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Abstract

A contest is a game where several players compete for winning prizes by ex-
pending costly efforts. A contest success function determines the probability of
winning or losing the contest as a function of these efforts. We assume that the
outcome of a contest is an ordered partition of the set of players (a ranking)
and a contest success function assigns a probability to each possible outcome.
We define a contest success function for contests whose outcome is a ranking of
any type, i.e., with any number of players at each rank. This approach is new in
contest theory since the axiomatic work has exclusively been on contests with
single-winner, whose outcome is a ranking with one player in the first rank and
all other players in the second rank. The contest success function is character-
ized by pair-swap consistency, which is an axiom of independence of irrelevant
alternatives and generalizes the main axiom in Skaperdas (1996).

1 Introduction

A contest is a game where several players compete for winning prizes by expend-
ing costly efforts. Contest models are used to study situations of conflict such as
war, political lobbying, litigation and R&D races. In this paper we generalize the
framework and develop a model for studying a broader class of competitive envir-
onments.

In the literature so far, the axiomatic work exclusively focuses on contests with
single winner, where one player wins the prize while all others lose. However, it
seems particularly natural that a contest may induce different types of outcome. For
instance, in the academic job market candidates compete for various research and
teaching positions and most of them are recruited for some job. In the competition
for tuition waiver rights at a university, some percentage of best performing students
may be awarded a full tuition waiver, some others half and the remaining nothing.
In both these examples, the outcome of the contest is different than the single-
winner type. In this paper we define a model for contests with any type of outcome
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and characterize a class of contests by a property of independence which, loosely
speaking, requires the relative performance of any two players in a contest to depend
only on their own relative efforts, and not on the efforts of others.

Let us describe the model in more detail. We assume that the outcome of a contest
is a ranking, which is defined as an ordered partition of the set of players, assigning
a rank (or level) to each player. The type of a ranking is identified by the exact
number of players at each level. When a ranking is strict, each player has a different
level and no level is shared by more than one player. An outcome of the academic
job market is a strict ranking, as each candidate is recruited for a different position.
When a ranking is non-strict, at least one level is shared by more than one player.
There are many types of non-strict ranking. The outcome of a single-winner contest
is a non-strict ranking where one player is ranked first and all other players are
ranked second. The awarding of tuition waiver rights at a university induces a non-
strict ranking of students, dividing them into three categories. The analysis here
allows for the study of any type of ranking as the outcome of a contest.1

The outcome of a contest is stochastically determined by players’ efforts. More
precisely, each profile of efforts induces a non-degenerate probability distribution
over all possible outcomes of a contest. In the example of the awarding of tuition
waiver rights at a university, the more each student has prepared during the academic
year the higher its probability of being awarded a tuition waiver. This probability is
always positive, as even a completely unprepared student has some chances of passing
exams. The function which maps players’ efforts into probabilities of outcomes is
called contest success function.

In the literature so far, the axiomatic characterizations of contest success func-
tions are exclusively for contests with single winner. In this paper we axiomatically
characterize a contest success function for contests with any type of outcome. We
characterize our success function by a unique property, pair-swap consistency. Pair-
swap consistency is an axiom of independence, requiring the relative performance
of two players in a contest of any type to be exclusively determined by their own
efforts, as if they were the only players in the contest. More precisely this axiom
requires, for each pair of players, the probability of any ranking where one of them
is one level above the other to be proportional to the probability of the same player
winning against the other in a two-player contest.

1Suppose there are 4 players. In a single-winner contest, a possible outcome is (2; 3, 4, 1), which
means Player 2 is ranked the first, and other players share the second place. All other possible
outcomes of a single-winner contest share the similar feature. With the approach followed here,
apart from this ranking, the following rankings are also possible: (2; 3; 4; 1), a strict ranking where
Player 2 is ranked the first, Player 3 the second, Player 4 the third and Player 1 the fourth; (2; 3, 4; 1),
a non-strict ranking where Player 2 is ranked the first, Players 3 and 4 share the second rank and
Player 4 is ranked the third; (2, 3; 4, 1), a non-strict ranking where Players 2 and 3 share the first
rank and Players 4 and 1 share the second rank; (2, 3, 4; 1), a non-strict ranking where Players 2,
3 and 4 share the first rank and Player 1 is ranked the second. Many other types of ranking are
possible.
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Pair-swap consistent contest success functions are appropriate for modeling certain
situations more than others. They are appropriate for modeling competitive situ-
ations where each player acts individually and fights each opponent indiscriminately.
The academic job market and the awarding of tuition waiver rights at a university
are reasonable examples of such cases. On the other hand, these functions are in-
appropriate for modeling situations where players compete unevenly against their
opponents. Examples of such situations are when some players collude, or when
there are geographical or cultural barriers to competition between some but not all
players.

Related models in contest theory and probabilistic choice

Restricting attention to contests of single-winner type, our contest success function
is equivalent to the one characterized in Skaperdas (1996), which is the most popular
in the literature. Our axiom is analogous to sub-contest consistency, which is the
main axiom in Skaperdas (1996) and in most axiomatic characterizations of contest
success functions. Loosely speaking, sub-contest consistency is a property of success
functions for contests of single-winner type which requires the winning probability
of a player to be proportional to its probability of winning in sub-contests restricted
to any subset of players. For contests of single-winner type, our axiom is equivalent
to a weaker version of sub-contest consistency, requiring the property to hold only
for sub-contests restricted to any pair of players.

Our framework is also meaningful in probabilistic choice and random utility theory.
A contest among n players can be interpreted as the probabilistic preferences of a de-
cision maker over a set of n alternatives. Efforts of players correspond to underlying
qualities of alternatives and the contest success function gives the probability distri-
bution of the preferences. Pair-swap consistency is analogous to Luce (1959)’s choice
axiom, also known as independence of irrelevant alternatives. This axiom considers
probabilistic choices from different subsets of alternatives, and roughly speaking it
requires the relative probability of any two alternatives to be independent of other
alternatives in the subset. Independence of irrelevant alternatives characterizes an
important class of probabilistic choice functions, which includes the multinomial
logit. The framework developed here generalizes Luce (1959), in that it allows to
represent not only probabilistic choices but complete probabilistic preferences.

Applications

In the last section of this paper we apply our success function to contest games with
various structures. More specifically, we analyze equilibrium behavior in contests
with multiple stages and multiple prizes in order to identify which structures induce
higher equilibrium efforts. These topics have been widely studied with success func-
tions of perfectly discriminating type2 (see Baye et al. (1993), Moldovanu and Sela

2A success function is of perfectly discriminating type if the outcome of a contest is non-
stochastically determined by players’ efforts. For example in an auction players are deterministically
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(2001) and Moldovanu and Sela (2006)). However, the study of these subjects with
success functions of imperfectly discriminating type3 is still incomplete (see Clark
and Riis (1998b), Wärneryd (2001), Fu and Lu (2006) and Fu and Lu (2009)). Our
approach provides a framework for generalizing the analysis.

The paper develops as follows. Section 2 reviews the related literature in contest
theory and probabilistic choice. Section 3 describes the model, and section 4 defines
the contest success function and pair-swap consistency, and characterizes the success
function via this axiom. Section 5 analyzes some properties of the success function
and applies the function to the study of equilibrium behavior in contests games with
various structures.

