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Abstract

A coalition of given size fights climate change by a policy of purchasing fossil

fuel deposits, and it seeks to manipulate the fuel price in its favor. Assuming

that non-signatories are price takers in the fuel market, Harstad (2012) designs

a policy of trading deposits that attains efficiency despite the coalition’s option

to act strategically in the fuel market. The deposit transactions constituting that

policy include the trade of deposits which the non-signatories would have exploited

and the coalition will exploit. The present paper shows that in a proper subset of

economies a simpler policy is (also) efficient that consists of deposit purchases for

preservation only. In these economies the coalition is unable to raise its welfare

above the level in the benchmark case of fuel price taking. In the economies, where

the efficient policy requires deposit transactions for exploitation, the coalition is

better off and the non-signatories are worse off than in case of price taking.
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1 Introduction

During the last decades, scientific evidence has accumulated on severe negative climate

externalities generated by greenhouse gas emissions, notably carbon emissions. Since the Rio

de Janeiro summit of 1992, little progress has been made in international climate negotiations

towards an effective international climate agreement. That gives rise to the questions of what

the chances are of a sub-global climate coalition to reduce carbon emissions efficiently and

which policy instruments are most effective. Climate policies in practice as well as the bulk

of extant theoretical mitigation literature focus on demand-side instruments. If they are

unilateral, such policies cause carbon leakage that curbs the net effectiveness of emissions

reductions and leads to excessive global emissions. The inefficiency aggravates, if countries

set their climate policies strategically by manipulating the terms of trade (e.g. Markusen

1975, Hoel 1994, Copeland 1996).1 Supply-side mitigation policies are much less analyzed.

This paper aims to contribute to the small literature on sub-global supply-side climate

policies.

Specifically, we consider a coalition suffering from climate damage caused by burning

fossil energy, denoted fuel for short. There is an international market for trading (the right

to exploit or preserve) fuel deposits and an international market for fuel. The coalition seeks

to internalize the climate damage by purchasing some of the non-signatories’ deposits for the

purpose to prevent their exploitation. This kind of climate policy follows the pollutee-pays

principle. It is efficient, if all market participants refrain from exerting market power. How-

ever, the efficiency implications are less straightforward under Harstad’s (2012) assumptions

that the deposit prices are subject to bilateral bargaining, that the deposit market clears

prior to the fuel market, and that the coalition has the option to manipulate the fuel price

via the choice of its fuel demand and supply. Our paper adopts this framework and com-

plements Harstad’s investigation of trade in deposits as an efficient instrument of unilateral

climate policy. We focus on the pattern of deposit transactions required by such a policy

and on its impact on the distribution of welfare among the coalition and the non-signatories.

To our knowledge, Bohm (1993) is the first who investigates analytically that kind

of deposit preservation policy. He shows that a special policy mix of deposit purchases

and a fuel-demand cap implements an emissions cap at lower costs than the stand-alone

fuel-demand-cap policy. Asheim (2013) makes the case for deposit purchase policies as a

distributional instrument in a growth model. Harstad (2012) follows Hoel (1994) in consid-

1Environmental demand-side policy is inefficient not only if implemented by a sub-global coalition, but

also if implemented by non-cooperative individual countries (Ludema and Wooton 1994, Copeland and Taylor

1995, Kiyono and Ishikawa 2013) or by signatories of a self-enforcing environmental agreement (Barrrett

1994, Rubio and Ulph 2006, Eichner and Pethig 2013).
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ering a sub-global climate coalition that sets its fuel demand and fuel supply strategically.

He extends Hoel’s (1994) setup by a more elaborate international deposit market and a

sequential structure of the game and finds that trade in deposits may fully internalize the

climate externalities despite the coalition’s option to act strategically in the fuel market.

Eichner and Pethig (2017) apply Harstad’s analytical framework but they replace his de-

posit market of bilateral deals by a market with uniform per-unit price of deposits. They

demonstrate that Harstad’s efficiency result depends on the unconventional structure of his

deposit market by showing that the outcome is inefficient, if the coalition acts strategically

in their deposit market and in the fuel market.

