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Abstract

We define and axiomatically characterize a multivariate index of polarization which can
be interpreted as a predictor of social conflict. We consider a distribution of multiple
attributes in a population, such as individual income, age, education, etc. Assuming that
there is some degree of antagonism between each pair of individuals that is determined
by the distance of their attributes, we restrict our attention to a class of measures which
are expressions of the expected antagonism of a randomly matched pair. We character-
ize our polarization index uniquely from this class via two axioms, which respectively
require social conflict to increase when individuals become more extremist, and when ho-
mogeneous groups are formed. We show that our index shares several properties with
well-known polarization measures in the univariate setting, while it differs fundament-
ally from well-known multivariate inequality measures. A natural estimator for our index
takes the form of a second order U-statistic and has well-behaved statistical properties.
We illustrate the distinction between our polarization measure and inequality measures by
analyzing data from the British Household Panel Survey, focusing on income and highest
level of education across England, Wales, Scotland and Northern Ireland.
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1 Introduction

The idea of polarization is pervasive in economics and other social sciences. When one thinks
of a highly polarized distribution, a picture of two large and homogeneous groups opposite to
each other comes to mind. This situation should typically be problematic, inducing tension and
incompatibilities within the population. Although powerful and evocative, to our knowledge
there is no general consensus of what exactly polarization means beyond this idea.

∗PRELIMINARY DRAFT, please do not circulate. We are grateful to Ronny Razin for useful advice and
suggestions, and to Nattavudt Powdthavee for help with the data.
†University of Surrey E-mail: s.srisuma@surrey.ac.uk
‡University of Siegen E-mail: alberto.vesperoni@gmail.com

1



Polarization is inevitably related to inequality, but there are some fundamental differences
between the two concepts. Inequality measurement has a long tradition and it is typically
based on concepts of normative nature, which are often derived from a social welfare function.
(See citations below.) In contrast, the formalization of polarization is relatively recent and
has a strong empirical orientation, which necessarily creates more ambiguities with respect to
a normative approach. In their seminal work Esteban and Ray (1994) put forward a class
of measures that represent a certain average of inter-group differences in a population. They
impose axioms based on empirically motivated conditions of what a polarization measure should
satisfy, and characterize a class of univariate measures that fulfill these axioms. The goal of
this paper is to develop a multivariate index of polarization within this tradition.

A crucial aim of polarization measurement is to predict social conflict. While pure economic
inequality between individuals is a poor predictor of social tension and institutional failure,
there is ample evidence that economic divergences between ethno-cultural groups are a leading
cause of inefficiencies, leading to violent crime (Blau and Blau (1982)), low public good pro-
vision (Baldwin and Huber (2010)) and civil war (Cederman et al. (2011)). In these studies
individuals are partitioned into homogeneous ethno-cultural groups, and measures of inequality
across aggregate incomes are provided. These measures are known as indices of horizontal in-
equality. Within this approach ethno-cultural traits are necessarily categorical, as they are used
to partition the population into groups. Then, by construction, horizontal inequality overlooks
the magnitude of ethno-cultural distances between groups, which is also relevant as argued
in Fearon (2003), Desmet et al. (2012) and Esteban et al. (2012). Moreover, while Fearon
(2003) and Desmet et al. (2012) focus on measures of ethno-cultural inequality, Esteban et al.
(2012) show that the univariate index of polarization of Esteban and Ray (1994) calculated
with ethno-cultural data systematically outperforms inequality measures as predictor of social
conflict.1 The polarization measure of Esteban and Ray (1994) is built as a function of the ex-
pected antagonism between two randomly matched groups. Although similar to the Gini index,
it crucially differs from inequality measurement as it fulfills the typical empirically-motivated
properties of a polarization measure.

We now summarize three crucial lessons from the evidence above. To develop a better predictor
of social conflict one should: (i) define a multivariate measure which focuses on the correlation
across economic and ethno-cultural attributes; (ii) quantify economic as well as ethno-cultural
distances and build the measure so that it can take all these distances into account; (iii) define
the measure so that it is represents the expected antagonism in the population and it satisfies
the typical properties of a polarization measure. We motivate our goal of defining an index of
multivariate polarization following the three lessons above.

We consider a distribution of multiple attributes in a population, such as individual income,
age, education, etc. We assume that there is some degree of antagonism between each pair
of individuals, which is determined by the distance of their attributes. Given this, we restrict
our attention to a class of measures which are expressions of the expected antagonism between
a randomly matched pair. Despite the strong similarity with the framework of Esteban and

1The measure of Esteban and Ray (1994) is extended to accommodate for continuous density functions in
Duclos et al. (2004).
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Ray (1994), we crucially differ from them in that we rule out the effects of group size. As
we extensively explain in Section 2, we do so because groups may encounter collective action
problems. Moreover, taking a neutral attitude towards group size guarantees the uniqueness
of our index. In contrast, Esteban and Ray (1994) characterize a continuum of parametrized
measures which can lead to ambiguous findings in empirical studies.2

In Section 3 we focus on a specific index from our class of measures of expected antagonism,
showing that it is the only index from this class to fulfill two properties (or axioms) which are
strongly linked to the idea of social conflict. The first axiom requires social conflict to increase
when equal amounts of individuals are shifted from the center to each side of a distribution.
In other words conflict should be higher when moderate individuals become more extremist
by “taking sides”. Conversely, the second axiom demands that social conflict should be higher
when groups whose members have perfectly homogeneous attributes are formed, even if some
distances decrease in this process. The intuition is that the antagonism between two individuals
is high if all their attributes are different, while it is low whenever some of their attributes are
alike. From a purely technical view point, the first axiom imposes our index to be weakly
convex and the second axiom to be weakly concave and null at the origin. Then, they jointly
require the index to be linear.

Our axioms are in line with well-established approaches in the literature. We validate our
index as polarization measure in the tradition of Esteban and Ray (1994) in Section 4, where
we show that the index is exclusively maximized by distributions which divide the population
into two homogeneous and equally sized groups with opposite attributes, i.e., by most polarized
distributions. Discussing other properties, we argue that our index is among the conservative
ones in the literature, in the sense that it tends to give a “lower bound” of polarization. At
the same time our framework differs fundamentally from inequality measurement. Multivariate
inequality indices typically satisfy some majorization criteria, such as uniform majorization and
correlation increasing majorization, which are defined to generalize the Pigou-Dalton Transfer
Principle (we refer the reader to Tsui (1999) for further discussion on multivariate inequal-
ity measures). To distinguish our approach from inequality measurement, we show that our
polarization index does not satisfy either of these majorization criteria.

We show in Section 5 that our index has a simple geometrical interpretation. For the case
with two attributes only, the index is proportional to the inner product of the two vectors of
distances of attributes of all pairs of individuals. More generally, the index can be seen as the
length of a vector whose elements are the average distances of all pairs of individuals for each
attribute. In Section 5 we also rewrite our index in terms of density functions, which is useful
for comparisons with related models in the literature. We discuss the univariate polarization
measures in Esteban and Ray (1994), Duclos et al. (2004) and Anderson et al. (2012).3 Then,
we focus on the index in Gigliarano and Mosler (2009), which to our knowledge is the only

2For instance Duclos et al. (2004) rank countries by their extension of the univariate index of Esteban and
Ray (1994) calculated with income data and find that the ranking changes with different permissible parameter
values.