2 Related literature

The axiomatic approach in contest theory started with the seminal work of Skaperdas
(1996), which defines a contest success function for single-winner contests. The
function is characterized by five axioms: probability, monotonicity, anonymity, sub-
contest independence and sub-contest consistency4. Let us briefly describe these
axioms. Probability requires the sum of the winning probabilities of all players to
be always 1, and monotonicity that the winning probability of a player is increasing
in its own effort and decreasing in other players’ efforts. Anonymity imposes that
the winning probabilities depend only on the efforts of players and not on their
identities, and sub-contest independence that the winning probabilities in a sub-
contest are independent of the efforts of players which are excluded from the sub-
contest. Sub-contest consistency requires the winning probability of a player to be
proportional to its winning probability in any sub-contest. More specifically, given
a set of players N , for any player i ∈ N and any subset of players M ⊂ N where
i ∈ M , sub-contest consistency requires that player i’s winning probability p(i)

satisfies p(i)/
[∑

j∈M p(j)
]

= pM (i), where pM (i) is player i’s winning probability

in the sub-contest restricted to players in M . While the first four axioms are fairly
weak, sub-contest consistency is clearly demanding. In this sense we say that sub-
contest consistency is the main axiom of the characterization. In Skaperdas (1996),
a contest success function p fulfills these five axioms if and only if there exists a
function f : R+ → R+ such that each player i ∈ N ’s winning probability can be

represented as p(i) = f(xi)/
[∑

j∈N f(xj)
]

if
∑

j∈N f(xj) > 0 and 1/n otherwise,

ranked according to their bids.
3A contest success function is of imperfectly discriminating type if efforts of players induce a

non-degenerate probability distribution over all possible outcomes of a contest. The contest success
functions in Skaperdas (1996), Clark and Riis (1996), Fu et al. (2013) and in this paper are of
imperfectly discriminating type.

4These terms are not used in Skaperdas (1996). We follow the terminologies in Wärneryd (2001)
and Münster (2009).

4



where xj ≥ 0 is the effort of player j ∈ N and n ≥ 2 is the number of players in
N .

The contest success function defined in Skaperdas (1996) has been generalized in
several directions by characterizations of different success functions. In all these ex-
tensions the outcome of a contest is of single-winner type, and most characterizations
relax some of the first four axioms in Skaperdas (1996) and maintain sub-contest
consistency. Let us briefly discuss them. Blavatskyy (2010) relaxes probability, in-
troducing a success function for modeling contests with the possibility of a draw.
Clark and Riis (1998a) relax anonymity, developing a success function which treats
players unfairly. Rai and Sarin (2009) and Arbatskaya and Mialon (2010) define
success functions for multi-dimensional efforts of players, and Münster (2009) axio-
matizes a success function for contests between groups of players. These last three
extensions generalize the framework in Skaperdas (1996) to cases where a player’s
effort is a vector instead of a scalar5, and their axioms are generalizations of the ones
in Skaperdas (1996) to the multi-dimensional case. Bozbay and Vesperoni (2013) de-
velop a success function for contests where each pair of players can be ally or enemy
of each other, defining the function for any possible network of alliances. In their
characterization sub-contest independence and sub-contest consistency are violated
for any network where some players are allies.

This paper is first in axiomatically characterizing a contest success function for rank-
ings different than the single-winner type. However, there is non-axiomatic work on
the subject. Clark and Riis (1996) introduce a success function for contests whose
outcome is a strict ranking of players, without providing an axiomatic characteriz-
ation. Fu and Lu (2011) show that this contest success function is the outcome of
a stochastic process, under certain assumptions on the distribution of errors. Fu et
al. (2013) propose an alternative success function for contests whose outcome is a
strict ranking, deriving it from a different stochastic process. The success function
developed here is more general than Clark and Riis (1996) and Fu et al. (2013) in
that, besides the possibility of being applied to contests whose outcome is a strict
ranking, it proposes a unified framework for modeling contests whose outcome is of
any type, including non-strict rankings.

The second body of literature that this paper connects to is probabilistic choice
and random utility theory. Luce (1959) axiomatically characterizes a framework
for modeling the probabilistic choice of a decision maker from a set of alternatives.
The main axiom of the characterization is independence of irrelevant alternatives
(IIA). McFadden and Zarembka (1974) axiomatizes the most popular functional
form of this model, known as the multinomial logit. McFadden (1973) provides a
non-axiomatic characterization, showing that the choice probabilities can be derived
from a stochastic process with errors of the generalized extreme value (GEV) family,

5In Münster (2009), a group of n ≥ 2 players can be interpreted as a single player with n
dimensional effort.
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where the crucial assumption is the independence of these errors. By allowing for
correlation of errors, Williams (1977) and McFadden (1978) generalize the framework
into a model known as nested logit. Beggs et al. (1981) generalize the multinomial
logit model in a different direction, providing a representation of probabilities of
strict rankings of alternatives known as rank-ordered logit. Their characterization
is non-axiomatic and generalizes the one in McFadden (1973), showing that their
model can be derived from a stochastic process with errors of GEV type. While
their representation is only for strict rankings, here we provide a model for any type
of rankings, and our characterization generalizes Luce (1959).

3 Model

There is a set of players N = {1, . . . , n}, where n ≥ 2. A ranking r is an ordered
partition of N which assigns a level to each player. We write r(i) = l to say that in
ranking r player i is ranked at level l6. For N = {1, 2, 3}, if r(1) = 1, r(2) = 1 and
r(3) = 2, we write r = (1, 2; 3). We exclude the degenerate case where all players
are ranked equally. Then, the set of all rankings R is the set of all ordered partitions
of N except (N). We say that player i is ranked above player j if r(i) < r(j).

A type of ranking describes the exact number of players in each level of a ranking.
We write t(l) = m to say that a ranking of type t assigns m players to level l7. For
instance, any ranking of single-winner type has one player at the first level (t(1) = 1)
and all other players at the second level (t(2) = n− 1). We denote by T the set of
all types of ranking.

Given a type of ranking t ∈ T , the set of possible outcomes of a contest is the set
of all rankings in R of the same type t8. For instance, the set of possible outcomes
of a single-winner contest is the set of all rankings in R of single-winner type. We
denote by R(t) the set of possible outcomes of type t ∈ T , and by R the set of all
sets of possible outcomes.

Each player i ∈ N is associated with an effort xi ∈ Xi := R+, and x ∈ X := Rn+ is
an effort profile. Given any type of ranking in T , a contest success function defines
the probability of each possible outcome in R(t) for any effort profile in X. For any

6Formally, a function r : N → N represents an ordered partition of N if and only if no player is
assigned to a level below some empty level (for any i and l in N we have r(i) = l only if for each
l′ < l there exists j ∈ N such that r(j) = l′). A function r which fulfills this condition is a ranking
if and only if there is no level to which all players belong (r(i) 6= r(j) for some i, j ∈ N).

7More formally, a function t : N → N is a type of ranking if and only if (1) each player is
assigned to some level (

∑
l∈N t(l) = n); (2) there is no level to which all players belong (t(l) ≤ n−1

for all l ∈ N); (3) if a level has some players in it then there are no empty levels above that level
(t(l) ≥ 1 only if t(l′) ≥ 1 for all l′ < l and l ≥ 2).

8A set of rankings A ⊆ R is a set of possible outcomes if and only if (1) every r ∈ A is of same
type t ∈ T ; (2) for each r ∈ A, there exists r′ ∈ A such that r′(ψ(i)) = r(i) for any player i ∈ N
and permutation ψ of N .
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x ∈ X, we write p(r, x) for the probability of r ∈ R(t) being the outcome. Then, for
any type t ∈ T , a contest success function of type t is a mapping p : R(t)×X → [0, 1]
where

∑
r∈R(t) p(r, x) = 1 for every x ∈ X.

4 Characterization of the contest success function

Let us define a contest success function for any type of ranking and characterize it
via pair-swap consistency. To define this axiom, we first define a pair-swap ranking.
Let t ∈ T be any type. For each ranking r ∈ R(t) and each pair of players i, j ∈ N ,
the pair-swap ranking ri,j is obtained from the ranking r by players i and j swapping
their levels and all other players remaining at the same levels9. For instance, for
N = {1, 2, 3, 4}, if r = (2; 3; 4; 1) the ranking r2,4 is defined as (4; 3; 2; 1), where
players 2 and 4 swap their levels and players 3 and 1 remain at the same levels as
in r. We can now define pair-swap consistency.

