respective node of the game where she is supposed to make a move.

The strategy space Si of player i is the set of all strategies available to her.

A strategy pro�le s = (s1, . . . , sn) is a list of strategies for all players.

Heads up!

Even in simple extensive form games a player may be called up to make a move only
once. In such a case, choosing a strategy is equivalent to choosing an action!

However, in more complex games, players may have to make their moves sequentially,
and may move several times. In such case a notation is required which refers to the nodes
considered.

Notation

A node is identi�ed by its label or through the path leading to it We propose several
possible, equivalent notations.

Assume it is player i's turn to move at nodes I1, I2, I3, . . . . The path from the starting
node to any node Ij is Pj

6A connected segment of a path from some initial node to some �nal node is called a path as well.
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� A strategy of player i is a sequence of available actions at each node Ij: si =
(ai(I1), ai(I2), ai(I3), . . . ).

� Equivalently we can associate each node Ij with the path Pj leading to the node
and write: si = (ai(P1), ai(P2), ai(P3), . . . ).

� A very short notation obviously is si = (ai,1, ai,2, ai,3, . . . ) whereby ai,j is associated
with Ij or equivalently with Pj.

� We are free to use any convenient notation.

Extensive form of the entry deterrence game

E

(0, 300)

sta
y o

ut

I

(40, 50)

co
llu
de

(−10, 0)

�ght

enter

Payo�s to: (Entrant, Incumbent)

Figure 1: Entry deterrence game in extensive form

From game to solution

� There are two Nash equilibria
(enter, collude) and (stay out, �ght).

� The behavior of player I in the latter one is not plausible. It is not subgame perfect:
Once player I is prompted to move the only rational action is collude.

4 Games with Imperfect Information

4.1 Introduction

Introduction

� An important extension of extensive form games is the inclusion of imperfect infor-
mation.
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� When it's their turn, players may not know, what the last move of an opponent or
of Nature was. They did not directly observe it.

� Perhaps they can exclude some possible actions, but still cannot distinguish between
others.

� Part of the history of the game may be covered by an opaque veil.

� This may be relevant for their potential outcomes.

� How can they decide?

� How can we include that in the description of the game?

From story to game

Consider a follow the leader game with two players. Let us start with the full information
version of the sequential game.

� Smith and Jones are duopolists in a particular market.

� There is a possibility to change the design of the product from small to large.

� If both �rms change the design, duopoly pro�ts increase. If only one of the players
changes the design, demand shrinks and both �rms make losses.

� Coordinated action is required.

Smith

Jones1

(1, 1)

S
m
a
ll

(−1,−1)

L
a
rg
e

Sm
al
l

Jones2

(−1,−1)

S
m
a
ll

(2, 2)

L
a
rg
e

L
arge

From game to solution

This game has two subgames originating at Jones1 and Jones2, respectively. In subgame
one Small is the best answer of Jones, whereas in subgame two it is Large. In other words
(Small|Small, Large|Large) is the dominant strategy of Jones. On the other hand, Large is
Smith's best answer to Jones's dominant strategy. Hence, the game has a unique subgame
perfect equilibrium { Large, (Small|Small, Large|Large) } with equilibrium payo�s (2,2).
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4.2 Representing Imperfect Information

Information sets

Assume Jones does not know whether Smith has chosen Small or Large.

� In our (simple) example the lack of information on Jones' side makes the game
equivalent to a (static) normal form game with simultaneous moves.

� In general we will have to include the representation of information in the game
tree.

� Jones cannot distinguish between node Jones1 and node Jones2

� We can indicate that by a dotted line connecting the nodes.

� We say the connected nodes belong to the same information set.

Game tree with information sets

Smith

Jones1

(1, 1)

Sm
al
l

(−1,−1)

L
arge

Sm
al
l

Jones2

(−1,−1)

Sm
al
l

(2, 2)

L
arge

Large

Figure 2: Follow-the-Leader in extensive form with asymmetric information

� This game has no proper subgame!

� The strategy space of Jones is smaller now, compared to the full information game!
Like in the simultaneous move game it is { Small, Large }.