3There are other measures of univariate polarization in the literature, see for instance Wang and Tsui (2000)
and Foster and Wolfson (2010). As argued in Section 5, we focus on Esteban and Ray (1994), Duclos et al.
(2004) and Anderson et al. (2012) as they are the closest to our framework.
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multivariate measure of polarization in the literature. Lastly, we consider the multivariate
inequality index in Koshevoy and Mosler (1997), as it belongs to the same class of measures of
expected antagonism as ours.

We develop an estimator of our index in Section 6 and characterize its statistical properties.
Any index from the class of measures of expected antagonism can be understood as a math-
ematical expectation of some function of differences in attributes of a randomly matched pair
of individuals. If the individuals are drawn from the same distribution, then it is natural to
think of the index as a feature of such distribution. We formalize this idea by modeling the
inference of the index from a random sample of any distribution. We propose to estimate our
polarization measure using a second order U-statistic. We show that our estimator is consistent
and has asymptotic normal distribution under very weak conditions.

In Section 7 we illustrate the distinctions between our polarization index and two well-known
multivariate inequality measures empirically. We use a 7-year dataset from the British House-
hold Panel Survey, and we compute all the three measures with data on individual income and
highest level of education as the relevant attributes. We show that, throughout the time period,
there are systematic differences between the measurement of polarization and inequality across
England, Wales, Scotland and Northern Ireland.

To summarize, the paper develops as follows. In Section 2 we define our class of indices of
expected antagonism, while in Section 3 we take an axiomatic approach to uniquely characterize
an index from this class. In Section 4 we discuss properties of this index which validate it as
a measure of polarization, they set it apart from inequality measurement, and show that it
is a conservative measure of polarization. We consider different representations of this index
in Section 5, focusing on an intuitive geometrical interpretation based on vectors of distances
of attributes. In the same Section we also compare our index with related measures in the
literature. We develop the statistical theory to perform inference from a random sample in
Section 6, while in Section 7 we provide an empirical illustration to highlight the significant
differences between our index and some measures of inequality. Section 8 concludes. All proofs
are in Appendix.

2 Model

Consider a population N = {1, . . . , n} with n ≥ 4. Each individual i ∈ N is associated with
attributes of various types. Let T = {1, . . . , τ} be the set of all types, where τ ≥ 2. For any
individual i ∈ N denote by xti ∈ [0, 1] its attribute of type t ∈ T and xi = (x1i , . . . , x

τ
i ) ∈ [0, 1]τ

its attribute profile. Let xt = (xt1, . . . , x
t
n) ∈ [0, 1]n be the distribution of attributes of type

t ∈ T , and x ∈ [0, 1]τ×n the joint distribution of attributes of all types. Then, an index is
a mapping I : [0, 1]τ×n → [0, 1] where I(x) measures some property of the joint distribution
x ∈ [0, 1]τ×n. We assume that there is a certain degree of antagonism between each pair of
individuals. The antagonism between a pair i, j ∈ N is an increasing function of the distance of
their attributes |xti − xtj| of each type t ∈ T . The mapping p : [0, 1]τ → [0, 1] defines its degree,
where p(|x1i − x1j |, . . . , |xτi − xτj |) is continuous, symmetric, p(0, . . . , 0) = 0 and p(1, . . . , 1) = 1.
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Given this, we require our index to be a measure of expected antagonism, in the sense that it
represents the degree of antagonism between two randomly matched individuals. Then, for any
x ∈ [0, 1]τ×n, the index takes the form

I(x) =
1

n2

n∑
i=1

n∑
j=1

p(|x1i − x1j |, . . . , |xτi − xτj |) for some p. (1)

Our definition of expected antagonism is analogous to the well-known framework of Esteban and
Ray (1994) for the univariate case. See Section 5 for a representation of their index. However,
while we assume that the antagonism between two individuals is exclusively determined by the
distance of their attributes, they additionally require this antagonism to depend on how many
individuals share the same attributes with the two individuals. Their assumption is that, the
larger the group of individuals who share some attribute, the more each member identifies with
the attribute, and therefore the higher the antagonism of each member towards any outsider.
This idea is certainly appealing. However, it is well-known that groups may encounter severe
collective action problems when they mobilize, hence cooperation may be more difficult for
larger groups than for smaller ones. Olson (1965) and Isaac and Walker (1988) are two of
the many contributions which highlight the issue of free-riding in large groups. Given these
contrasting forces, in this work we restrict our measure to take a neutral stance on the subject:
we rule out a priori effects of group size to exclusively focus on antagonism between individuals.
As discussed in Section 4, this minimalistic approach is sufficient to validate our index as a
measure of polarization.

3 Characterization

The restriction in (1) defines a class of multivariate indices which are intuitively linked to social
conflict. In the rest of the article we focus on a particular index from this class, arguing that
it is the only one to fulfill some properties that we motivate to be essential for the notion of
polarization. We shall call these properties axioms.

The following axiom imposes a very natural property of a predictor of social conflict. It requires
the index to increase when equal amounts of individuals are shifted from the center to each
side of a distribution of some type, everything else equal. In other words, social conflict should
increase when some moderate individuals take sides, becoming more extremist.

Axiom 1 Data: Consider x ∈ [0, 1]τ×n which partitions the population into A,B,C ⊆ N such
that |A| ≥ 2 and |B|, |C| ≥ 1. For any i ∈ N and t ∈ T we have xti = µt if i ∈ A, xti = µt−δt/2
if i ∈ B, xti = µt + δt/2 if i ∈ C, where µt, δt ∈ (0, 1). For any t ∈ T , let yt ∈ [0, 1]n be such
that there are D,E ⊆ A with |D|, |E| ≥ 1 such that for all i ∈ N we have yti = µt − δt/2 if
i ∈ B ∪D, yti = µt + δt/2 if i ∈ C ∪ E, yti = xti if i ∈ A\ {D ∪ E}. Statement: For any t ∈ T ,
we have I(x1, . . . , yt, . . . , xτ ) ≥ I(x) if |D| = |E| ≤ |B|+ |C|.
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|A|

µt

|B|

µt − δt/2

|C|

µt + δt/2

Distribution xt for some t ∈ T

|A| − |D ∪ E|
µt

|B ∪D|

µt − δt/2

|C ∪ E|

µt + δt/2

Distribution yt for some t ∈ T

|A|

µs

|B|

µs − δs/2

|C|

µs + δs/2

Distribution xs for all s 6= t

Axiom 1 demands the index to increase when the distribution of some type is changed, taking
all other distributions as given. It is straightforward that, by induction, I(x) should increase
also when all distributions are simultaneously changed, i.e., I(y) ≥ I(x). Given this, one can
see that analogous properties to Axiom 1 are fulfilled by most univariate indices of polarization,
see for instance Esteban and Ray (1994), Duclos et al. (2004) and Anderson et al. (2012). In
this sense, this is perhaps the most characterizing property of a polarization measure.

The next axiom requires that, under very specific circumstances, shifting attributes of some
type closer to each other can increase social conflict. This should be the case when, by doing so,
individuals are partitioned into two groups whose members have perfectly homogeneous attrib-
utes. Then, two contrasting forces are at play, and the gain from the formation of homogeneous
groups should be worth the cost of reducing some distances.