The present paper relates to Harstad (2012) even closer than Eichner and Pethig

(2017), because it takes up his analytical framework including the deposit market concept,

and it seeks to assess the potential, implications, and limits of Harstad’s policy proposal. His

deposit market consists of a set of bilateral trades at prices that may differ between each pair

of traders and the ". . . market clears when there exists no pair of countries that would both

strictly benefit from trading some of their deposits at some price" (Harstad 2012, p. 92).2

Our focus is on that version of Harstad’s (2012) Theorem 1, which presupposes that all non-

signatories are price takers on the fuel market while the coalition has the option to choose

the fuel demand and supply strategically.3 His theorem states that if the deposit market

is in equilibrium, the coalition implements the first best.4 That theorem is remarkable,

because when terms-of-trade manipulations are added to climate externalities, one would

expect an inefficient outcome, as is shown, e.g., by Copeland and Taylor (1995) or Kiyono

and Ishikawa (2013). One would also expect that the deposit transactions, which constitute

Harstad’s efficient policy, exclusively relate to deposits the coalition buys to prevent their

exploitation. Surprisingly, in all but exceptional cases5 the deposit transactions constituting

Harstad’s policy include certain deposits which the seller would have exploited and the buyer

will exploit. For convenience, we refer to that policy as extended deposit policy. Its puzzling

requirement of deposit transactions for exploitation in addition to deposit purchases for

preservation calls for closer inspection.

To get insights into that puzzle we will deviate from Harstad’s (2012) policy design

by investigate the outcome of the game under the assumption that the coalition implements

2"The absence of mutually advantageous bargains is precisely what one means by efficiency" (Usher 1998,

p. 9).
3Harstad (2012) derives efficiency results under different sets of assumptions. Here, we restrict our

attention to the case of price-taking non-signatories, which Harstad (2012, p. 103n.) briefly discusses in his

section on extensions.
4Harstad (2012, p. 104). That result crucially hinges on his assumption that the non-signatories do not

suffer from climate damage. To secure comparability, we stick to this assumption throughout this paper.
5Exceptional cases are those where the fuel market clears without exports and imports.
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what appears to be the natural ’internalization policy’, namely the purchase of deposits

for preservation only. We refer to that policy as deposit preservation policy. Surprisingly,

we identify a significant proper subset of economies beyond the set of exceptional cases

referred to above, in which the deposit preservation policy is efficient. That is, the extended

deposit policy (in Harstad 2012) is sufficient for attaining efficiency in all economies, but it

is not necessary in a non-trivial subset of economies. Harstad (2012) failed to realize that in

some non-trivial subset of economies the coalition has at its disposal a policy that is efficient

without involving deposit transactions for exploitation. Another significant difference relates

to the distribution of welfare among the coalition and the non-signatories. We show that if

the deposit preservation policy is efficient, the welfares of all countries are as in the efficient

Coaseian benchmark case, in which the coalition and the non-signatories take the fuel price

as given. In these economies the coalition is not able to enhance welfare through strategic

action in the fuel market. In all other economies, the extended deposit policy makes the

coalition better off and the non-signatories worse off than in the benchmark case.

The paper is organized as follows. Section 2 briefly presents the model and charac-

terizes the social optimum with deposit trading. The main Section 3 takes up Harstad’s

sequential structure of the game, but analyzes the deposit preservation policy and con-

cludes, as indicated above, that this policy is efficient under certain meaningful conditions.

Section 4 focuses on the modifications of the analysis of Section 3 that are necessary to

replace the deposit preservation policy with the extended deposit policy. We show that in

the latter policy the deposit transactions for exploitation serve the role to offset exactly

the terms-of-trade effect of the coalition’s fuel price manipulation (rather than, as Harstad

(2012) argues, to eliminate fuel exports and imports in all countries). Section 4 also inves-

tigates the distribution of welfares among the coalition and the non-signatories. Section 5

concludes.

2 The model

The basic assumptions. Throughout the paper, we adopt Harstad’s (2012) analytical

framework. There is an economy with two groups of countries, M and N . Group M is a

climate coalition that acts as one agent and all non-signatories are in group N . To ease the

exposition, we restrict our analysis to a representative non-signatory, called country N . It

derives the benefit Bi(yi) from consuming yi units of fuel (with B′

i > 0 and B′′

i < 0) and

produces the quantity xi of fuel from domestic fossil energy deposits. The cost of extracting

is Ci(xi), where C ′

i > 0 and C ′′

i > 0.
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A fossil fuel deposit in the ground is characterized by the amount of fuel it stores and

the costs of extracting that fuel. Country i’s initial endowment of deposits is analytically

captured by a (re)interpretation of the marginal extraction cost function C ′

i. To avoid

lumpiness we assume that each deposit stores a (very small) unit of fuel, and that these

small deposits are ordered according to their extraction costs. That gives us a step function