The extensive form of Follow-the-Leader turns into a game equivalent to the simple
strategic form version of the game, when Jones cannot distinguish between the nodes
Jones1 and Jones2.

S L
S (1, 1) (−1,−1)
L (−1,−1) (2, 2)

Payo�s to: (Smith, Jones)

This game has two Nash equilibria
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{ Large, Large } and { Small, Small }

However, there some details we did not examine yet. They may be part of the dynamic
structure of the game and have substantial implications.

De�nition

Player i's information set at any particular point of the game is the set of di�erent
nodes in the game tree that he knows might be the actual node, but between which he
cannot distinguish by direct observation.

De�nition

Player i's information partition is a collection of his information sets such that

1. Each path is represented by one node in a single information set in the partition.

2. The predecessors of all nodes in a single information set are in one information set.

� In an obvious way we can characterize information partitions as being �ner or
coarser.

� A change in the information structure from coarser to �ne is called an information

re�nement.

� The �nest information structure is reached, when each information set consists of
a singleton.

Obviously a particular question arises from this setting:

� How can player Jones �nd a best answer to a strategy of Smith?

� Or even more substantial: What is a strategy of a player su�ering from incomplete
information?

4.2.1 Information sets and strategies
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Consider the following game as an example:

N

SmithA

JonesA1

(5, 5)

S
m
al
l

(−1,−1)

L
arge

Sm
al
l

JonesA2

(−1, 2)

S
m
al
l

(0, 0)

L
arge

Large

market of type A
πA = 0.2

SmithB

JonesB1

(−1, 0)

S
m
al
l

(−3, 1)

L
arge

Sm
al
l

JonesB2

(−1,−3)

S
m
al
l

(0, 0)

L
arge

Large

market of type B
πB = 0.8

� We have to adjust the concept of strategies: Nodes can no longer be the anchor
points of planned actions which make up strategies.

� We have to relate plans to information sets because a player cannot plan to behave
di�erent at di�erent nodes within an information set. He simply would not know
how to execute such a plan.

� This implies: At di�erent nodes in an information set the player must have identical
sets of actions he can choose from.

First we give a concise description the information structure:

ΩSmith = {ωA, ωB} = {{SmithA}, {SmithB}}

ΩJones = {ω1, ω2} = {{JonesA1, JonesB1}, {JonesA2, JonesB2}}

Now we determine the strategy set of Smith

σSmith = {(Small|A, Small|B), (Small|A,Large|B),

(Large|A, Small|B), (Large|A,Large|B)}

Obviously there is a shorter, equivalent notation

σSmith = { (S|A, S|B) , (S|A,L|B) , (L|A, S|B) , (L|A,L|B) }
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and the strategy set of Jones

σJones = {(Small|1, Small|2), (Small|1, Large|2),
(Large|1, Small|2), (Large|1, Large|2)}

Again we can use the shorter notation

σJones = { (S|1, S|2) , (S|1, L|2) , (L|1, S|2) , (L|1, L|2) }

Heads up!

There are 1001 ways to label strategies. Consider the following ones:

�

σJones,1 = (Small|ω1, Small|ω2), . . . ,

σJones,3 = (Large|ω1, Small|ω2), . . .

�

σJones,1 = (Small|Small, Small|Large), . . . ,
σJones,3 = (Large|Small, Small|Large), . . .

�

σJones,1 = (Small after Small, Small after Large), . . . ,

σJones,3 = (Large after Small, Small after Large), . . .

� and �nally an extremely short notation

σJones,1 = (S , S), . . . ,

σJones,3 = (L , S), . . .

� The more stages the game has or the more complex the information structure is,
the more useful is the explicit reference to information sets. Always try to avoid
misunderstandings.

We realize:

� Irrespective of the lack of information of Jones, Smith can evaluate his pay-o�s for
both types of markets for any strategy pro�le.

� Jones faces the problem that his pay-o�s depend on the random type of market.
By assumption he does not observe the outcome of this random event.

� Jones has to consider expected pay-o�s rather than certain pay-o�s.