Axiom 2 Data: Consider x ∈ [0, 1]τ×n which partitions the population into A,B,C ⊆ N such
that |A|, |B|, |C| ≥ 1. For any i ∈ N , some t ∈ T and all s 6= t we have xti = µt and xsi = µs
if i ∈ A, xti = µt + δt and xsi = µs + δs if i ∈ B, xti = µt and xsi = µs + δs if i ∈ C, where
µt, δt, µs, δs ∈ (0, 1). For the same t ∈ T , let yt ∈ [0, 1]n be such that for all i ∈ N we have
yti = µt if i ∈ A and yti = µt + δt/2 if i ∈ B ∪ C. Statement: For any t ∈ T , we have
I(x1, . . . , yt, . . . , xτ ) ≥ I(x) if |C| ≥ |B|.
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|A ∪ C|

µt

|B|

µt + δt

Distribution xt for some t ∈ T

|A|

µt

|B ∪ C|

µt + δt/2

Distribution yt for some t ∈ T

|A|

µs

|B ∪ C|

µs + δs

Distribution xs for all s 6= t

Axiom 2 is somewhat related to correlation increasing majorization (CIM), which is a well-
known dominance criterion in the literature on multidimensional inequality. See Section 4
for further details. In short, CIM requires an index to increase when the attributes of two
individuals are rearranged such that they are perfectly positively correlated. While CIM applies
locally, i.e. independently of the rest of the distribution, Axiom 2 has bite only under specific
circumstances which depend on the global properties of the distribution. Then, although both
properties concern the correlation of attributes across types, Axiom 2 is of much weaker nature
than CIM. This is in line with the standard approach in the literature on univariate polarization,
where indices typically fail to fulfill local majorization criteria such as the Pigou-Dalton Transfer
Principle and related concepts. See Esteban and Ray (1994) for a discussion.

To summarize, our axioms focus on two crucial aspects of social conflict. Axiom 1 requires the
index to increase when individuals take sides, in the sense that their attributes take extreme
values rather than central ones. Conversely, Axiom 2 demands social conflict to be related to the
formation of groups which are homogeneous with respect to all types of attributes. The theorem
below characterizes a specific index from our family of measures of expected antagonism via
these two axioms. Note that the functional form of this index is unique, therefore it always
provides unambiguous ranks of distributions by their degree of polarization.
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Theorem 1 A measure of expected antagonism satisfies Axioms 1-2 if and only if for any
x ∈ [0, 1]τ×n it takes the form

I(x) =
1

n2

n∑
i=1

n∑
j=1

∏
t∈T

|xti − xtj|. (2)

The structure of the proof of Theorem 1, which is in Appendix, is straightforward. We briefly
sketch here the role of the axioms in the proof. Given that I(x) must take the form in (1)
for some function p, we show that Axiom 1 requires p to be weakly convex in each of its
arguments. Conversely, Axiom 2 implies that p is weakly concave. Then, as p is both weakly
concave and weakly convex, p is linear. Moreover the axioms jointly require also that I(x) is
null whenever one of its arguments is null, i.e., p(·, 0, ·) = 0. Together with linearity this implies
p(|x1i − x1j |, . . . , |xτi − xτj |) =

∏
t∈T |xti − xtj|, hence I(x) must take the form in (2).

4 Majorization properties

We now discuss a series of properties which, together with Axioms 1-2, should help us to better
understand the nature of our index. Recall that our purpose is to develop a tool to predict
social conflict. Then, one may wonder which distributions maximize the index. Intuitively, these
distributions are “highly polarized”. To give an idea of what a highly polarized distribution
should look like, we quote a passage from Esteban and Ray (1994): “The polarization of a
distribution of individual attributes must exhibit the following basic features. (i) There must be
a high degree of homogeneity within each group. (ii) There must be a high degree of heterogeneity
across groups. (iii) There must be a small number of significantly sized groups.” We follow
their approach closely in our definition below.

A distribution x ∈ [0, 1]τ×n is most polarized if there is a partition of N denoted by {Lx, Rx}
which satisfies the following three conditions.

• |xti − xtj| = 0 for any t ∈ T and pair i, j ∈ N such that i, j ∈ Lx or i, j ∈ Rx.

• |xti − xtj| = 1 for any t ∈ T and pair i, j ∈ N such that i ∈ Lx and j ∈ Rx.

• |Lx| = |Rx| if n is even, and |Lx| = |Rx|+ 1 if n is odd.

Let P ⊆ [0, 1]τ×n be the set of all most polarized distributions. Then, we have x ∈ P if and
only if x partitions the population in two equally sized groups whose members have perfectly
homogeneous attributes, and the distance between the attributes of the two groups is max-
imal. The following proposition argues that P is the set of all maximizers of our index of
polarization.

Proposition 1 A joint distribution x∗ ∈ [0, 1]τ×n maximizes the index in (2) if and only if
x∗ ∈ P .

Note that, if distributions were univariate, P would coincide with the set of maximizers of the
polarization measure in Esteban and Ray (1994). This is somewhat surprising. As discussed
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in Section 2, Esteban and Ray (1994) assume that the antagonism between two individuals
increases in the size of their groups, while our framework rules out a priori effects of group
size. Then, Proposition 1 shows that our minimalistic framework is sufficient to capture the
crucial feature of a polarization measure: to be exclusively maximized at most polarized dis-
tributions.

While validating our index as a measure of polarization, Proposition 1 sets us apart from
inequality measurement, as inequality is typically maximized by distributions where a single
individual detains the highest attributes and all others the lowest.4 To further appreciate
this, we now argue that our index does not satisfy two well-known majorization criteria of
multivariate inequality. These criteria, named uniform majorization (UM) and correlation
increasing majorization (CIM), are alternative generalizations of the Pigou-Dalton Transfer
Principle for the univariate case. UM requires that, for any x, y ∈ [0, 1]τ×n and any bistochastic
matrix B, y = xB implies I(y) < I(x) if and only if y cannot be derived from x by permutation.
To define CIM, we need first to define the concept of correlation increasing transfer. For any
x, y ∈ [0, 1]τ×n, y is derived from x by a correlation increasing transfer if for some i, j ∈ N we
have yk = xk for any k 6= i, j and

yi =
(
min

{
x1i , x

1
j

}
, . . . ,min

{
xτi , x

τ
j

})
,

yj =
(
max

{
x1i , x

1
j

}
, . . . ,max

{
xτi , x

τ
j

})
.

This transfer is said to be strict whenever y 6= x. Given this, CIM demands that, for any
x, y ∈ [0, 1]τ×n, I(y) > I(x) whenever y is derived from x by permutation and a finite sequence
of correlation increasing transfers at least one of which is strict. See Tsui (1999) for further
details. We are now ready to state our result.

Proposition 2 The index in (2) does not satisfy either UM or CIM.

We have shown that our index is maximized only at most polarized distributions, and that it
does not behave like a standard inequality measure. Then, one may wonder to which extent it
is in line with polarization and the related literature. We now argue that our index does not
fulfill a property which is satisfied by the measure of Duclos et al. (2004), but it is violated by
other polarization indices, see for instance Esteban and Ray (1994) and Anderson et al. (2012).5

Roughly speaking, this property requires the index to increase when all distributions are sym-
metrically clustered both on the left and right side of the global median, on the respective local
medians.