of increasing extraction costs per deposit. Finally, we apply the real number approximation

and say with some abuse of notation6 that the cost of extracting the (infinitesimally small)

unit of fuel contained in the xth

i deposit is C ′

i(xi). We find it also convenient to denote

country i’s total endowment of deposits by
[
0,∞

[

C′

i

to indicate the link between fuel stored

in the ground and the cost of extracting it. Correspondingly, the cost of extracting all

deposits in some interval
[
x, x]C′

i
⊂

[
0,∞

[

C′

i

is
∫ x

x
C ′

i(x)dx = Ci(x)−Ci(x). Country i is the

initial owner of the deposits
[
0,∞

[

C′

i

. It has the right to extract the fossil fuel stored in its

deposits, but it can also choose to sell that right on an international deposit market. We will

describe that unconventional market in the next section. The market for fuel is standard

and analytically straightforward. Fuel is internationally traded at the uniform price p so

that country i’s representative consumer receives the profit income pxi − Ci(xi) and enjoys

the utility

ui = Bi(yi)− Ci(xi)− p(yi − xi)− δ(i)H (xM + xN ) with δ(i) =

{

1, if i = M,

0, if i = N.
(1)

H (xM + xN) (with H ′ > 0 and H ′′ ≥ 0) is the climate damage suffered by the coalition.

Carbon emissions from burning fossil fuel generate climate damage. Since emissions are

proportional to fuel output and consumption, xi denotes both fuel supply and emissions.

The condition for clearing the fuel market

xM + xN = yM + yN (2)

completes the description of the analytical framework.

Efficiency with tradable deposits. In order to characterize an efficient allocation in

case of tradable deposits, imagine a social planner who takes away from country N ’s initial

deposit endowment
[
0,∞

[

C′

N

all deposits in some interval
[
ξ, ξ

]

C′

N

6= ∅ and transfers them

to the coalition obliging it to preserve the deposits it receives. Then the question arises how

to choose the boundary points ξ and ξ of the interval
[
ξ, ξ

]

C′

N

that maximize global welfare.

Denote the ’number’ of deposits in the interval
[
ξ, ξ

]

C′

N

by zsN := ξ − ξ and the total ’size’

of deposits transferred to the coalition by

zdM = zsN . (3)

6See also Harstad’s (2012, p. 85) definition and explanation.
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The social planner maximizes with respect to xM , yM , yN , zdM , zsN and ξ the Lagrangean

L = BM(yM) +BN(yN)− CM(xM)− CN(ξ − zsN)−H
(
xM + ξ − zdM

)

+λf

(
xM + ξ − zsN − yM − yN

)
+ λz

(
zsN − zdM

)
. (4)

Attach an asterisk superscript to the solution values of (4), restrict attention to interior

solutions and characterize the social optimum by

B′

M(y∗M) = B′

N(y
∗

N), (5a)

B′

i(y
∗

i ) = C ′

i(x
∗

i ) +H ′ (x∗

M + x∗

N ) i = M,N, (5b)

zs∗N = zd∗M = ξ
∗

− ξ∗ = ξ
∗

− x∗

N . (5c)

Equation (5a) represents the rule for efficient fuel consumption. Equation (5b) requires

that the marginal benefit of consuming fuel equals marginal costs, which consist of the

marginal extraction costs and the coalition’s marginal climate damage. (5a) and (5b) imply

production efficiency, formally C ′

M(x∗

M) = C ′

N(x
∗

N ). It is easy to see that the equations (5a)

and (5b) also result from the standard solution of the social planner we obtain when solving

the Lagrangean (4) after setting zsN = 0 and ξ = xN .

3 The policy of purchasing deposits for preservation

Like Harstad (2012) we model purchases and sales of (the right to exploit or preserve)

deposits as transactions in a deposit market. The deposits need not be traded at a uniform

price (per unit) in that market;7 instead, our only requirement - and assumption - is that

the parties select mutually beneficial bilateral deposit trades and agree on how to share

the surplus of these trades among them.8 Since emissions are excessive in the no-policy

scenario, the coalition’s willingness-to-pay is positive for buying and preserving some of those

deposits, which N would have exploited otherwise. In this section, we aim to investigate to

which extent the coalition succeeds in internalizing the climate damage externality imposed

by country N , when it pursues a policy of buying deposits for preservation. Under the

assumption that all parties take the fuel price as given we rightly expect, and will confirm

below, that full internalization - and hence efficiency - is achieved, which is the Coaseian

solution implemented via the pollutee-pays-principle. However, we are primarily interested

in the scenario in which the coalition has the option to exert market power in the fuel market