What are the probabilities Jones should use for his calculations?

17



� The simple answer is: He can use (πA, πB)!

� On the basis of these fundamental probabilities we can calculate mutual best re-
sponses to search for Nash-equilibria.

� The more sophisticated answer is: Maybe Jones can learn from Smith! Smith knows
the type of market when he takes his move. The strategy choice of Smith may reveal
what Smith knows.

� Jones may replace the probabilities (πA, πB) by more reliable probabilities called
beliefs which are conditional on the strategy of Smith.

� It was Thomas Bayes who told our ancestors in the 18th century how to do this.

� We call the fundamental probabilities π speci�ed in the game tree priors.

� Assume the goal of each player is to maximize expected pay-o� based on the priors
π.

� Notice that in the simple example player Smith knows the nature of the market
when he has to take his move. For any strategy pro�le he can compute his pay-o�
without su�ering from uncertainty.

� On the other hand, player Jones's pay-o�s have to be expected pay-o�s.

4.2.2 Expected Pay-O�s and Best Responses

�

EΠJones(Small|Small) = 0.2 · 5 + 0.8 · 0 = 1

EΠJones(Large|Small) = 0.2 · (−1) + 0.8 · 1 = 0.6

� The best response of Jones to Small is Small

�

EΠJones(Small|Large) = 0.2 · 2 + 0.8 · (−3) = −2

EΠJones(Large|Large) = 0.2 · 0 + 0.8 · 0 = 0

� The best response of Jones to Large is Large

18



Summing up:

� σ∗
Jones = (Large | Large, Small | Small ) is the best strategy of Jones.

� In a way it is a dominant strategy, i.e. a strategy independent of the strategy of
Smith. This is because Jones is not interested in learning why Smith chooses Large
or Small. There seems to be no advantage to him from knowing how Smith's move
depends on the type of market.

� This is di�erent for Smith. Obviously his best response to σ∗
Jones is σ

∗
Smith = (Small

| A, Large | B ),

� whereas Smith's best response to always Large is always Large as well.

Expected Pay-O�s Revisited

Let us recall the calculations of expected pay-o�s:

� We assumed Jones to use the priors π to calculate his expected pay-o�. In particular
this makes him choose Small if he observes Small.

� Therefore his expected pay-o� after observing Small is

EΠJones(Small|Small) = 0.2 · 5 + 0.8 · 0 = 1

� Imagine Jones knows the strategy of Smith! Observing Small he can now conclude
that the market must be of type A! Therefore he should expect to get pay-o� 5.

� It is rather unlikely that this happens because πA is so small. But if he observes
Small he should conclude that the unlikely event has happened and revise the
expected pay-o�.

� Remember: Within the information sets ω1, ω1 the probabilities πA, πB de�ne one
and the same probability distribution.

� The revision of probabilities may lead to di�erent distributions in the two informa-
tion sets.

4.2.3 Beliefs and Assessments

Beliefs

Beliefs are probability distributions for nodes within information sets. They are formed
by players. A complete set of distributions for each non-trivial information set is called a
belief pro�le. For convenience they should be listed player by player. However, in simple
examples we usually have only one player su�ering from a lack of information or other
words only one player who has non-trivial information ssets.

Notation: We use µ to denote beliefs, opposed to π for priors.
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Assessments

Beliefs typically change expected pay-o�s. Hence, they interfere with equilibrium con-
siderations. They should be derived in a rational way in relation to the opponents'
strategies.

In our current example we specify rational beliefs for the two information sets (ω1, ω2)
labeled

(µ1, µ2) = ( (µ1A,, µ1B), (µ2A,, µ2B) )

As discussed above a rational assessment derived from the dominance consideration can
only be

( (µ1A,, µ1B), (µ2A,, µ2B) ) = ( (1, 0), (0, 1) )

Notice that the assessment is a system of conditional probabilities, conditional on the
strategy of Smith.

� In our example only Jones forms beliefs. The beliefs above make a full belief pro�le.

� The observation itself - either Small or Large - does not reveal anything to Jones!