Property 1 Data: Consider x ∈ [0, 1]τ×n which partitions the population into A,B,C,D,E ⊆
N such that |A| ≥ 0 and |B| = |C| = |D| = |E| ≥ 1. For any i ∈ N and t ∈ T , let xti = µ if

4See for instance the broad family of inequality measures defined in Tsui (1995) (see Section 7). The
univariate Gini index is an exception, as one can show that it is exclusively maximized at most polarized
distributions. However, this is not generally true for its multivariate versions. See for instance the average of
univariate Gini indices across all types of attributes, 1

n2τ

∑
t∈T

∑
i∈N

∑
j∈N |xti − xtj |.

5These three indices are defined in Section 5. Esteban and Ray (2010) show that an analogous version of
Property 1 is fulfilled by the index in Duclos et al. (2004). Conversely, the index in Esteban and Ray (1994)
does not fulfill Property 1 when the parameter α is small. This easily follows from the arguments in the proof
of Proposition 3 and continuity. Lastly, by construction, it is obvious that the index in Anderson et al. (2012)
violates Property 1.
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i ∈ A, xti = µ− δ−ρ if i ∈ B, xti = µ− δ+ρ if i ∈ C, xti = µ+ δ−ρ if i ∈ D and xti = µ+ δ+ρ
if i ∈ E, where µ, δ, ρ ∈ (0, 1) and δ > ρ. Let y ∈ [0, 1]τ×n be such that for any i ∈ N and t ∈ T
we have xti = µ if i ∈ A, xti = µ − δ if i ∈ B ∪ C and xti = µ + δ if i ∈ D ∪ E. Statement:
I(y) ≥ I(x).

|A|

µ

|B| = . . . = |E|

µ− δ ± ρ µ+ δ ± ρ

Distribution xt for all t ∈ T

|A|

µ

|B|+ |C| =
= |D|+ |E|

µ+ δµ− δ

Distribution yt for all t ∈ T

Proposition 3 The index in (2) does not satisfy Property 1.

One may wonder to which extent our framework violates Property 1. It turns out that a slightly
weaker version is always satisfied by our index. This other property is essentially the same as
Property 1, the only difference being that clustering does not take place on the local medians,
but on marginally more extreme attributes.

Property 2 Data: Let x ∈ [0, 1]τ×n be as in Property 1. Consider y ∈ [0, 1]τ×n such that for
any i ∈ N and t ∈ T we have xti = µ if i ∈ A, xti = µ− δ− ε if i ∈ B ∪C and xti = µ+ δ + ε if
i ∈ D ∪ E, where ε ∈ [0, ρ]. Statement: There exists ε∗ ∈ (0, ρ) such that for all ε ∈ [ε∗, ρ] we
have I(y) ≥ I(x).

|A|

µ

|B| = . . . = |E|

µ− δ ± ρ µ+ δ ± ρ

Distribution xt for all t ∈ T

|A|

µ

|B|+ |C| =
= |D|+ |E|

µ+ δ + εµ− δ − ε

Distribution yt for all t ∈ T

Proposition 4 The index in (2) satisfies Property 2.

Propositions 3 and 4 show that, when clustering on both sides of the global median takes place,
additional shifts towards the extremes are necessary to increase polarization. This suggests
that our index is among the conservative ones in the literature, as it is less sensitive to the
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formation of homogeneous groups than other approaches. In this sense, our index tends to give
a “lower bound” of polarization. This idea is further confirmed by looking at the distributions
which minimize our index. By (2), the antagonism between two individuals is null whenever
their attributes are equal for at least one type, i.e., p(|x1i − x1j |, . . . , |xτi − xτj |) = 0 if and only
if xti = xtj for some t ∈ T . Then, I(x) = 0 for all x ∈ X where for each pair i, j ∈ N there

is a pair-specific type ti,j ∈ T such that x
ti,j
i = x

ti,j
j . Clearly, this is a rather broad set of

distributions.

Let us briefly summarize this Section. We have shown in Proposition 1 that our index is exclus-
ively maximized by most polarized distributions, which is the crucial property of a polarization
measure. On the other hand Proposition 2 shows that the index does not satisfy two well-known
majorization criteria of inequality measurement. Then, our index is a measure of polarization.
The results in Propositions 3 and 4 are useful to locate our framework within the polarization
literature. Together, these two findings suggest that our index is a conservative measure which
gives a lower bound of polarization. This intuition is confirmed by considering the broad set of
minimizers of our index.

5 Alternative representations

The index in (2) is intuitive. As it is stated, it clearly shows its close relation with social conflict.
We now give two alternative representations. The first states the index in geometrical terms,
helping us to better understand its mathematical properties. The second rewrites it with density
functions, which is useful to compare the index with other measures in the literature.

Geometrical representation

For any x ∈ [0, 1]τ×n and t ∈ T , let ∆t
x = (|xt1 − xt2|, . . . , |xtn−1 − xtn|) be the vector of distances

of attributes of all unordered pairs of different individuals, where

||∆t
x||τ =

[
n−1∑
i=1

n∑
j=i+1

(|xti − xtj|)τ
]1/τ

is its τ -norm. (3)

It is easy to verify that, for the bivariate case (τ = 2), the index in (2) is a function of the dot
product of the two vectors ∆1

x and ∆2
x, as it can be written as I(x) = 2

n2 (∆1
x ·∆2

x). Then, by
definition of dot product, for τ = 2 our index takes the form

I(x) =
2

n2
||∆1

x||2||∆2
x||2 cos [θx] ,

where ||∆1
x||2 and ||∆2

x||2 are the Euclidean norms of the vectors ∆1
x and ∆2

x, while θx is the
angle between these two vectors (see Figure 1).

We can write the index as a dot product only for τ = 2. However, an alternative geometrical
representation can be given for all τ ≥ 2. Let γi,jx =

∏
t∈T |xti− xtj|1/τ be the geometric mean of
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all distances of attributes between a pair i, j ∈ N , and Γx = (γ1,2x , . . . , γn−1,nx ) be the vector of
mean distances of all pairs. Then, for any τ ≥ 2, our index can be written as

I(x) =
2

n2
(||Γx||τ )τ .

Then, I(x) is proportional to the length (the τ−norm) of the vector of mean distances Γx. Given
this, it is straightforward that the upper bound of the index is defined by Hölder inequality
(see Finner (1992))

n2I(x)

2
= (||Γx||τ )τ ≤

∏
t∈T

||∆t
x||τ , (4)

which is strict if and only if all vectors ∆t
x are linearly independent.

∆1
x

∆2
x

|x12 − x13|

|x11 − x12|

|x11 − x13|

|x22 − x23|

|x21 − x22|

|x21 − x23|

θx

Figure 1. Graphical representation of the vectors ∆1
x and ∆2

x for the bivariate case. Given
n = 3, x1 = (.1, .9, .6) and x2 = (.6, .9, .1), we have ∆1

x = (.8, .5, .3) and ∆2
x = (.3, .5, .8). Note

that there is an axis for each pair i, j ∈ N , and on such axis we have both |x1i −x1j | and |x2i −x2j |.