7For the analysis of a deposit market with a uniform price, see Eichner and Pethig (2017).
8Harstad’s (2012, p. 86) requires in addition that the deposit market ". . . is cleared if and only if there

exists no pair of countries . . . and no price of deposits such that both . . . [countries] strictly benefit from

transferring the right to exploit a deposit . . . at that price."
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via manipulation of the equilibrium fuel price (while country N continues to take the fuel

price as given). Economic intuition suggests that then the solution is inefficient because the

coalition distorts the equilibrium fuel price. However, we will show that this conjecture fails

to be correct for some non-trivial subset of economies.

In the subsequent formal analysis, we adopt Harstad’s (2012) three-stage structure of

the game. The market for deposits clears at stage 1, the coalition determines its fuel supply

and demand at stage 2, and the fuel market clears at stage 3. The coalition analyzes the

game via backward induction as follows.

Stage 3 (Fuel market equilibrium). At stage 3, M has already chosen its fuel supply

and demand, xM and yM . The representative consumer of country N determines its fuel

demand by maximizing with respect to yN

BN(yN)−K(xN , ξ, ξ)− p(yN − xN ) + θ. (6)

In (6) p is the fuel price, K is country N ’s extraction cost function after M bought from N

the deposits in the interval
[
ξ, ξ

]

C′

N

for the purpose to prevent their exploitation, and θ is

N ’s revenue from selling deposits at stage 1. The first-order condition readily yields

B′

N(yN) = p and hence yN = B
′
−1
N (p) =: D (p) , (7)

where B
′
−1
N is the inverse of the marginal benefit function B′

N . Next, consider the fuel supply

of country N , the derivation of which is quite complex because at stage 1 country N sold

the deposits
[
ξ, ξ

]

C′

N

for preservation. The deposit sale at stage 1 changed N ’s endowment

of deposits such that N ’s initial marginal cost function C ′

N turned into the marginal cost

function K ′ defined by

K ′(xN , ξ, ξ) :=

{

C ′

N(xN) for xN ≤ ξ,

C ′

N

(
xN + ξ − ξ

)
for xN ≥ ξ.

(8)

Figure 1 illustrates the marginal cost functions C ′

N and K ′. The straight line 0D is the

graph of C ′

N . After having sold the deposits [ξ, ξ]C′

N
at stage 1, country N ’s marginal cost

function K ′ is represented by the line 0BEF which is constructed as in Harstad’s (2012)

Figure 1. We derive that line from 0D by shifting the line segment CD to the left by the

amount ξ−ξ such that CD becomes EF . Thus, country N ’s endowment of deposits changed

from 0BCD to 0BEF . The function K ′ is discontinuous at x = ξ, as reflected in the gap

BE of the graph 0BEF .
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C ′

N , K
′

xN

C ′

N

(
ξ
)

C ′

N

(
ξ
)

0 ξ ξ

B

E

F

C

D

Figure 1: Marginal cost curves of country N before and after deposit trading [ξ, ξ]C′

N
at

stage 1

The Appendix A shows that maximizing with respect to xN the welfare (6) yields

country N ’s fuel supply function S with the properties

S
(
p, ξ, ξ

)
=







C
′
−1
N (p) for p ≤ C ′

N

(
ξ
)
,

ξ for p ∈ [C ′

N

(
ξ
)
, C ′

N

(
ξ
)
],

C
′
−1
N (p)− ξ + ξ for p ≥ C ′

N

(
ξ
)
.

(9)

The fuel supply function (9) is illustrated by the inverse supply curve 0BEF in Figure 1

that we create by simply assigning the fuel price p to the vertical axis of Figure 1. In view

of (7) and (9), the fuel market clearing condition is

xM + S
(
p, ξ, ξ

)
= yM +D (p) . (10)

Equation (10) yields the equilibrium fuel price as a function of xM , yM , ξ and ξ, all of which

have been determined earlier in the game. We denote that price function by

p = P (xM , yM , ξ, ξ). (11)

Stage 2 (Determination of M ’s fuel supply and demand). The deposits M bought

at stage 1 do not change M ’s initial extraction cost function C ′

M since by presupposition

the coalition pursues a policy of buying deposits for preservation. M chooses its fuel supply

and demand by maximizing with respect to xM and yM its welfare

UM(xM , yM , ξ, ξ) = BM(yM)− CM(xM)− p(yM − xM )−H
[
xM + S

(
p, ξ, ξ

)]
− θ (12)
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subject to (11). The first-order conditions