� The interpretation of the observation in context with a strategy may reveal some-
thing:
The moves are assumed to be the outcome of a strategy (Small | A, Large | B) of
Smith!

� The combination of a strategy and beliefs constitutes an assessment.

4.3 Bayesian Inference

How do we derive beliefs from strategies?

� Bayes rule is the statistical tool for the rational method to derive beliefs from a
combination of priors and additional information.

� In our example the moves of Smith come with probabilities zero or one according
to his strategy.

prob(Small|A) = 1 , prob(Large|A) = 0

prob(Small|B) = 0 , prob(Large|B) = 1

� And the market is of type A or B according to the priors

prob(A) = πA, prob(B) = πB
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Recall Bayes' rule for a particular type of market t0 ∈ {A,B}, and an action of Smith
a0 ∈ {Small, Large}

prob(t0|a0) =
prob(a0|t0) prob(t0)

prob(a0|A) prob(A) + prob(a0|B) prob(B)

Evaluation with respect to the strategy considered

prob(A|Small) = 1, prob(B|Small) = 0

prob(A|Large) = 0, prob(B|Large) = 1

Bayes rule inverts the direction of reactions on information: Smith decides how to move
when he observes the type. Jones infers the conditional probabilities of types when he
observes a move.

Re�nements of Subgame Perfect Equilibrium

Decades after early contributions by Harsanyi (1967) and Selten (1975) the most often
used concept today is that by Kreps and Wilson (1982). Whereas the early discussion
was more about robustness the latter shifted the focus towards asymmetry of information
together with rational use of information. Beyond that one may look for robustness in
that context as well.
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In a perfect Bayesian equilibrium

� some players observe Nature's move, and that may completely close their informa-
tion gap. At least it will lead to a natural update of priors.

� Others may not be informed about Nature's move, but can monitor the informed
players and try to make use of their observations. They may update priors on the
basis of observed moves or strategies of the others.

4.4 Perfect Bayesian Equilibrium

From story to game

Recall the Follow the Leader example with imperfect, asymmetric information

� Smith is the �rst to decide whether to adhere to large or change to small design.

� Jones does not learn about Smith's choice before he has to decide.

Now replace the incomplete information concerning the move of Smith by imperfect
information about Smith's type.

� Nature assigns type A, B, or C to Smith with probabilities πA, πB, πC .

� In case of type A both are better o� with Large; in case of type B the players have
con�icting preferences; in case of C both are better o� with Small.

� Smith knows his type and decides for Small or Large.

� Jones observes Smith's move and tries to maximize his expected payo�.

� He takes into account the probabilities of Nature's assignment and the observed
move of Smith.
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N

Smith3

Jones6
(4, 4)

Small

(−1,−1)Large
Small

Jones5
(−1,−1)

Small

(0, 0)Large

Larg
e

type C
πC = 0.2

Smith2

Jones4
(2, 3)

Small

(−1,−1)Large
Small

Jones3
(0, 2)

Small

(5, 1)Large

Larg
e

type B

πB = 0.1

Smith1

Jones2
(1, 1)

Small

(−1,−1)Large
Small

Jones1
(−1,−1)

Small

(2, 2)Large

Larg
e

type A
πA = 0.7

Payo�s to: (Smith, Jones)

Figure 3: Follow-the-Leader III
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4.4.1 Strategy-Belief Pro�le

Player Jones has two non-trivial information sets, i.e. information sets which are not a
singleton. They are reached by Smith's move L or S, respectively. We may denote them
by ωJ(L) = { Jones1, Jones3, Jones5 } and ωJ(S) = { Jones2, Jones4, Jones6 }.

The concept of Bayesian equilibrium requires to attach beliefs to the nodes in infor-
mation sets. In the game considered here they may be denoted by µ = (µJ(L), µJ(S))
with µJ(L) = (µA|L, µB|L, µC|L) and µJ(S) = (µA|S, µB|S, µC|S).

µJ(L) and µJ(S) are conditional probability distributions, i.e. the probabilities per
information set add up to one.

We call µ a belief pro�le.