Density functions

For any x ∈ [0, 1]τ×n, let fx : [0, 1]τ → [0, 1] assign a fraction of population to each attribute
profile xi ∈ [0, 1]τ according to x, i.e., fx is the density function of individual attributes defined

12



by x. For each attribute profile u ∈ [0, 1]τ , the respective fraction of population is denoted by
fx(u). Then, for any x ∈ [0, 1]τ×n, the index in (2) can be written as

I(x) =

∫
u

∫
v

fx(u)fx(v)
∏
t∈T

|ut − vt|∂u∂v, (5)

where u, v ∈ [0, 1]τ are two generic attribute profiles and ut, vt ∈ [0, 1] are their respective
attributes of type t ∈ T . Given this, we can easily compare our index with other polarization
measures.

We start with the indices in Esteban and Ray (1994) and Duclos et al. (2004) due to the
similarity of their framework to ours. Although they exclusively focus on the univariate case
(τ = 1) which is ruled out in our framework, they can be written in our notation as

Ĩ(x) =

∫
u

∫
v

fx(u)1+αfx(v)|u− v|∂u∂v,

where u ∈ [0, 1] is a generic attribute and α > 0.6 Note that the mathematical expressions of
Ĩ(x) and (5) coincide if and only if τ = 1 and α = 0, which are ruled out. For these parameter
values, both Ĩ(x) and (5) would coincide with the Gini index of inequality.

Among other univariate polarization measures, we wish to focus on the index of Anderson et
al. (2012), as it can be seen as a bivariate measure under some circumstances. To see this,
let τ = 2 and assume that, while attributes of the first type can take any value, attributes
of second type are binary, i.e., x1i ∈ [0, 1] and x2i ∈ {0, 1} for all i ∈ N . Then, the index of
Anderson et al. (2012) can be written as

Î(x) = 1−
∫
u

min {fx(u, 0), fx(u, 1)} ∂u,

where u ∈ [0, 1] is a generic attribute of the first type. Conversely, for this particular case (5)
takes the form

I(x) =

∫
u

∫
v

fx(u, 0)fx(v, 1)|u− v|∂u∂v,

where u, v ∈ [0, 1] are two generic attributes of first type. One can clearly see that (5) and Î(x)
are very different, as Î(x) is not a function of the distances of attributes but only of the density
function.

To our knowledge the only multivariate measure of polarization in the literature is in Gigliarano
and Mosler (2009), which follow a completely different approach than ours. They define a class
of indices which are separable in within-group inequality W (x), between-group inequality B(x)
and homogeneity of group sizes S(x), where the functional forms of W (x), B(x) and S(x) are

6The mathematical expressions of the two indices in Esteban and Ray (1994) and Duclos et al. (2004) are
equivalent, although they fundamentally differ for the nature of the density function fx, which is respectively
discrete and continuous. Moreover, the two indices present different ranges of admissible values of the parameter
α, which are respectively (0, 1.6] and [.25, 1].
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taken from well-known models in the literature. Then, their multivariate polarization index
has the structure

Ǐ(x) = φ(W (x), B(x), S(x)),

where the function φ : R3
+ → [0, 1] is decreasing in W (x), increasing in B(x) and S(x) and

typically non-linear. A crucial aspect of this framework is that if attributes of type t ∈ T are
used to partition of the population into groups, then B(x) and W (x) must be independent of
attributes of type t. This leads to the same limitations of the measures of horizontal inequality
discussed in the introduction. Another noteworthy feature is that, due to the monotonicity in
S(x), their index is always maximized when all groups have equal size, no matter the number
of groups. Then, this index is not maximized at most polarized distributions.

Lastly, we consider the multivariate inequality index developed in Koshevoy and Mosler (1997),
which can be written with our notation as

Ĭ(x) =

∫
u

∫
v

fx(u)fx(v)

[
1

τ 2

∑
t∈T

(ut − vt)2
]1/2

∂u∂v, (6)

where u, v ∈ [0, 1]τ are two generic attribute profiles and ut, vt ∈ [0, 1] are their respective
attributes of type t ∈ T . The index in (6) belongs to the class of measures of expected
antagonism defined in (1), although it does not satisfy our axioms and it is not maximized
at most polarized distributions.7 However, there is a further link with our approach. If we
renormalize Ĭ(x) by the multiplying constant

√
τ , we can write the function p as the power

mean

p(|x1i − x1j |, . . . , |xτi − xτj |) =

[
1

τ

∑
t∈T

(|ut − vt|)r
]1/r

evaluated at r = 2.

Then, taking the limit r → 0 the power mean becomes

p(|x1i − x1j |, . . . , |xτi − xτj |) =

[∏
t∈T

|ut − vt|

]1/τ
,

which is the τ -root of the functional form that p takes in (2).

6 Inference

Let the n individuals described in the previous section to be independent from one another, for
example such as those collected from a survey. Given real data, it will be useful to think of them
as a random sample, {Xi}ni=1, drawn from some population distribution of a τ−dimensional

7The index (6) cannot satisfy our axioms due to the uniqueness of our characterization within the class. To
see that (6) is not maximized at most polarized distributions, consider the simplest case with n = 4 and τ = 2.
Let x ∈ X be such that xt1 = xt2 = 0 for all t ∈ T , and x13 = x23 = x14 = 1. Then, x is most polarized if and only
if x24 = 0. However, it is easy to show that, given the other attributes are fixed, Ĭ(x) is always maximized at
x24 = 1.
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random vector X. Then it is natural to think of polarization as a feature related to the
distribution of X.

For any p : [0, 1]τ → [0, 1], we can analogously interpret the class of polarization measures
in Section 2 to be the expected antagonism between any two randomly matched individuals,
namely:

θ = E
[
p
(∣∣X1 − Y 1

∣∣ , . . . , |Xτ − Y τ |
)]
, (7)

where Y is another random vector that has the same distribution as X, but is independent of
X. This expectation representation of the polarization measure is useful since it encompasses
all types of random variables; continuous, discrete or a mixture. Indeed, from taking the law of
iterated expectation, our definition of polarization from equation (1) equals the quantity above
when the expectation operator is replaced by the empirical expectation operator. Specifically,
let En denote an expectation operator that integrates X and Y by putting a constant measure
of n−1 on {xi}ni=1 and zero everywhere else, then we have

I (x) = En
[
En
[
p
(∣∣X1 − Y 1

∣∣ , . . . , |Xτ − Y τ |
)
|Y
]]
.

We now describe how one can perform inference on θ given a random sample {Xi}ni=1. We
propose a leave-one-out estimator based on the sample counterpart of θ. Let

fn (Xi) =
1

(n− 1)

n∑
j 6=i

p
(∣∣X1

i −X1
j

∣∣ , . . . , ∣∣Xτ
i −Xτ

j

∣∣) .

We define our estimator as:

θn =
1

n

n∑
i=1

fn (Xi) (8)

=
1

n (n− 1)

n∑
i=1

n∑
j 6=i

p
(∣∣X1

i −X1
j

∣∣ , . . . , ∣∣Xτ
i −Xτ

j

∣∣)
=

2

n (n− 1)

n−1∑
i=1

n∑
j=i+1

p
(∣∣X1

i −X1
j

∣∣ , . . . , ∣∣Xτ
i −Xτ

j

∣∣) .
Since p is symmetric in its arguments, the leave-one-out estimator is a standard second order
U-statistic. Our motivation for defining our estimator in the form of a U-statistic is due to the
fact that the latter object has well-established statistical properties (Hoeffding (1948)), and the
omission of the i− th observation in the summand of fn (Xi) makes no difference to the large
sample properties of our estimator asymptotically. The following propositions summarize the
large sample properties of our estimator.