Definition 4.1 Given a function f : R+ → R++ and a type of ranking t ∈ T , a
contest success function satisfies pair-swap consistency if for each effort profile
x ∈ X, ranking r ∈ R(t) and pair of players i, j ∈ N with r(j) = r(i) + 1

p(r, x)

p(r, x) + p(ri,j , x)
=

f(xi)

f(xi) + f(xj)
.

For each pair of players i, j ∈ N and effort profile ∈ X, the RHS of the equation in
Definition 4.1 is the winning probability of player i in a two-player contest against
player j, where the success function of the two-player contest belongs to the family
characterized in Skaperdas (1996)10. For the same effort profile x ∈ X and any type
of ranking t ∈ T , the LHS is the probability of a ranking r ∈ R(t) where player i is
one level above player j, conditional on all players in N\ {i, j} being at given levels
in the outcome11. In other words, the LHS measures how likely it is that i is ranked
above j rather than j above i everything else is equal, i.e., when any other player is

9Given a type t ∈ T , for any ranking r ∈ R(t) and pair of players i, j ∈ N the pair-swap ranking
ri,j is defined as the ranking in R(t) where (1) ri,j(j) = r(i) and ri,j(i) = r(j); (2) ∀ k ∈ N\ {i, j} :
ri,j(k) = r(k).
10In Skaperdas (1996) the function f is weakly positive, while here f is required to be strictly

positive. This is to avoid well known problems in the characterization in Skaperdas (1996) which
arise when f(xi) = 0 for some i ∈ N and xi ∈ Xi. In short, the contest success function in Skaperdas
(1996) is not well defined when this is the case. Moreover in Skaperdas (1996) the function f is
increasing, while we do not impose such restriction here. We do this only to keep the model more
general, as one can imagine competitive situations where a player’s performance is not necessarily
monotonic in its own effort. However, in the sections of discussion and applications we always
assume f to be increasing.

11Given an effort profile x ∈ X, the outcome of a contest is a random variable. Let us denote it
by ω, where ω(i) is the level of a player i ∈ N in the outcome. Then, ω takes value in R(t) and
its probability distribution is determined by Pr(ω = r) = p(r, x) for any r ∈ R(t). The LHS of the
equation in Definition 4.1 can be written as Pr (ω = r|ω(h) = r(h) for any h /∈ {i, j}).
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at some level. Then, we can say that pair-swap consistency defines a property of a
contest success function p : R(t) ×X → [0, 1] for any type of ranking t ∈ T which
requires, everything else equal, the relative performance of any pair of players to
depend only on their relative efforts, as if they were the only players in the contest.
Theorem 4.1 defines the contest success function.

Theorem 4.1 Given a function f : R+ → R++ and a type of ranking t ∈ T , a
contest success function is pair-swap consistent if and only if for all r ∈ R(t) and
x ∈ X

p(r, x) =

∏
i∈N f(xi)

−r(i)∑
r′∈R(t)

∏
i∈N f(xi)−r

′(i)
. (1)

Proof: see Appendix.

Restricting our attention to contests of single-winner type, the contest success func-
tion in Theorem 4.1 is equivalent to the one in Skaperdas (1996). Moreover, for
single-winner contests, pair-swap consistency is equivalent to a weaker version of
sub-contest consistency, which is the main axiom in Skaperdas (1996). While sub-
contest consistency requires a player’s winning probability in a contest to be propor-
tional to its probability of winning in every sub-contest restricted to any subset of
players, pair-swap consistency requires this to hold only for sub-contests restricted
to any pair of players. Then, our weaker axiom is sufficient for characterizing the
success function in Skaperdas (1996).

There is an important difference between our characterization and the one in Skaper-
das (1996). While in Definition 4.1 pair-swap consistency is defined for a given
function f , the axioms in Skaperdas (1996) describe properties of a success function
without assuming any functional form. Loosely speaking, Skaperdas (1996) shows
that a success function fulfills some axioms if and only if there exists a function
f such that each player’s winning probability can be represented as a particular
function of (f(xi))i∈N . Then, while we define our success function for a given f ,
Skaperdas (1996) characterizes a family of contest success functions parametrized by
f . Let us see our methodology in more detail. We start by choosing a function f and
taking the success function corresponding to f from the family in Skaperdas (1996).
We use this success function to define pair-swap consistency, which characterizes our
contest success function for a given f and for all types of ranking. Taking any f ,
we define a family of contest success functions for any type of ranking which fulfills
pair-swap consistency. Formally, in Theorem 4.1 we define a consistent extension12

of each success function in the family of Skaperdas (1996) to the domain of success
functions for any type of ranking.

12See Thomson (2011) for an introduction to consistent extensions of allocation rules to larger
domains. We define our success function as a consistent extension of the one in Skaperdas (1996) only
to simplify exposition, as a direct characterization of our function would require heavier notation
and repetition of arguments already in Skaperdas (1996).

8



5 Discussion

In this section we study properties of the contest success function defined in Theorem
4.1. We already know that, given a type t ∈ T , the contest success function is a
mapping p : R(t) × X → [0, 1] such that

∑
r∈R(t) p(r, x) = 1 for every x ∈ X.

Moreover, given a function f : R+ → R++, we know that p(r, x) must fulfill pair-
swap consistency for any r ∈ R(t) and x ∈ X. Can we say anything more about
our success function? To do so, we additionally assume f to be increasing, weakly
concave and twice differentiable13. In the following sections we study properties
which hold as a consequence of these.

In section 5.1 we analyze aspects of the success function which are relevant for study-
ing existence and uniqueness of equilibrium in contest games, i.e., monotonicity and
concavity of rankings’ probabilities in players’ efforts. The results show that, as
rankings’ probabilities are not necessarily monotonic and concave, the character-
ization of an equilibrium is not always trivial. On the other hand this proposition
provides a very intuitive framework to reason on the issue. In section 5.2 we compare
probabilities of a player being ranked first in contests with different sets of possible
outcomes and same effort profile. These probabilities are generally different from
each other and their relative magnitude depends on the effort profile. Our results
give insights on the effects of a contest’s type on its precision in ranking players
proportionally to efforts. In section 5.3 we analyze players’ incentives in spending
costly efforts in contest games with various structures. More precisely, we analyze
equilibrium behavior in contests with multiple stages, multiple prizes and various
types of outcome. Our results highlight which structures induce higher equilibrium
efforts than others.

In these sections we will often refer to contests of three types: single-winner, multi-
winner and strict-ranking. Although their meaning is intuitive, let us define them
here. For any set of players N , a single-winner contest partitions this set such that
one player is ranked first (t(1) = 1) and all other players second (t(2) = n − 1). A
multi-winner contest locates m ≥ 2 players at the first level (t(1) = m) and all others
at the second (t(2) = n − m). In a strict-ranking contest the outcome is a strict
ranking of players (t(l) = 1 for all l ∈ N). Through all the section we will often refer
to the following examples with three players. Consider a single winner-contest with
n = 3. The set of possible outcomes is R(t) = {(1; 2, 3), (2; 1, 3), (3; 1, 2)}. Given an
effort profile x ∈ X the probability of ranking r = (1; 2, 3) can be written as

p(r, x) =
f(x1)

f(x1) + f(x2) + f(x3)
.

In a multiple-winner contest with three players and two winners the set of possible
outcomes is R(t) = {(1, 2; 3), (1, 3; 2), (2, 3; 1)} and for any x ∈ X the probability of

13This assumption is widely accepted in contest theory. See Skaperdas (1996) for axiomatic char-
acterizations of specific functional forms for f which are positive, increasing and twice differentiable.
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ranking r = (1, 2; 3) is

p(r, x) =
f(x1)f(x2)

f(x1)f(x2) + f(x1)f(x3) + f(x2)f(x3)
.

Consider a strict-ranking contest with n = 3. The set of possible outcomes is

R(t) = {(1; 2; 3), (1; 3; 2), (2; 1; 3), (2; 3; 1), (3; 1; 2), (3; 2; 1)} .

and for any x ∈ X the probability of r = (1; 2; 3) takes value

p(r, x) =
f(x1)2f(x2)

f(x1)2f(x2) + f(x1)2f(x3) + f(x2)2f(x1) + f(x2)2f(x3) + f(x3)2f(x1) + f(x3)2f(x2)
.