A plausible candidate for a strategy pro�le in equilibrium is

σ = {σS, σJ} = { (L|A, L|B, S|C), (L|L, S|S) }

Yet, what are the expected payo�s?

The beliefs have to be part of the equilibrium speci�cation. We call the combination
of strategies and beliefs a strategy-belief pro�le.

With the help of beliefs expected payo�s are well de�ned and we can apply the concept
of subgame perfect Nash equilibrium.

4.4.2 Bayesian updating of priors

Beliefs should not be arbitrary. We consider them to be rational in equilibrium if
they are formed according to Bayes rule, whenever this is possible. This links the beliefs
pro�le to the priors and a particular strategy pro�le.

When Jones assumes Smith plays the equilibrium strategy σS, and when he observes
S, he should conclude that Smith is of type C with probability µC = 1

When Jones assumes Smith plays the equilibrium strategy σS, and when he observes L,
he should conclude that Smith is of type A or B with probabilities: (µA, µB) = (7/8, 1/8)

Recall the strategy pro�le of our game

σ = {(L|A,L|B, S|C) , (L|L, S|S)}

We apply Bayes' rule and use labels µA|L to denote prob(A|L), ...

µA|L =
prob(L|A)πA

prob(L|A) πA + prob(L|B) πB + prob(L|C) πC

=
1 · 0.7

1 · 0.7 + 1 · 0.1 + 0 · 0.2
=

0.7

0.7 + 0.1
=

7

8

µB|L =
1 · 0.1

1 · 0.7 + 1 · 0.1 + 0 · 0.2
=

0.1

0.7 + 0.1
=

1

8
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µC|L = 0 µC|S = 1

µA|L = 7/8 µA|S = 0

µB|L = 1/8 µB|S = 0

N

Smith3

Jones6
(4, 4)

Small

(−1,−1)Large
Small
µC|S = 1

Jones5
(−1,−1)

Small

(0, 0)Large

Larg
e

µC|L = 0

type C
πC = 0.2

Smith2

Jones4
(2, 3)

Small

(−1,−1)Large
Small
µB|S = 0

Jones3
(0, 2)

Small

(5, 1)Large

Larg
e

µB|L = 1/8
type B

πB = 0.1

Smith1

Jones2
(1, 1)

Small

(−1,−1)Large
Small
µA|S = 0

Jones1
(−1,−1)

Small

(2, 2)Large

Larg
e

µA|L = 7/8

type A
πA = 0.7

Payo�s to: (Smith, Jones)

Figure 4: Follow-the-Leader III
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To verify the equilibrium, we compute the expected payo�s for Jones based on Bayesian
beliefs. These expected payo�s may either reject or con�rm the strategy pro�le combined
with the respective Bayesian beliefs as a strategy-belief pro�le of a subgame perfect
Bayesian Nash equilibrium.

1. σJ is best answer to σS:

� (L|L) yields ΠJ(L|L) = 7
8
2 + 1

8
1 = 15

8
and

� (S|L) yields ΠJ(S|L) = 7
8
(−1) + 1

8
2 = −5

8

� Hence, L is best answer to L.

� (S|S) yields ΠJ(S|S) = 1 · 4 = 4 and

� (L|S) yields ΠJ(L|S) = 1 · (−1) = −1.

� Hence, S is best answer to S.

Summing up, we con�rm, that to follow the leader is Jones' best response.

2. σS is best answer to σJ :

� In case Smith is of type A or B, L followed by L yields a higher payo� to
Smith than S followed by S because 2 > 1 and 5 > 2.

� In case Smith is of type C, S followed by S yields a higher payo� to Smith
than L followed by L. because 4 > 0

Uniqueness of equilibrium

Is this the only Bayesian equilibrium of this game? There are eight strategies for Smith,
four strategies for Jones, and therefore 32 strategy pro�les (verify!).

Only the expected payo�s of Jones depend on beliefs. To Jones' four strategies σJ1 =
(L|L, S|S), σJ2 = (L|L,L|S), σJ3 = (S|L, S|S) and σJ4 = (S|L,L|S) we �nd Smith's best
answers without going through the process of Bayesian updating. This will identify four
candidates for Smith's equilibrium strategies.