Proposition 5 θn = θ + op (1) .

Proposition 6
√
n (θn − θ)

d→ N (0, σ2) where

σ2 = 4V ar
(
E
[
p
(∣∣X1

i −X1
j

∣∣ , . . . , ∣∣Xτ
i −Xτ

j

∣∣) |Xi

])
.
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Propositions 5 and 6 say that our estimator of the polarization index is consistent, and it
converges to the true at the parametric rate of root-n with a limiting normal distribution.
Since we have the explicit form for the asymptotic variance of θn, this can be estimated by
using its sample counterpart. Note that, for any i 6= j, we have

V ar
(
E
[
p
(∣∣X1

i −X1
j

∣∣ , . . . , ∣∣Xτ
i −Xτ

j

∣∣) |Xi

])
= E

[
E
[
p
(∣∣X1

i −X1
j

∣∣ , . . . , ∣∣Xτ
i −Xτ

j

∣∣) |Xi

]2]− (E [p (∣∣X1
i −X1

j

∣∣ , . . . , ∣∣Xτ
i −Xτ

j

∣∣)])2 .
Let σ2

n denote the estimator of σ2. One natural candidate of σ2
n is the following,

σ2
n =

4

n

n∑
i=1

(
1

n− 1

n∑
j 6=i

p
(∣∣X1

i −X1
j

∣∣ , . . . , ∣∣Xτ
i −Xτ

j

∣∣))2

− 4θ2n. (9)

Our next proposition confirms that σ2
n is a consistent estimator of σ2.

Proposition 7 σ2
n = σ2 + op (1) .

Given this, we can construct confidence intervals and perform hypothesis tests on θ based on
normal approximation. Alternatively the distribution of θn can also be approximated using a
nonparametric bootstrap. See Arcones and Giné (1992) for general results on bootstrapping
U-statistics.

7 Empirical Illustration

In this section we illustrate how polarization and inequality differ across the four countries of
the United Kingdom (England, Wales, Scotland and Northern Ireland) and how they evolve
over time. We use a 7-year annual dataset from the British Household Panel Survey (BHPS)
constituted of individuals interviewed in the years 2002-2009.8 We compute our polarization
measure based on two individual attributes, income and highest education level, and compare
it with multivariate inequality measures based on the same data.

We begin by normalizing our data to take value between zero and one for each country and year.
We construct various indices based on the samples that omit individuals with extreme reported
value of income. The latter is defined as income earning that is more than 20 times higher
or lower than the median income for each country and year. (It seems reasonable to exclude
income values that are zero or negative, as well as individuals reporting very high inccome since
income distributions are known to have thick tails.) The income can then be trivially translated
into a unit interval. We use 7 categories of the highest levels of education recorded in the survey,
consisting of: “Higher Degree”, “1st Degree”, “HND, HNC, Teaching”, “A-Level”, “O-Level”,
“CSE” and “None of these”.9,10 Clearly it not possible to have a universally accepted ordinal

8The dataset is publicly available from https://www.iser.essex.ac.uk/bhps/.
9Higher National Certificates (HNCs), Higher National Diplomas (HNDs) and Teaching qualifications are

work-related, or vocational, higher education qualifications in the United Kingdom.
10The Certificate of Secondary Education (CSE) was an academic qualification awarded between 1965 and

1987 in England, Wales, and Northern Ireland that is comparable to O-Levels.
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ranking of all these qualifications. We correspondingly rank them in the same order recorded
on the survey, and assign value 1 to “Higher Degree” and 0 to “None of these”, with all other
levels of qualification having equidistance with their immediate neighbors.

We construct and compare three indices. We use the leave-one-out estimator to construct the
polarization measure:

θn,SV =
2

n (n− 1)

n−1∑
i=1

n∑
j=i+1

2∏
t=1

∣∣xti − xtj∣∣ .
Given our discussions in Sections 5 and 4, for the purpose of comparison, it seems most natural
to consider the multivariate inequality measures of Tsui (1995) and Koshevoy and Mosler
(1997). The former index takes the form:

θn,T = 1− 1

n

n∑
i=1

2∏
t=1

(
xti

µ (xt)

)1/2

,

where µ (xt) denotes 1
n

∑n
i=1 x

t
i for t = 1, 2.11 The leave-one-out version of the latter index takes

the form:

θn,KM =
2

n (n− 1)

n−1∑
i=1

n∑
j=i+1

[
1

22

2∑
t=1

(xti − xtj)2
]1/2

Table 1 gives the estimates and the standard errors for each index for different countries and
years. The rankings of indices for each year are also reported in the table. All standard errors
are constructed using nonparametric bootstrap. We also computed the standard errors for our
estimators based on the sample counterparts, as suggested in the previous section, and find
they give almost identical values. Table 2 gives the sample sizes used to construct the indices
in Table 1. The percentages of individuals omitted for reporting extreme income levels are also
provided.

[Tables 1 and 2 here]

It is difficult to compare different indices cardinally. Our illustration shall only focus on the
rankings of polarization and inequality indices to highlight the differences across measure con-
cepts (e.g. as has been done in related work, see Duclos et al. (2004)).

Apart from Year 2002/3, our index and Tsui’s measure agree in all years that Northern Ireland
and Wales are the most polarized and the most unequal countries, and that England and
Scotland are the least polarized and the least unequal countries. However, our orderings within
the two groups often do not coincide with Tsui’s. In addition we see high variation in the
ranking of polarization over time. In particular our measure suggests that Wales is more

11A general form for the inequality indices proposed in Tsui (1995) takes the form: 1 −[
1
n

∑n
i=1

∏2
t=1

(
xt
i

µ(xt)

)1/rt]1/(r1+r2)
. The choice of r1, r2 allows users to put different weight on different attrib-

utes. We compute the neutral inequality index where r1 = r2 = 1/2.

17



polarized than Northern Ireland from the samples taken from 2002/3 - 2004/5 and in 2008/9,
whereas the measure of Tsui consistently ranks Northern Ireland as the most unequal country
in the United Kingdom. Assuming that attributes of individuals from different countries are
independent within each year, it is easy to see that the ranking of Northern Ireland and Wales
based on our index statistically differs from the one of Tsui for many of the years. The other
measure, of Koshevoy and Mosler, shows high variation of its ranking over time and it generally
induces different rankings than ours and Tsui’s. For instance, the measure of Koshevoy and
Mosler ranks Scotland and Northern Ireland as the two most unequal countries for all years
apart from 2008/9. Moreover, while our indices and Tsui’s rank Wales as more polarized and
more unequal than Scotland (statistically) for almost every year, the measure of Koshevoy and
Mosler suggests that Scotland is at least as unequal as Wales in all years.

We have also performed analogous comparisons within different subsamples (e.g. splitting
the data by gender) and with other censoring schemes (excluding individuals with more/less
extreme income levels), always finding that the three indices generally induce different rank-
ings.

8 Conclusion

We define an index of polarization for multivariate attributes which is an expression of the
expected antagonism of two randomly matched individuals. We argue our index to be within
the tradition of the seminal work of Esteban and Ray (1994), although we crucially differ from
them as we rule out a priori effects of group size. Ruling out these effects guarantees the
uniqueness of our index. As theirs, our index is always maximized when the population is
divided into two equally sized and homogeneous groups with opposite attributes, which is the
crucial property of polarization measures. We discuss other properties of our index that set it
apart from inequality measurement and close to the polarization literature. We characterize
the large sample properties of the estimator of our index and provide an empirical illustration
to show the statistically significant differences between polarization and inequality.