5.1 Monotonicity and concavity of rankings’ probabilities

In this section we study rankings’ probabilities as functions of players’ efforts, and
find conditions for their monotonicity and concavity. Let us define some concepts
to be used in Proposition 5.1. Consider a contest of any type t ∈ T . For any
effort profile x ∈ X and ranking r ∈ R(t), we say that p(r, x) is increasing in
the effort of player i ∈ N if the first derivative ∂ [p(r, x)]/∂xi evaluated at x is
positive, while we say that p(r, x) is concave in player i’s effort if the second de-
rivative ∂2 [p(r, x)]/∂2xi evaluated at x is negative. Before stating our results,
we introduce some more notation. For any effort profile x ∈ X, the level of
a player i ∈ N in the outcome is a random variable and its expected value is
ρ(i, x) :=

∑
r∈R(t) p(r, x)r(i). For each ranking r ∈ R(t), the distance of player

i’s level in r from its expected value is di(r, x) := (r(i)− ρ(i, x))2, while its expected
distance14 is δi(x) :=

∑
r∈R(t) p(r, x)(r(i)− ρ(i, x))2.

Proposition 5.1 For any type t ∈ T and effort profile x ∈ X

1. the probability of a ranking is always increasing (decreasing) in the effort of a
player ranked first (last).

2. the probability of a ranking is always concave (convex) in the effort of a player
ranked first (last) in any contest with only two levels.

3. the probability of a ranking r ∈ R(t) is increasing (decreasing) in the effort
of a player i ∈ N if and only if player i’s level in the ranking r(i) is smaller
(larger) than its expected value ρ(i, x).

4. the probability of a ranking r ∈ R(t) is concave (convex) in the effort of a
player i ∈ N if player i’s level in the ranking r(i) is smaller (larger) than its
expected value ρ(i, x) and if the distance di(r, x) is smaller (larger) than the
expected distance δi(x).

14Notice that the expected distance of player i’s level in the outcome is the variance of its level
in the outcome, hence a measure of dispersion.
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Proof: See Appendix.

Let us briefly interpret these results. Proposition 5.1 says that the probability of a
ranking is increasing (decreasing) in the effort of a player if and only if the player’s
level in the outcome is smaller (larger) than its expected level. For example, let
n = 4 and consider any symmetric effort profile x′ ∈ X. Each player i ∈ N ’s
expected level is ρ(i, x′) = 5/2, hence the probability of r = (1; 2; 3; 4) at x′ is
increasing in x1 and x2 and decreasing in x3 and x4. Intuitively, an increase in a
player’s effort makes it more likely that the player is ranked at relatively better levels,
everything else equal. Proposition 5.1 says also that the probability of a ranking
is concave (convex) in the effort of a player if the ranking assigns the player to a
level which is smaller (larger) than its expected level and whose distance is smaller
(larger) than the expected distance. Let us see an example. For n = 4 and any
symmetric effort profile x′ ∈ X, each player i ∈ N ’s expected level is ρ(i, x′) = 5/2
and expected distance is δ(i, x′) = 5/4. Then, the probability of r = (1; 2; 3; 4) at x′

is concave in x2 and convex in x4. The intuition for this result is less obvious. When
the distance is smaller than the expected distance, the ranking assigns the player to
a level which is relatively close to the expected level. Then, a ranking’s probability
is concave in a player’s effort when it ranks the player at a level only slightly smaller
than its expected level. Intuitively, when this is the case, the ranking’s probability
is “approximately” the average of the player’s winning probabilities in two-player
contests against each opponent, for a given effort profile. As a two-player contest
has only two levels, each of these winning probabilities are concave in the player’s
effort, hence their average too.

Let us see how Proposition 5.1 applies to our examples with three players. Consider
the single-winner contest. The probability of ranking r = (1; 2, 3) is increasing and
concave in the effort of player 1 and decreasing and convex in the efforts of players
2 and 3 for any x ∈ X. For the multi-winner contest, the probability of r = (1, 2; 3)
is increasing and concave in the efforts of players 1 and 2 and decreasing and convex
in the effort of player 3 for any x ∈ X. Consider the strict-ranking contest. The
probability of r = (1; 2; 3) is increasing in the effort of player 1 and decreasing in the
effort of player 3 for any x ∈ X. On the other hand, p(r, x) is increasing (decreasing)
in the effort of player 2 if and only if player 2’s expected level in the outcome ρ(2, x)
is larger (smaller) than its level r(2) = 2. Notice that the probability of ranking
r = (1; 2; 3) is not necessarily concave in the effort of player 1. One can show that
a sufficient condition for its concavity in x1 is ρ(1, x) ≤ 2.

5.2 Winning probabilities in contests of different types

In this section we compare a player’s probability of being ranked first in a contest
of type t ∈ T with its probability of being ranked first in a contest of type t′ 6= t
with same effort profile. For any t ∈ T , x ∈ X and i ∈ N , player i’s probability
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of being ranked first in a contest of type t is the joint probability of all outcomes
r ∈ R(t) where this is the case. Then, player i’s probability of being ranked first is∑

r∈Ri(t) p(r, x), where Ri(t) is the set of all rankings r ∈ R(t) where r(i) = 1.

Proposition 5.2 For any n ≥ 3 and x ∈ X, a player i ∈ N ’s probability of being
ranked first in a single-winner contest is

1. lower than the probability of being ranked first in a multi-winner contest with
same effort profile x.

2. higher (lower) than the probability of being ranked first in a contest of a type
with one player at first level, one player at second level and n − 2 players at
third level and same effort profile x if and only if f(xi) is lower (higher) than

∑
j 6=i f(xj)

2(
∑

k 6=i,j f(xk))∑
j 6=i f(xj)(

∑
k 6=i,j f(xk))

.

Proof: See Appendix.

Although the results in Proposition 5.2 are far from being a complete analysis of the
subject, they give some idea of the forces at play. The intuition of the first result is
straightforward. It is easier for any player to be ranked first when there are multiple
first positions rather than a single one simply because more chances are available.
The second result is not so obvious. Both types of contest rank a single player at
the first level, but while one type indiscriminately ranks all other players at the last
level, the other type selects also a single player for the second level. A player with
a relatively low effort is more likely to be ranked first in the first type of contest,
while a player with relatively high effort in the second type. Intuitively, the higher
the number of levels in the outcome, the more a contest is “precise”. In a contest
with three levels, a player with low effort is more likely to be ranked third or second,
and a player with high effort to be ranked second or first.

Let us see how the results in Proposition 5.2 apply to our examples with three
players. Consider player 1’s probability of being ranked first in the single-winner
and the multi-winner contests. For the single-winner contest it is the probability
of ranking (1; 2, 3), and for the multi-winner contest it is the joint probability of
rankings (1, 2; 3) and (1, 3; 2). By Proposition 5.2 player 1’s probability of being
ranked first is always higher in the multi-winner contest than in the single-winner
one. Consider the strict-ranking contest. Player 1’s probability of being ranked first
in this contest is the joint probability of (1; 2; 3) and (1; 3; 2). For n = 3, a strict
ranking can be seen as a ranking with one player at first level, one player at second
level and n−2 players at third level. Then, by Proposition 5.2 player 1’s probability
of being ranked first is higher (lower) in the single-winner contest than in the strict
ranking contest if and only if f(x1) is lower (higher) than the opponents’ average
(f(x2) + f(x3))/2.

12



5.3 Players’ incentives in contests with various structures

In this section we study contest games where players compete for some prizes by
spending costly efforts. In Proposition 5.3 we study players’ incentives in contests
with various types of outcome. More specifically, we compare equilibrium efforts
of single-winner, multi-winner and strict-ranking contests. While all these contests
are organized in a single stage, in Proposition 5.4 we analyze contests with two
stages and compare their equilibrium efforts with the ones of analogous single-stage
contests.