∂UM

∂yM
= B′

M − p− (yM − xM +H ′S ′)
∂P

∂yM
= 0, (13)

∂UM

∂xM

= −C ′

M + p−H ′ − (yM − xM +H ′S ′)
∂P

∂xM

= 0, (14)

determine M ’s optimal choice of xM and yM as functions of ξ and ξ. We denote the solution

of (13) and (14) by

xM = XM(ξ, ξ) and yM = YM(ξ, ξ). (15)

We consider (15) in (11) and conclude that at stage 2 the equilibrium fuel price depends on

ξ and ξ only,

p = P̂
(
ξ, ξ

)
. (16)

Stage 1 (Deposit market transaction). Since M suffers from climate damage, it has a

positive willingness-to-pay for purchasing some of N ’s deposits to prevent their exploitation.

Suppose M buys the deposits in the interval [x, x]C′

N
. As both countries seek to secure some

share of the gains from trade, it is in their common interest to choose that interval [x, x]C′

N

which yields the largest aggregate welfare gain, or equivalently, which fully internalizes the

coalition’s climate damage. To determine that interval, observe first that M only buys

some of those deposits, country N would have extracted in the absence of deposit trading.

Given the fuel price p, the interval with such profitable deposits is [0, ξ]C′

N
, where ξ =

C
′
−1
N (p) =: ξ (p). Hence M ’s purchase and subsequent preservation of [x, x]C′

N
reduces the

climate damage only if [x, x]C′

N

⊂
[
0, ξ (p)

]

C′

N

. Moreover, the inequality x ≤ ξ (p) must

hold as an equality, because there is no other interval of deposits in
[
0, ξ (p)

]

C′

N

of the

same size as
[
x, ξ (p)

]

C′

N

, whose economic value is smaller than that of
[
x, ξ (p)

]

C′

N

.9 These

considerations make the surplus maximizing trade in deposits equivalent to the choice of x.

To put it differently, we have to determine the number of deposits zdM = zsN = ξ (p)− x the

coalition needs to buy and will buy to internalize fully the climate damage. In the Appendix

A we prove

Lemma 1. Contingent on the fuel price p, the climate damage is fully internalized,

if and only if M purchases the deposits
[
ξ (p) , ξ (p)

]

C′

N

for preservation, where x = ξ (p) is

implicitly defined by ξ = C
′
−1
N (p− λz) and λz = H ′

[
XM

(
ξ, ξ (p)

)
+ ξ

]
.10

9The economic value of the deposits in the interval
[
x, ξ (p)

]

C′

N

is the profit p
[
ξ (p)− x

]
− CN

[
ξ (p)

]
+

CN (x) that would accrue to country N if it would extract and sell the fuel from these deposits instead of

selling the unexploited deposits to M .
10λz is the shadow price of deposits that equals the marginal climate damage when that damage is

internalized.
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According to Lemma 1, the coalition secures full internalization subject to the prevailing

fuel price. However, we cannot conclude from Lemma 1 that the deposit preservation policy

is efficient, because the additional requirement for efficiency is an equilibrium fuel price that

is undistorted. The deposit market is in equilibrium when the countries agree on some price

θ that M pays for purchasing the deposits
[
ξ (p) , ξ (p)

]

C′

N

. Since the set of prices is non-

empty, at which the deal is beneficial for both countries, we assume that the countries do

agree on some mutually advantageous price θ.

C ′

N

p
O2 ξ (p) ξ (p)

C ′

N(xN)

xN

A

B

Dp−H ′

H ′ (xM + xN) C

O1

H ′

ξ (p) ξ (p)
xN

Figure 2: Bargaining over the purchase of deposits

Figure 2 illustrates the deposit market equilibrium characterized in Lemma 1. The

coordinate systems with origin O1 and O2 depict the graph of C ′

N(xN ) and H ′ (xM + xN ), re-

spectively. For given p and H ′(xM+xN), the coalition seeks to buy the deposits
[
ξ (p) , ξ (p)

]

C′

N

from country N . The minimum price country N demands for these deposits is the profits

foregone which equals the triangle Bξξ in Figure 2. The maximum price the coalition is

willing to pay is the area BξξC in Figure 2. The coalition knows that country N does not

sell deposits unless the sales price exceeds the profits it could have made from exploiting

instead of selling the deposits (profits foregone) and N knows that the coalition does not

make a deal if the price exceeds the welfare gain from reduced carbon emissions. A bargain

may be - and will be assumed to be - made at a price above the minimum and below the

maximum, depending on the allocation of bargaining power.