In this paper we take a neutral stance on the effects of group size. However, a natural question
is how to generalize Esteban and Ray (1994) to a multivariate setting. We believe this approach
to be complementary to ours. Moreover, there are some common issues to this and our approach
which should be tackled. The index in Esteban and Ray (1994) is defined under the assumption
that individual attributes take value in R, as well as our measure and all other indices in the
literature to our knowledge. However, in empirical work it is not always possible to order
attributes from lowest to highest. In such circumstances, as a natural ordering does not exist,
attributes must take value in some broader space than R, and the polarization measure should
be defined accordingly. For instance this issue arises with the linguistic data employed in
Esteban et al. (2012).12 We leave this and other issues to future work.

12To see this, suppose that there are three individuals 1, 2 and 3 which speak languages which are equally
different form each other, so that |xti−xtj | = δ for each pair i, j ∈ {1, 2, 3} and some δ > 0. If we impose xti ∈ R,
then |xt1 − xt2| = |xt2 − xt3| = δ necessarily implies |xt1 − xt3| ∈ {0, 2δ}, which is a contradiction. Then, to allow
for |xt1 − xt3| = δ, xti should take value in Rk with k ≥ 2.
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Appendix

Proof of Theorem 1

We want to show that the index in (1) fulfills Axioms 1-2 if and only if it takes the form in
(2), i.e., if and only if p(|x1i − x1j |, . . . , |xτi − xτj |) =

∏
t∈T |xti − xtj|. It is easy to verify that, if

the function p takes this form, the index in (1) fulfills Axioms 1-2. Let us show the converse:
if Axioms 1-2 are satisfied by the index in (1), then p must take such form. Let t ∈ T be any
type. Consider the data of Axiom 2, and let |A| = a, |B| = b and |C| = c for some a, b, c ≥ 1.
Then

n(n− 1)I(x)/2 = abp (δ1, . . . , δτ ) + acp(δ1, . . . , 0, . . . , δτ ) + bcp(0, . . . , δt, . . . , 0) and

n(n− 1)I(x1, . . . , yt, . . . , xτ )/2 = a(b+ c)p (δ1, . . . , δt/2, . . . , δτ ) .

Axiom 2 demands I(x1, . . . , yt, . . . , xτ ) ≥ I(x) if c ≥ b. Assuming c = b this implies

2p (δ1, . . . , δt/2, . . . , δτ )− p (δ1, . . . , δτ ) ≥ p(δ1, . . . , 0, . . . , δτ ) +
c

a
p(0, . . . , δt, . . . , 0). (10)

As the RHS is weakly positive, the LHS must be so. Then, by Jensen inequality p is always
weakly concave in δt. Consider the data of Axiom 1 for the same t. Let |A| = a′, |B| = b′,
|C| = c′, |D| = d′ and |E| = e′ for some a′, b′, c′, d′, e′ ≥ 1 such that a′ ≥ d′ + e′. Then

n(n− 1)I(x)/2 = b′c′p (δ′1, . . . , δ
′
τ ) + a′(b′ + c′)p (δ′1/2, . . . , δ

′
τ/2) ,

while n(n− 1)I(x1, . . . , yt, . . . , xτ )/2 =

= b′c′p (δ′1, . . . , δ
′
τ )+(a′−d′−e′)(b′+c′)p (δ′1/2, . . . , δ

′
τ/2)+(b′e′+c′d′)p (δ′1/2, . . . , δ

′
t, . . . , δ

′
τ/2) +

+e′d′p(0, . . . , δ′t, . . . , 0) + (a′ − d′ − e′)(d′ + e′)p(0 . . . , δ′t/2, . . . , 0).

By Axiom 1, I(x1, . . . , yt, . . . , xτ ) ≥ I(x) if e′ = d′ ≤ b′ + c′. Assuming d′ + e′ = a′ this
implies

d′

(b′ + c′)
p(0, . . . , δ′t, . . . , 0) ≥ 2p (δ′1/2, . . . , δ

′
τ/2)− p (δ′1/2, . . . , δ

′
t, . . . , δ

′
τ/2) . (11)

Let δ′t = δt and δ′s = 2δs for all s 6= t. As d′/(b′ + c′) ≤ 1, both (10) and (11) hold only if

p(0, . . . , δt, . . . , 0) ≥ p(δ1, . . . , 0, . . . , δτ ) +
c

a
p(0, . . . , δt, . . . , 0). (12)

If c ≥ a, (12) must always hold with equality, which implies p(|x1i − x1j |, . . . , |xτi − xτj |) =
0 whenever |xti − xtj| = 0 for some t ∈ T . Given this, it follows by (10) and (11) that

2p (δ1, . . . , δt/2, . . . , δτ )− p (δ1, . . . , δτ ) = 0,

hence p(|x1i − x1j |, . . . , |xτi − xτj |) is linear in |xti − xtj| for any t ∈ T by Jensen inequality. Then,
these results jointly imply p(|x1i − x1j |, . . . , |xτi − xτj |) =

∏
t∈T |xti − xtj|.

�
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Proof of Proposition 1

By (4), it can be shown that y ∈ [0, 1]τ×n maximizes (2) if and only if the following two
conditions are fulfilled: (a) yt ∈ arg max [||∆t

x||] for any t ∈ T , (b) for some s ∈ T and all t 6= s
there is αt > 0 such that |yti − ytj| = αt|ysi − ysj | for any i, j ∈ N . It is easy to verify that
conditions (a) and (b) are always fulfilled if y ∈ P , therefore I is maximized at y ∈ P . Let us
show the converse: if y ∈ [0, 1]τ×n satisfies these conditions, which means that I is maximized
at y, then y ∈ P .

By (3), condition (a) can be written as

yt ∈ arg max

(n−1∑
i=1

n∑
j=i+1

(|xti − xtj|)τ
)1/τ

 for any t ∈ T .

One can show that, for any i ∈ N , ∂ [||∆x||2]/∂xti ≥ 0 if and only if xti ≥
∑n

j=1 x
t
j/n. Then,

the function (
∑n−1

i=1

∑n
j=i+1(|xti−xtj|)τ )1/τ is minimized at xt = (1/2, . . . , 1/2), and it is strictly

increasing (decreasing) in xti if xti > 1/2 (xti < 1/2). It follows that, if y ∈ arg max [||∆x||],
we must have yti ∈ {0, 1} for any i ∈ N and t ∈ T , which implies |yti − ytj| ∈ {0, 1} for any
i, j ∈ N .

We have shown that condition (a) implies |yti − ytj| ∈ {0, 1} for any i, j ∈ N and t ∈ T .
Condition (b) requires all vectors ∆t

x to be linearly dependent, therefore (a) and (b) jointly
imply |yti − ytj| = |ysi − ysj | ∈ {0, 1} for all i, j ∈ N and t, s ∈ T . It follows that y must induce a
partition of the population in two groups G,H ⊆ N such that

(d) |yti − ytj| = 0 for any t ∈ T and pair i, j ∈ N such that i, j ∈ G or i, j ∈ H.

(e) |yti − ytj| = 1 for any t ∈ T and pair i, j ∈ N such that i ∈ G and j ∈ H.