The equilibrium above already includes the �rst one, σJ1 , and its best answer.
Let us continue with the remaining ones.
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Can σJ2 be an equilibrium strategy of Jones?

� σJ2 = (L|L,L|S) yields a best answer σS2 = (L|A,L|B,L|C).

Can σJ2 be an equilibrium strategy of Jones?

The uniform strategy of Smith gives no rise to e�ective updating. Indeed, all conditional
probabilities prob(L|.) are equal to one and therefore µA|L = πA

πA+πB+πC
= πA and so forth.

� In this case Bayesian updating is possible but does not change anything. The
denominator of the Bayesian formula is equal to one. The Bayesian beliefs are
identical to the corresponding priors.

The opposite can happen as well. According to a strategy of a player, an information
set may never be reached. The denominator then is equal to zero, and we cannot apply
Bayes' formula. We will deal with that problem later.

Can σJ2 be an equilibrium strategy of Jones?

It remains to check, whether σJ2 is a best answer to σS2 using priors as beliefs.

� (L|L) yields an expected payo� ΠJ(L|L) = 0.7 · 2 + 0.1 · 1 + 0.2 · 0 = 1.5, whereas
(S|L) yields ΠJ(S|L) = 0.7 · (−1) + 0.1 · 2 + 0.2 · (−1) = −0.7

� Hence, L is the best answer to L.

� (L|S) yields ΠJ(L|S) = 0.7 · (−1) + 0.1 · (−1) + 0.2 · (−1) = −1,

� whereas (S|S) yields ΠJ(S|S) = 0.7 · 1 + 0.1 · 3 + 0.2 · 4 = 1.8

� Hence, S is best answer to S. ↪→ contradiction!

σ = {(L|A,L|B,L|C), (L|L,L|S)} is no equilibrium pro�le

N

Smith3

Jones6
(4, 4)

Small

(−1,−1)Large
Small

Jones5
(−1,−1)

Small

(0, 0)Large

Larg
e

type C
πC = 0.2

Smith2

Jones4
(2, 3)

Small

(−1,−1)Large
Small

Jones3
(0, 2)

Small

(5, 1)Large

Larg
e

type B

πB = 0.1

Smith1

Jones2
(1, 1)

Small

(−1,−1)Large
Small

Jones1
(−1,−1)

Small

(2, 2)Large

Larg
e

type A
πA = 0.7

Summing up, σJ2 = (L|L,L|S) cannot be part of an equilibrium strategy-belief pro�le.
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Can σJ3 be an equilibrium strategy of Jones?

� σJ3 = (S|L, S|S) yields a best answer

σS3 = (S|A, S|B, S|C)

Again uniformity gives no rise to updating and we use priors to compute expected
payo�s. By the same reasoning as above we conclude, that σJ3 = (S|L, S|S) cannot
be part of an equilibrium strategy-belief pro�le either.

σ = {(S|A, S|B, S|C), (S|L, S|S)} is no equilibrium pro�le

N

Smith3

Jones6
(4, 4)

Small

(−1,−1)Large
Small

Jones5
(−1,−1)

Small

(0, 0)Large

Larg
e

type C
πC = 0.2

Smith2

Jones4
(2, 3)

Small

(−1,−1)Large
Small

Jones3
(0, 2)

Small

(5, 1)Large

Larg
e

type B

πB = 0.1

Smith1

Jones2
(1, 1)

Small

(−1,−1)Large
Small

Jones1
(−1,−1)

Small

(2, 2)Large

Larg
e

type A
πA = 0.7

Can σJ4 be an equilibrium strategy of Jones?

� σJ4 = (S|L,L|S) yields a best answer σS4 = ( {S or L}|A,L|B, {S or L}|C). In
case he observesA or C Smith is indi�erent between L and S. Neither (L|A,L|B, S|C)
nor (L|A,L|B,L|C) can be part of an equilibrium together with σJ4 = (S|L,L|S),
as seen before. Hence we are left with (S|A,L|B, S|C) and (S|A,L|B,L|C).