Contests with various types of outcome

The outcome of a contest is a ranking of players. For any level l ∈ N in the outcome,
a player ranked at level l receives a prize vl ≥ 0. We assume vl ≥ vl+1 for all l ∈ N
and vl > vl+1 for some l ∈ N . Players are risk neutral and efforts’ costs are linear
and sunk. Then, a player i ∈ N ’s payoff is

πi(x) =
n∑
l=1

∑
r∈Ri,l(t)

p(r, x)vl − xi

where Ri,l(t) is the subset of R(t) which includes any ranking r such that r(i) = l,
for any l ∈ N . We define the average prize as v̄ := 1/n

∑
l∈N vl and the average

level as l̄ := 1/n
∑

l∈N l, which is equal to (n+ 1)/2 by Gauss formula.

Proposition 5.3 Take a single-winner contest awarding a prize to the winner and
nothing to others. In a symmetric interior equilibrium its total efforts are

1. higher than the ones in the symmetric equilibrium of any multi-winner contest
which equally shares the same prize among m ≥ 2 winners and gives nothing
to others. The equilibrium efforts of this multi-winner contest are equal to the
ones of multiple separated single-winner contests, each with n/m players and
each awarding one of these prize’s shares to its winner.

2. lower than the ones in the symmetric equilibrium of a strict-ranking contest
awarding the same prize to the player ranked first and nothing to others. For
any prize profile (vl)l∈N the equilibrium efforts of this strict-ranking contest
are such that

f(xi)

f ′(xi)
= l̄v̄ − 1

n

n∑
l=1

lvl

for any i ∈ N . For any level l ∈ N , a larger prize vl induces higher (lower)
equilibrium efforts if and only if l is smaller (larger) than the average level.
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Given a budget constraint
∑

l∈N vl ≤ V equilibrium efforts are maximized by
giving the whole budget to the player ranked first and nothing to others.

Proof: See Appendix.

Let us briefly discuss these results. Consider the first point in Proposition 5.3.
Firstly, it says that a single-winner contest induces higher efforts than any multi-
winner contest which shares the same prize among its multiple winners. This result
is intuitive and related to the first point in Proposition 5.2, which argues that it is
always easier to be ranked first in a multi-winner contest than in a single-winner
one. Secondly, it says that the multi-winner contest induces same efforts as separate
single-winner contests each with n/m players and each awarding one of its multiple
prizes. Intuitively, this result follows from pair-swap consistency, which says that
the relative performance of any pair of players should depend only on their relative
efforts, as if they were competing alone in a single-winner contest15. Consider the
second point in Proposition 5.3. Firstly, we see that a single-winner contest with
a unique prize induces lower efforts than a strict-ranking contest which gives the
same unique prize to the player ranked first. This result is not immediate, but it
can be understood by referring to the second point in Proposition 5.2, which hints
that contests with more levels are more competitive. Secondly, in the second point
of the proposition we have a simple formula for equilibrium efforts of strict-ranking
contests, from where we derive some conclusions on the effects of prizes on efforts16.
Intuitively, giving higher prizes to players ranked at best levels and lower prizes to
players ranked at worst levels should increase competition.

Two-stage contests

A two-stage contest is a game where players compete for a single prize by spending
costly efforts and the competition is organized in two stages. In the first stage all
players engage in a multi-winner contest, which selects a set M ⊂ N of winners17.
The set of all possible sets of winners is denoted byM. Only players in M access the
second stage, where they engage in a single-winner contest where the winner receives
a prize v1 > 0 and the others nothing. Notice that there is a different second-stage
contest for each possible set of winners M ∈ M of the first stage. A two-stage
contest has contingent expenditures when each player i ∈ N spends a different effort
in each stage. Denote by x1i player i ∈ N ’s effort in the first stage, and by xMi its
effort in the second stage for each M ∈M. For any M ∈M, if i /∈M then xMi = 0.
Call x1 ∈ X a first stage effort profile, and xM ∈ X a second stage effort profile for
any M ∈ M. For each set of second stage participants M ∈ M, a player i ∈ M ’s

15Wärneryd (2001) already shows that a single-winner contest awarding a unique prize v1 induces
higher efforts than m symmetric separated single-winner contests each with n/m players and each
awarding a prize v1/m. The results in the first point of Proposition 5.3 complete this analysis.

16On the other hand, the study of incentives in strict-ranking contests with different success
functions has often been analytically demanding. See Clark and Riis (1996), Clark and Riis (1998b),
Fu and Lu (2006) and Fu and Lu (2009).

17The cardinality m ≥ 2 of the set of winners fully determines the type of the first stage’s contest.
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second stage payoff is

πMi (xM ) = pM (i, xM )v1 − xMi

where pM (i, xM ) denotes the probability of the ranking of M where player i is ranked
first. Given a second stage effort profile xM ∈ X for each M ∈M, a player i ∈ N ’s
first stage payoff is

π1i (x
1) =

∑
M∈Mi

p(M,x1)πMi (xM )− x1i

whereMi is the set of all sets of winners M ∈M where i ∈M and p(M,x1) denotes
the probability of the ranking of N where players in M are ranked first.

A two-stage contest has generic expenditures when a player i ∈ N makes a unique
expenditure yi in the first stage, which determines the first stage’s effort x1i := yi
and the second stage’s effort xMi := yi for any M ∈ M. A player i ∈ N ’s payoff
is

πi(y) =
∑

M∈Mi

p(M,y)pM (i, y)v1 − yi .

Proposition 5.4 Take a single-winner contest awarding a prize to the winner and
nothing to others. In a symmetric interior equilibrium its total efforts are

1. lower than the ones in the symmetric equilibrium of a two-stage contest with
generic expenditures awarding the same prize to the winner and nothing to
others. The equilibrium efforts of this two-stage contest are maximized by
eliminating (the closest natural number to) n−

√
n players in the first stage.

2. higher than the ones in the symmetric subgame perfect equilibrium of a two-
stage contest with contingent expenditures awarding the same prize to the win-
ner and nothing to others, given f is a power function18.

Proof: See Appendix.

Let us comment these results. The first point of Proposition 5.4 says that a contest
which awards a prize in two stages induces higher efforts than the one which awards
it in a single stage if its expenditures are generic. The second point of Proposition
5.4 says that the opposite holds if the contest has contingent expenditures. Notice
that a two-stage contest implicitly ranks players in three levels: first stage losers,
second stage losers and the second stage winner. If efforts are generic, a two-stage

18A function f is a power function if it takes the form f(xi) = (xi + β)α for some α, β > 0. The
power function is the most popular functional form in the contests’ literature and the case with
β = 0 is axiomatically characterized in Skaperdas (1996).
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contest is analogous to a single-stage contest with three levels. As hinted by the
second point of Proposition 5.3, adding levels in the outcome tends to induce higher
efforts. This explains the first point. The intuition for the second point is that with
contingent efforts a player spends in the second stage only if it has passed the first
stage, hence can wait and see if the contest is worth its efforts19.