In other words y maximizes I only if it divides the population in two perfectly homogeneous
groups whose attributes are the most distant from each other. Given this, the index must take
value I(y) = 2g(n− g)/[n2], where g = |G|. It is straightforward that I is maximized if and
only if

(f) g = n/2 if n is even and g ∈ {n− 1/2, n+ 1/2} if n is odd.

Condition (f) essentially requires G,H to be equally sized. Then, conditions (d), (e) and (f)
are respectively equivalent to (i), (ii) and (iii), which are the three defining properties of a most
polarized distribution. It follows that y ∈ [0, 1]τ×n maximizes (2) if and only if y ∈ P .

�

Proof of Proposition 2

To see that our index does not fulfill either UM or CIM, it is sufficient to focus on cases with
n = 4 and τ = 2.13 Let x ∈ [0, 1]τ×n be such that x1 = x2 = x3 = x4 = (1/2, 1/2). Consider

13This can be easily shown by “cloning” players 3 and/or 4 and distributions of types 1 and/or 2 in an
opportune fashion.
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another distribution y ∈ [0, 1]τ×n where y1 = (1/2, 0), y2 = (1/2, 1) and y3 = y4 = (1/2, 1/2).
Note that I(y) = I(x) = 0. It is easy to show that, for the bistochastic matrix

B =


1/2 1/2 0 0
1/2 1/2 0 0
0 0 1 0
0 0 0 1

 , we have x = yB.

It follows that the index in (2) does not satisfy UM. Let x ∈ [0, 1]τ×n be such that x1 = (0, 1),
x2 = (1, 0), x3 = (1, 0) and x3 = (0, 1). Consider another distribution y ∈ [0, 1]τ×n where
y1 = (0, 0), y2 = (1, 1), y3 = (1, 0) and y4 = (0, 1). Note that, while x is a most polarized
distribution, y is not, therefore I(y) < I(x). Moreover, as y1 = (min {0, 1} ,min {0, 1}), y2 =
(max {0, 1} ,max {0, 1}) y3 = x3 and y4 = x4, y is derived from x by a single correlation
increasing transfer, which is strict. It follows that the index in (2) does not satisfy CIM.

�

Proof of Proposition 3

Consider the data of Property 1, and let |A| = a ≥ 0 and |B| = . . . = |E| = b ≥ 1. It is
straightforward that n2I(y)/2 = (2b)2(2δ)τ + 4ab(δ)τ , while

n2I(x)/2 = b2 [2(2ρ)τ + (2δ + 2ρ)τ + (2δ − 2ρ)τ + 2(2δ)τ ] + 2ab [(δ + ρ)τ + (δ − ρ)τ ] .

By Property 1 we have I(y) ≥ I(x), which requires[
(2δ)τ − (2δ + 2ρ)τ + (2δ − 2ρ)τ

2

]
+

2a

b

[
(δ)τ − (δ + ρ)τ + (δ − ρ)τ

2

]
≥ (2ρ)τ

2
.

Note that for any τ ≥ 2 the functions (δ)τ and (2δ)τ are strictly convex in δ, therefore the
LHS is strictly negative for any ρ < δ. As the RHS is always positive, our index never fulfills
Property 1.

�

Proof of Proposition 4

Consider the data of Property 2, and let |A| = a ≥ 0 and |B| = . . . = |E| = b ≥ 1. It is easy
to see that, for some ε ∈ [0, ρ], n2I(y)/2 = (2b)2(2δ + 2ε)τ + 4ab(δ + ε)τ , while

n2I(x)/2 = b2 [2(2ρ)τ + (2δ + 2ρ)τ + (2δ − 2ρ)τ + 2(2δ)τ ] + 2ab [(δ + ρ)τ + (δ − ρ)τ ] .

Given ρ < δ, it can be shown that, for ε = ρ, a sufficient condition for I(y) > I(x) is

(2δ + 2ρ)τ − (2δ)τ − (2ρ)τ > 0.

As τ ≥ 2 the function (2δ + 2ρ)τ is strictly convex in 2δ + 2ρ, therefore the LHS is strictly
positive. It follows that, for ε = ρ, we must have I(y) > I(x). By Proposition 3, for ε = 0 we
have I(y) < I(x). Then, by continuity there exists ε∗ ∈ (0, ρ) such that for all ε ∈ [ε∗, ρ] we
have I(y) ≥ I(x), hence our index fulfills Property 2.
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�

Proof of Propositions 5 and 6

Our proof follows from some standard results from the literature of U-statistics (for example see
Chapter 5.3 in Serfling (1980)). The first step is to define the projection of the U-statistic. Let
r (Xi) = E

[
p
(∣∣X1

i −X1
j

∣∣ , . . . , ∣∣Xτ
i −Xτ

j

∣∣) |Xi

]
, then we denote the projection of θn by:

θ̂n =
n∑
i=1

E [θn|Xi]− (n− 1)E [r (Xi)]

= E [r (Xi)] +
2

n

n∑
i=1

(r (Xi)− E [r (Xi)]) .

Since θ = E [r (Xi)], we have

θ̂n − θ =
2

n

n∑
i=1

(r (Xi)− E [r (Xi)]) .

Then following Hoeffding (1948), θn − θ is asymptotically equivalent to θ̂n − θ to the order

Op

(
n−1/2

)
when E

[∣∣p (∣∣X1
i −X1

j

∣∣ , . . . , ∣∣Xτ
i −Xτ

j

∣∣)∣∣2] < ∞. The latter condition trivially

holds since p is bounded above by 1, so that θn = θ̂n + Op

(
n−1/2

)
. Therefore θn − θ can

be approximated by a sum of i.i.d. zero mean variables. Propositions 5 and 6 then follow
immediately from a standard law of large numbers and central limit theorem for i.i.d. variables
respectively.

�

Proof of Proposition 7

Let rn denote the sample counterpart of r, which is defined in the previous proof, so that
rn (Xi) = 1

n−1
∑n

j 6=i p
(∣∣X1

i −X1
j

∣∣ , . . . , ∣∣Xτ
i −Xτ

j

∣∣). We can now write (9) as,

σ2
n =

4

n

n∑
i=1

rn (Xi)
2 − 4θ2n,

and σ2, defined in Proposition 6, can be written as

σ2
n = 4E

[
r (Xi)

2]− 4θ2.

Since θn is consistent, it suffices to show

1

n

n∑
i=1

rn (Xi)
2 = E

[
r (Xi)

2]+ op (1) .
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To this end,

E
[
|rn (Xi)− r (Xi)|2

]
= E [V ar (rn (Xi) |Xi)]

=
1

n− 1
E
[
V ar

(
p
(∣∣X1

i −X1
j

∣∣ , . . . , ∣∣Xτ
i −Xτ

j

∣∣) |Xi

)]
≤ 1

n− 1
E
[∣∣p (∣∣X1

i −X1
j

∣∣ , . . . , ∣∣Xτ
i −Xτ

j

∣∣)∣∣2]
= O

(
n−1
)
.

Therefore E
[
|rn (Xi)− r (Xi)|2

]
= o (1), which implies E

[∣∣rn (Xi)
2 − r (Xi)

2
∣∣] = o (1), and

the required result follows from Markov inequality. The proof then follows from applications of
the continuous mapping theorem.

�
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