� Let us examine them one by one

� Consider (S|A,L|B, S|C). Bayesian updating yields three non-zero beliefs
µB|L = 1, µA|S = 7/9 and µC|S = 2/9. We compute: ΠJ(S|L) = 2 is larger
than ΠJ(L|L) = 1, which supports the equilibrium. However, ΠJ(L|S) =
7
9
· (−1)+ 2

9
· (−1) = −1 and ΠJ(S|S) = 7

9
·1+ 2

9
·4 = 15

9
reject the equilibrium.

� Consider (S|A,L|B,L|C). Now Bayesian updating yields three non-zero beliefs
µA|S = 1, µB|L = 1/3 and µC|L = 2/3. We compute: ΠJ(S|S) = 1 is larger
than ΠJ(L|S) = −1, which rejects the equilibrium. Even more, ΠJ(L|L) =
1
3
· 1 + 2

3
· 0 = 1

3
and ΠJ(S|L) = 1

3
· 2 + 2

3
· (−1) = 0 reject the equilibrium.

We �nally conclude that the game has a unique perfect Bayesian equilibrium.
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4.5 Sequential Rationality and Consistency of Beliefs

Another Example

In order to work out what the single requirements for a perfect Bayesian equilibrium
contribute to the concept we consider the following further example of a game in extensive
form with complete but imperfect information

player 1

player 2L

(2, 1)

L′

(0, 0)

R′

L
µL

player 2M

(0, 2)

L′

(0, 1)

R′

M
µM

(1, 3)
R

ω2

The strategy sets of the players are

σ1 = {L,M,R}, σ2 = {L′, R′}

Normal Form Representation

We may represent the game in normal form

player 2
L' R'

L 2, 1 0, 0

player 1 M 0, 2 0, 1

R 1, 3 1, 3

The Nash equilibria in pure strategies are: (L, L') and (R, R')

Notice that the reduction to the normal game wipes out potential sequential action. In
general this raises the question whether the equilibria are subgame perfect in the extensive
form game?

However, in our example there are no subgames due to the imperfect information of
player two!

Beliefs

At the information set ω2 (which is not a singleton) player two must have beliefs to be
able to compute expected pay-o�s.
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player 1

player 2L

(2, 1)

L′

(0, 0)

R′

L
µL

player 2M

(0, 2)

L′

(0, 1)

R′

M
µM

(1, 3)
R

ω2

� EΠ2(L
′) = µL · 1 + (1− µL) · 2 = 2− µL

� EΠ2(R
′) = µL · 0 + (1− µL) · 1 = 1− µL

� Notive that in our example EΠ2(L
′) > EΠ2(R

′) no matter what the beliefs are!

De�nition 1 (Sequential Rationality). A player is said to be sequentially rational if and
only if, at each information set where he is to move, he tries to maximize his expected
pay o� given his beliefs and the other players ' subsequent strategies.

In our example

� this eliminates the equilibrium (R, R') for any belief (µL, µM);

� the beliefs do not a�ect the selection of equilibrium, but without them player 2
cannot act sequentially rational;

� obviously, the Bayesian beliefs for (L, L') are (µL, µM) = (1, 0).

Indeed, the evaluation of Bayes' rule at the information set ω2 of player 2 with prob-
abilities p(.) gives

p(L |ω2) =
p(ω2|L) · p(L)

p(ω2|L)p(L) + p(ω2|M)p(M) + p(ω2|R)p(R)

=
1 · 1

1 · 1 + 1 · 0 + 0 · 0
= 1

whereas

p(M |ω2) =
1 · 0

1 · 1 + 1 · 0 + 0 · 0
= 0

Remark: We included the term p(ω2|R)p(R) only to demonstrate the implication of a
move which does not lead to the information set considered. As the conditional proba-
bility is zero, we could have dropped it from the beginning.