6 Appendix

Proof of Theorem 4.1

It is easy to verify that (1) satisfies pair-swap consistency. Moreover, for n = 2 the
only type of ranking in T is single-winner, and pair-swap consistency directly defines
p for any r ∈ R(t) and x ∈ X. Let us show that pair-swap consistency requires p to
take the functional form in (1) for all n ≥ 3, t ∈ T , r ∈ R(t) and x ∈ X. Given any
n ≥ 3, t ∈ T and x ∈ X, pair-swap consistency requires

p(r, x)

p(ri,j , x)
=
f(xi)

f(xj)
(2)

for any r ∈ R(t) and pair of players i, j ∈ N ranked at consecutive levels (r(j) =
r(i) + 1). Such players always exist since n ≥ 3 and there are at least two levels in a
ranking. Given any n ≥ 3, consider types t ∈ T with only two levels. Among these
types, let us focus first on the ones with at least two players at the second level. For
any of these types, without loss of generality consider a ranking r ∈ R(t) such that
r = (1, . . . ; 2, 3, . . .). Take any x ∈ X. By (2) p(r, x)/p(r1,2, x) = f(x1)/f(x2), hence
there exists a function F (x) 6= 0 such that p(r, x) = f(x1)F (x) and p(r1,2, x) =
f(x2)F (x). By the same argument, as p(r, x)/p(r1,3, x) = f(x1)/f(x3), there exists
F ′(x) 6= 0 such that p(r, x) = f(x1)F

′(x) and p(r1,3, x) = f(x3)F
′(x). As p(r, x) =

f(x1)F (x) = f(x1)F
′(x), we necessarily have F (x) = F ′(x), hence

p(r, x) = f(x1)F (x) , p(r1,2, x) = f(x2)F (x) and p(r1,3, x) = f(x3)F (x) . (3)

Among the types with only two levels, let us now focus on the ones with at least
two players at the first level. For any of these types, without loss of generality

19This result relates to previous studies of multiple-stage contests with contingent expenditures
and different success functions. Clark and Riis (1998b) and Fu and Lu (2006) show that adding
a stage to a contest with contingent expenditures always induces higher efforts. As argued by the
second point in Proposition 5.4 the opposite holds with our success function. The reason is not
obvious. Here an interpretation. As they focus on success functions of strict-ranking type only, every
time they add a stage they also add levels in the outcome. From the second point of Proposition
5.3 we know that adding levels in the outcome tends to induce higher efforts. Then, their result
may be driven by implicitly adding levels in the outcome.
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consider a ranking r ∈ R(t) such that r = (1, 2, . . . ; 3, . . .). Take any x ∈ X.
By (2) p(r, x)/p(r1,3, x) = f(x1)/f(x3), hence there exists F (x) 6= 0 such that
p(r, x) = f(x1)F (x) and p(r1,3, x) = f(x3)F (x). Moreover, p(r, x)/p(r2,3, x) =
f(x2)/f(x3), hence there exists F ′(x) 6= 0 such that p(r, x) = f(x2)F

′(x) and
p(r2,3, x) = f(x3)F

′(x). We now have obtained p(r, x) = f(x1)F (x) = f(x2)F
′(x).

Then, there exists F ′′(x) 6= 0 such that p(r, x) = f(x1)f(x2)F
′′(x), and we neces-

sarily have

p(r, x) = f(x1)f(x2)F
′′(x) , p(r1,3, x) = f(x2)f(x3)F

′′(x)

and p(r2,3, x) = f(x1)f(x3)F
′′(x) . (4)

Given any x ∈ X, by iteratively applying the arguments which brought to (3)
and (4) one can show that for every type of ranking t with only two levels there
exists a function Ft(x) 6= 0 such that p(r, x) =

∏
i∈Ar f(xi)Ft(x) for each r ∈ R(t),

where Ar ⊂ N is the set of all payers ranked at first level in r. Notice that this
expression can also be written as p(r, x) =

∏
i∈N f(xi)

−r(i)Gt(x), where Gt(x) =
Ft(x)

∏
i∈N f(xi)

2. By the definition of contest success function, the sum of the
probabilities of all rankings in R(t) is 1, hence

Gt(x) =
∑
r∈R(t)

∏
i∈N

f(xi)
−r(i).

It follows that p(r, x) must be as in (1) for any n ≥ 3, x ∈ X, type t with only two
levels and ranking r ∈ R(t).

Given any n ≥ 3 and type t ∈ T with at least three levels, consider any ranking
r ∈ R(t). Take any triple of players i, j, h ∈ N ranked r(h) = r(j) + 1 = r(i) + 2.
Given r, consider the ranking r′ ∈ R(t) where i, j, h are ranked r′(h) = r(i),
r′(j) = r(h) and r′(i) = r(j) and all other players are ranked as in r. With
some abuse of notation, these two rankings are represented by r = (i . . . ; j . . . ;h . . .)
and r′ = (h . . . ; i . . . ; j . . .). Take any x ∈ X. As the pair-swap ranking rj,h =
(h . . . ; j . . . ; i . . .) is equal to the pair-swap ranking r′i,h, we have

p(r, x)

p(r′, x)
=

p(r, x)

p(rj,h, x)

p(r′i,h, x)

p(r′, x)
.

By (2), p(r, x)/p(rj,h, x) = f(xj)/f(xh) and p(r′, x)/p(r′i,h, x) = f(xi)/f(xh), hence

p(r, x)

p(r′, x)
= f(xi)f(xj)f(xh)−2. (5)
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Notice that r′(i)− r(i) = 1, r′(j)− r(j) = 1 and r′(h)− r(h) = −2. Then, the RHS
of (5) can be written as

∏
k∈{i,j,h} f(xk)

r′(k)−r(k). As the pair-swap ranking ri,h is

equal to the pair-swap ranking r′i,j , we have

p(r, x)

p(ri,h, x)
=

p(r, x)

p(r′, x)

p(r′, x)

p(r′i,j , x)
.

By (2) and (5), we have

p(r, x)

p(ri,h, x)
= f(xi)

2f(xh)−2 (6)

Again, notice that ri,h(i)− r(i) = 2, ri,h(j)− r(j) = 0 and ri,h(h)− r(h) = −2, and
the RHS of (6) can be written as

∏
k∈{i,j,h} f(xk)

ri,h(k)−r(k). By iteratively applying
the arguments which led to (5) and (6), we obtain

p(r, x)

p(r′, x)
=
∏
i∈N

f(xi)
r′(i)−r(i) for each pair of rankings r, r′ ∈ R(t). (7)

By (7), there must exist a function Gt(x) 6= 0 such that

p(r, x) =
∏
i∈N

f(xi)
−r(i)Gt(x) for each r ∈ R(t).

By the definition of contest success function the sum of the probabilities of all
rankings in R(t) is 1, hence Gt(x) =

∑
r∈R(t)

∏
i∈N f(xi)

−r(i). It follows that p(r, x)
must be as in (1) for any n ≥ 3, x ∈ X, t ∈ T and r ∈ R(t).

�

Proof of Proposition 5.1

Given a function f : R+ → R++, for any t ∈ T and x ∈ X, the probability of a
ranking r′ ∈ R(t) is

p(r′, x) =

∏
i∈N f(xi)

−r′(i)∑
r∈R(t)

∏
i∈N f(xi)−r(i)

.

Assume f twice differentiable, increasing (f ′ > 0) and weakly concave (f ′′ ≤ 0).
The first derivative of p(r′, x) with respect to xi is

∂

∂xi

[
p(r′, x)

]
=
f ′(xi)

f(xi)
p(r′, x)

[
ρ(i, x)− r′(i)

]
.
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For any x ∈ X, ∂ [p(r′, x)]/∂xi ≥ 0 if and only if r′(i) < ρ(i, x), hence p(r′, x) is
increasing in xi if r′ ranks player i above its expected level in the outcome, while
p(r′, x) is decreasing otherwise. Consider any type of ranking t ∈ T with only two
levels. As r(i) ∈ {1, 2} for any r ∈ R(t), then ρ(i, x) ∈ [1, 2] for any x ∈ X. Then,
as ρ(i, x) ≥ 1 for any x ∈ X, the probability p(r′, x) is always increasing in xi for
any r′ ∈ R(t) where r′(i) = 1. Similarly, p(r′, x) is decreasing in xi for any r′ ∈ R(t)
where r′(i) = 2.