Mixed Strategies

The formula can be applied in case of mixed strategies as well. Consider probabilities
p(L) = αL, p(M) = αM , and p(R) = αR for the moves L, M, R to get

p(L |ω2) =
p(ω2|L) · αL

p(ω2|L)αL + p(ω2|M)αM + p(ω2|R)αR

=
1 · αL

1 · αL + 1 · αM + 0 · αR

=
αL

αL + αM
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whereas

p(M |ω2) =
1 · αM

1 · αL + 1 · αM + 0 · αR

=
αM

αL + αM

Notation

Given a (possibly mixed) strategy pro�le σ, an information set is said to be on the path
of play if and only if this information set is reached with positive probability according
to σ.

� In case of pure strategies it happens regularly that some information sets are on
the path of play others are not.

� In case of mixed strategies it still may happen.

� In case of trembling hands it will not happen anymore.

De�nition 2 (Consistency on a path). Given any strategy pro�le σ and an information
set ω on the path of play of σ a player's beliefs at ω are said to be consistent on the path
of σ if and only if the beliefs are derived using Bayes' rule and σ.

Now consider a variation of the previous game. The exit decision is given to a new
player and we have a proper subgame beginning at node player 2.

player 1 (2, 0, 0)
A

player 2

player 3L

(1, 2, 1)

L′

(3, 3, 3)

R′

L
µL

player 3R

(0, 1, 2)

L′

(0, 1, 1)

R′

R
µR

D

ω3

The search for a perfect Bayesian equilibrium of this game is straight forward.

� The equilibrium has to be subgame perfect.

� The subgame between players 2 and 3 has a unique Nash-equilibrium (L, R').

� Player 1 prefers to enter the subgame of the other players because 3 > 2. Hence
σ∗ = (D, L, R′) is the unique subgame perfect Nash equilibrium of the (entire)
game.

� The Bayesian beliefs of player 3 given the strategy pro�le σ are µ = (µL, µR) =
(1, 0).

� σ and µ form a perfect Bayesian equilibrium.
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Is there an equilibrium with action A?

� All strategy pairs of player 2 and player 3 are best responses to A.

� A is best response to all strategy pairs except to (L, R').

� Consider σ = (A, L, L′) which is a pro�le of mutually best responses, a Nash
equilibrium.

� Notice that the information set ω3 is o� the equilibrium path.

� Assume player 3's belief is µ = (0, 1). Given this belief, L′ is optimal.

� But, σ is not subgame perfect as we found out earlier.

Can we extend the requirement to form rational or at least reasonable beliefs

o� the equilibrium path?

De�nition 3 (Consistency o� a path). At information sets o� the equilibrium path of a
strategy pro�le σ, beliefs must be determined by Bayes' rule and σ where possible.

In the example above σ = (A, L, L′) with belief is µ = (0, 1) is not consistent o� the
path of σ.

� L chosen by player 2 together with consistency o� the path enforces belief µ = (1, 0).

� And, L′ is no longer the best response of player 3 because only R′ is sequentially
rational with µ.

Now consider a combination of the previous games. The exit decision is given to
player 2 asides from player 1.

player 1
A

player 2
A′

player 3L

L′ R′

L
µL

player 3R

L′ R′

R
µR

D

ω3

� Assume player 1's equilibrium strategy is A. Then ω3 is o� the equilibrium path.

� If player 2's strategy is A′ in this version of the game, player 3 cannot apply Bayes
rule to form his belief.
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� On the other hand, if player 2 uses a mixed strategy α = (αL, αR, αA′) with αL +
αR > 0, then the Bayesian belief of player 3 is

µ =

(
αL

αL + αR

,
αR

αL + αR

)
� In a Nash equilibrium no player chooses a strictly dominated strategy.

� In a perfect Bayesian equilibrium, the requirements of having beliefs and sequential
rationality are equivalent to insisting that no player's strategy be strictly dominated
beginning at any information set.

� Nash and Bayesian Nash equilibrium do not share this feature at information sets
o� the equilibrium path.

� Even a subgame perfect Nash equilibrium may not share this feature at some infor-
mation sets o� the equilibrium path, such as information sets that are not contained
in any subgame.

� In a perfect Bayesian equilibrium, players cannot threaten to play strategies that
are strictly dominated beginning at any information set o� the equilibrium path.

33