Let us consider concavity. The second derivative of p(r′, x) with respect to xi is

∂2

∂2xi

[
p(r′, x)

]
= H(xi)p(r

′, x)
[
r′(i)− ρ(i, x)

]
+

+

[
f ′(xi)

f(xi)

]2
p(r′, x)

[
di(r

′, x)− δi(x)
]

(8)

where H(xi) = (f ′(xi)/f(xi))
2 − f ′′(xi)/f(xi). The RHS of (8) is the sum of

two parts. As H(xi) > 0 for any xi ≥ 0, the first part is negative if and only
if r′(i) < ρ(i, x), hence p(r′, x) tends to be concave when increasing, and convex
when decreasing. The second part is negative if and only if di(r

′, x) < δi(x). Then,
r′(i) < ρ(i, x) and di(r

′, x) < δi(x) are sufficient conditions for the concavity of
p(r′, x) in xi, while r′(i) > ρ(i, x) and di(r, x) > δi(x) are sufficient conditions for
its convexity.

Consider any type of ranking t with only two levels. For each player i ∈ N , take
any r ∈ R(t) where i is ranked first (r(i) = 1). By (8) ρ(i, x)2 ≤ 3ρ(i, x) − 2 is a
sufficient condition for p(r, x) being concave in xi for any x ∈ X. As rankings have
only two levels, we have ρ(i, x) ∈ [1, 2]. The LHS and RHS of the condition are
equal to each other at ρ(i, x) = 1 and ρ(i, x) = 2. Moreover the LHS is convex in
ρ(i, x), while the RHS is linear. It follows that the LHS is smaller than the RHS for
any ρ(i, x) and p(r, x) is concave in xi for any x ∈ X. By similar arguments, one
can show that for any type t ∈ T with only two levels p(r, x) is convex in xi for any
x ∈ X and r ∈ R(t) where r(i) = 2.

�

Proof of Proposition 5.2

Without loss of generality, let us focus on the probabilities of player 1 being ranked
first. The probability of player 1 being ranked first in a single-winner contest is
f(x1)/

[∑
i∈N f(xi)

]
for some f positive and increasing. Consider a multi-winner

contest with m ≥ 2 winners. Call M the set of all M ⊂ N of cardinality m. M
is the set of all sets of winners. For any player i ∈ N , Mi is the set of all sets of
winners M ∈ M where i ∈ M . With some abuse of notation, for each M ∈ M
denote by p(M,x) the probability of the ranking r ∈ R(t) where r(i) = 1 for any
i ∈ M . Then, the probability of 1 being ranked first is

∑
M∈M1

p(M,x). For any
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x ∈ X, player 1 is more likely to be ranked first in the multi-winner contest than in
the single-winner contest if and only if

∑
M∈M1

∏
i∈M f(xi)∑

M∈M
∏
j∈M f(xj)

>
f(x1)∑
j∈N f(xj)

After few manipulations this condition becomes

∑
M∈M1

∏
i∈M\{1}

f(xi)

∑
j∈N

f(xj)

 > ∑
M∈M1

∏
i∈M\{1}

f(xi)

∑
j /∈M

f(xj) + f(x1)


which is always true.

Consider a contest of a type with one player at the first level, one player at the second
level and n − 2 players at the third level. For any x ∈ X, player 1’s probability of
being ranked first in this contest is

∑
j 6=1 f(x1)

2f(xj)∑
i∈N

∑
j 6=i f(xi)2f(xj)

.

Then, comparing this probability with f(x1)/
[∑

i∈N f(xi)
]
, one can show that player

1 is more likely to be ranked first in the single winner contest if and only if

f(x1) <

∑
j 6=1 f(xj)

2(
∑

k 6=1,j f(xk))∑
j 6=1 f(xj)(

∑
k 6=1,j f(xk))

for any x ∈ X.

�

Proof of the first point of Proposition 5.3

Consider a single-winner contest. By Proposition 5.1 the probability of a ranking
where player i ∈ N is ranked first is increasing and concave in xi for any x ∈
X, hence player i’s payoff is concave in xi. One can show that for any f where
f(0)/f ′(0) < (n− 1)v/n2 there exists a unique equilibrium where each player i ∈ N
exerts effort x∗i such that

f(x∗i )

f ′(x∗i )
=

(n− 1)v1
n2

. (9)

Consider k ≥ 2 single-winner contests, each equivalent to the one above. There are
k groups of n players, hence m = n · k players in total. The set of all players is
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M = {1, . . . ,m}. As the n players of each group compete only within their group,
equilibrium efforts are as in (9).

Suppose now that the players in M do not compete only within their group, but
contend the k prizes in a grand contest all against all. Consider a grand contest of
single-winner type, where the winner gets all the k prizes and others nothing. One
can show that for any f where f(0)/f ′(0) < (m− 1)kv1/m

2 there exists a unique
equilibrium where each player i ∈M exerts effort x∗i such that

f(x∗i )

f ′(x∗i )
=

(m− 1)kv1
m2

. (10)

Suppose now that in the merged contest each player i ∈M can obtain at most one
of the k prizes. The merged contest is a multi-winner contest with m players and
k winners (t(1) = k and t(2) = m − k). Let W be the set of all subsets of M of
cardinality k, representing the set of all possible sets of winners W ∈ W. For any
x ∈ X and W ∈ W, the probability that W is the set of winners is

p(W,x) =

∏
i∈W f(xi)∑

W ′∈W
∏
i∈W ′ f(xi)

where with some abuse of notation p(W,x) represents the probability of the ranking
r ∈ R(t) where r(i) = 1 for each i ∈W . The payoff of a player i ∈M is

πi(x) =
∑
W∈Wi

p(W,x)v1 − xi

where Wi is the set of all W ∈ W where i ∈ W . Assume f increasing, concave
and twice differentiable. By Proposition 5.1 the probability of a ranking where a
player i ∈M is ranked first is increasing and concave in xi. Then, player i’s payoff is
concave in xi and an interior best reply is identified by the first order condition

∑
W∈Wi

∂

∂xi
p(W,x)v1 = 1 .

It can be shown that for any f where f(0)/f ′(0) < k(m− k)v1/m
2 there exists

a symmetric interior equilibrium where the effort of each player i ∈ M is such
that

f(x∗i )

f ′(x∗i )
=
k(m− k)v1

m2
(11)
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It is easy to verify that the RHS of (10) is always larger than the RHS of (11), hence
the single-winner grand contest always induces higher efforts than the multi-winner
grand contest. Moreover, as m = n · k, the RHS of (11) is equal to the RHS of
(9), hence the multi-winner grand contest induces the same efforts as the separated
single-winner contests. Corollary 6.1 summarizes the results.

Corollary 6.1 Suppose f is increasing, concave and twice differentiable. For some
f , there exists an equilibrium of the multi-winner grand contest such that the efforts
in the multi-winner grand contest are equal to the ones in the unique equilibrium of
the single-winner contests. Moreover, in the unique equilibrium of the single-winner
grand contest efforts are larger than in the equilibrium of the multi-winner grand
contest.

�

Proof of the second point of Proposition 5.3

Consider a strict-ranking contest. If there exists an interior equilibrium, the best
reply of each player i ∈ N is identified by the first order condition

n∑
l=1

∑
r∈Ri,l(t)

∂

∂xi
[p(r, x)] vl = 1 .

If the equilibrium is symmetric, the equilibrium effort x∗i of each player i ∈ N is
such that

f(x∗i )

f ′(x∗i )
=

1

n

n∑
l=1

[
l̄ − l

]
vl (12)

where l̄ = 1/n
∑n

l=1 l is the average level. Notice that, by Gauss formula, l̄ is equal
to (n+ 1)/2, hence (12) can also be written as

f(x∗i )

f ′(x∗i )
=

(n+ 1)

2
v̄ − 1

n

n∑
l=1

lvl

where v̄ = 1/n
∑n

l=1 vl is the average prize. As f is increasing and concave, the LHS
of (12) is always increasing in x∗i . The RHS of (12) is a weighted average of the
prizes. Notice that the weight of prize vl is positive if and only if l is smaller than
the average level l̄. Then, given a prize profile (vl)l∈N , increasing a prize vl induces
higher efforts if and only if l < l̄.

Notice that in the RHS of (12) the weight of a prize vl is always larger that the weight
of vl+1 for any l < n. Then, given a limited budget

∑
l∈N vl ≤ V , equilibrium efforts

are maximized by giving a unique large first prize v1 = V . By (12), if v1 = V ,
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each player exerts effort such that f(x∗i )/f
′(x∗i ) = (n− 1)V /(2n). Consider the

single-winner contest which gives a unique prize V to the winner. It is easy to
verify that in a symmetric interior equilibrium this contest induces efforts such that
f(x∗i )/f

′(x∗i ) = (n− 1)V /n2. It follows that, in a symmetric interior equilibrium,
the strict ranking contest with v1 = V always induces higher efforts than the single-
winner contest with prize V . Corollary 6.2 summarizes the results.

Corollary 6.2 Suppose f is increasing, concave and twice differentiable. If a sym-
metric interior equilibrium exists, the equilibrium efforts are as in (12) and

1. given a prize profile (vl)l∈N , increasing vl induces higher efforts if and only if
l < (n+ 1)/2 for any l ∈ N ;

2. given a budget
∑

l∈N vl ≤ V , equilibrium efforts are maximized by the prize
profile v1 = V and vl = 0 for all l ≥ 2. These efforts are higher than the ones
induced in the symmetric interior equilibrium of the single-winner contest with
prize V .

Let us see an example where the effort profile in Corollary 6.2 is an equilibrium. Let
N = {1, 2, 3}. The set of possible outcomes is

R(t) = {(1; 2; 3), (1; 3; 2), (2; 1; 3), (2; 3; 1), (3; 1; 2), (3; 2; 1)} .

Without loss of generality, suppose v3 = 0. Player 1’s payoff is

π1(x) = [p((1; 2; 3), x) + p(1; 3; 2), x)] v1 + [p((2; 1; 3), x) + p(3; 1; 2), x)] v2 − x1

and similarly defined for other players. By (12) we know that, if a symmetric interior
equilibrium exists for some f , equilibrium efforts are such that f(x∗i )/f

′(x∗i ) = v1/3
for all i ∈ N , rankings’ probabilities are p(r, x∗) = 1/6 for all r ∈ R(t) and each
player i ∈ N ’s expected level in the outcome is ρ(i, x∗) = 2. Take any f where
f(0)/f ′(0) < v1/3. By Proposition 5.1, for any x ∈ X, r ∈ R(t) and i ∈ N , the
probability p(r, x) is increasing in xi if and only if r(i) is smaller than ρ(i, x). Then,
for any r ∈ R(t) and i ∈ N , the probability p(r, x) valued at x∗ is increasing in xi
if r(i) > 2 and constant if r(i) = 2. Moreover, for any r ∈ R(t) and i ∈ N one can
show that the probability p(r, x) valuated at at x∗ is concave in xi if r(i) ≤ 2. Then,
for any r ∈ R(t) and i ∈ N , the probability p(r, x) valued at at x∗ is increasing
and concave in xi if r(i) = 1 and constant and concave in xi if r(i) = 2. It follows
that player i’s payoff at x∗ is concave in xi, and x∗ is an equilibrium for some f .
Corollary 6.3 summarizes the results.

Corollary 6.3 For n = 3 the effort profile in Corollary 6.2 is an equilibrium for
some f .

�
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Proof of the first point of Proposition 5.4

Consider a two-stage contest with generic expenditures. If an interior equilibrium
exists, the best reply of each player is identified by a first order condition. In a
symmetric equilibrium, the efforts are such that

f(y∗i )

f ′(y∗i )
=
v1
n

(
2− m

n
− 1

m

)
. (13)

By (15), a one-stage contest with prize v induces efforts such that

f(y∗i )

f ′(y∗i )
=
v1
n

(
1− 1

n

)
. (14)

For any n and m the RHS of (14) is smaller than the RHS of (13). As the LHS of (13)
is increasing in y∗i , any two-stage contest induces higher efforts than the analogous
one-stage contest. Let us find m which maximizes the efforts of a two-stage contest.
It is easy to verify that the RHS of (13) is maximized at (the closest natural number
to) m∗ =

√
n, taking value (approximately)

f(y∗i )

f ′(y∗i )
=

2v1
n

(
1− 1√

n

)
.

Corollary 6.4 summarizes the results.

Corollary 6.4 Suppose f is increasing, concave and twice differentiable. If a sym-
metric interior equilibrium exists, it is such that

1. any two-stage contest induces higher efforts than the analogous one-stage con-
test.

2. the equilibrium efforts are maximized when the contest eliminates (the closest
natural number to) n−

√
n players in stage-1;

Let us show an example where the effort profile described in Corollary 6.4 is an
equilibrium. Consider n = 4 and m =

√
n = 2. Without loss of generality, let

us focus on player 1. The set of all sets of stage-1 winners to which 1 belongs is
Mi = {{1, 2} , {1, 3} , {1, 4}}. The payoff of player 1 is π(y) =

= p ({1, 2} , y) p{1,2}(1, y)v1 + p ({1, 3} , y) p{1,3}(1, y)v1+

+p ({1, 4} , y) p{1,4}(1, y)v1 − y1 .
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The payoff of 1 is concave in y1 if p (M,y) pM (1, y) is concave for any M ∈ Mi. It
is easy to verify that the second derivative of p (M,y) pM (1, y) with respect to y1,
when valuated at a symmetric effort profile, is always negative. Then, player i ∈ N ’s
payoff πi(y) is concave in yi when valuated at y∗. Moreover, one can show that for
any f where f(0)/f ′(0) < v1/4 the effort profile y∗ is an equilibrium.

Corollary 6.5 For n = 4 and m = 2 the effort profile in Corollary 6.4 is an
equilibrium for some f .

�

Proof of the second point of Proposition 5.4

Consider a two-stage contest with contingent expenditures. By results in Proposition
5.1, for any M ∈M a player i ∈M ’s stage-2 payoff is concave in xMi . Then, one can
show that for any f where f(0)/f ′(0) < (m− 1)v/m2 there exists an equilibrium of
stage-2 contest where each player i ∈M exerts effort xM∗i such that

f(xM∗i )

f ′(xM∗i )
=

(m− 1)v1
m2

(15)

and its equilibrium stage-2 payoff is πMi (xM∗) = v1/m
2. By backward induction, a

player i ∈ N ’s stage-1 payoff is

π1i (x
1) =

∑
M∈Mi

∏
i∈M f(x1i )∑

M ′∈M
∏
i∈M ′ f(x1i )

πMi (xM∗)− x1i

whereMi is the set of all M ∈M where i ∈M . It can be shown that, by results in
Proposition 5.1, a player i ∈ N ’s stage-1 payoff is concave in x1i . For any f where
f(0)/f ′(0) < (n−m)v1/(n

2m) there exists an equilibrium where each player i ∈ N
exerts effort x1∗i such that

f(x1∗i )

f ′(x1∗i )
=

(n−m)v1
n2m

. (16)

The sum of all efforts spent by all players in the two stages is nx1∗i +mxM∗i . As this
sum cannot be computed from (15) and (16) for every function f , consider f such
that f(x1i ) = (x1i + β)α, where α ∈ (0, 1] and β > 0. With this functional form the
equilibrium efforts are

x1∗i =
α(n−m)v1

n2m
− β , xM∗i =

α(m− 1)v1
m2

− β (17)

for any i ∈ N and M ∈M and the sum of all efforts is
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α(n− 1)v1
n

− (n+m)β . (18)

Consider a one-stage contest where the n players contend all against all the same
prize v1 > 0. It is easy to verify that the total expenditures in the one-stage contest
are α(n− 1)v/n−nβ, hence always larger than the ones in (18) by the amount m ·β.
Corollary 6.6 summarizes the results.

Corollary 6.6 Suppose f(xi,1) = (x1i + β)α, where α ∈ (0, 1] and β > 0. For some
α and β, there exists an equilibrium of the two-stage contest where

1. total efforts are always lower than the ones of the one-stage contest;

2. the limit of total efforts for β → 0 is equal to total efforts of the one-stage
contest.

�
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