The equations (15), (16) and Lemma 1 demonstrate the interdependence of the markets

for deposits and fuel. Insertion of ξ = ξ (p) and ξ = ξ (p) in p = P̂
(
ξ, ξ

)
yields the
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equilibrium fuel price and thus establishes the equilibrium of the tree-stage game. It remains

to examine the efficiency properties of the outcome. The efficiency condition (5b) is satisfied

for N due to (7) and Lemma 1. In view of (13) and (14), the efficiency conditions (5a) and

(5b) for M are also satisfied, if and only if

(yM − xM +H ′S ′)
∂P

∂yM
= 0. (17)

(17) holds, in turn, if and only if either ∂P
∂yM

= 0 or the bracketed term is is zero. This

observation is of interest, because the condition ∂P
∂yM

= 0 can readily be interpreted as

characterizing the (benchmark) scenario, in which the coalition is a price taker on the fuel

market along with country N . Technically speaking, we capture that special case by dropping

the second stage of the game and by simply setting ∂P
∂yM

= − ∂P
∂xM

= 0 in (13) and (14) to

obtain the efficiency conditions (5a) and (5b).

Proposition 1 . Suppose the coalition implements the climate policy of purchasing

deposits for preservation and assume that country N as well as the coalition take the fuel

price as given. Then the coalition’s policy is efficient.

Proposition 1 presents the well-known efficient Coaseian solution according to the pollutee-

pays principle. Its crucial precondition is that both countries are price takers on the fuel

market. While the absence of fuel market power is a useful benchmark, in the following we

focus on the scenario, in which country N takes the fuel price as given and the coalition acts

strategically on the fuel market.

The case of strategic action in the fuel market is less straightforward. We now assume
∂P
∂yM

= − ∂P
∂xM

> 0 and conclude that (17) is satisfied if and only if

yM − xM +H ′S ′ = 0. (18)

For presentation of the results, which we proved in the Appendix A, it is useful to introduce

the following notation:11

E :=
{

EconomiesE
∣
∣
∣E possesses an allocation

(
x∗

M , x∗

N , y
∗

M , y∗N , z
d∗
M , zs∗N

)
satisfying (5)

}

,

E(=) :=
{

E ∈ E
∣
∣
∣E satisfies x∗

i = y∗i for i = M,N
}

,

ENO :=
{

E ∈ E
∣
∣
∣E satisfies

〈
y∗M − x∗

M > 0
〉

or
〈
y∗M − x∗

M < 0 and y∗M − x∗

M +H
′
∗S

′
∗ < 0

〉}

,

EO :=
{

E ∈ E
∣
∣
∣E satisfies y∗M − x∗

M < 0 and y∗M − x∗

M +H
′
∗S

′
∗ ≥ 0

}

.

11Since the socially optimal allocation is unique, that allocation unambiguously characterizes every indi-

vidual economy.
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Proposition 2 . Suppose the coalition implements the climate policy of purchasing

deposits for preservation and assume that the coalition acts strategically in the fuel market

while country N takes the fuel price as given. Then the equilibrium of the three-stage game

is characterized as follows:

(i) The coalition’s policy is inefficient, if and only if E ∈ ENO.

(ii) The coalition’s policy is efficient, if and only if E ∈ E(=) ∪ EO.

The striking message of Proposition 2 is that the coalition’s strategic action on the fuel

market is non-distortionary in a major subset of economies. It is not surprising, of course,

that the coalition’s deposit preservation policy is efficient in the subset E(=) of economies,

in which the socially optimal fuel exports and imports happen to be zero.12 The interesting

and remarkable result is that the deposit preservation policy is efficient in the non-marginal

subset EO of economies with non-zero socially optimal exports and imports. To get an

intuition for the constraints defining the sets ENO and EO, we investigate how the coalition’s

welfare changes when the fuel cap xM is marginally increased13

dUM =
∂U∗

M

∂xM

dxM := −
(

y∗M − x∗

M +H
′
∗S

′
∗

) ∂P

∂xM

dxM

= − (y∗M − x∗

M )
∂P

∂xM

dxM

︸ ︷︷ ︸

dwF

−
(

H
′
∗S

′
∗

) ∂P

∂xM

dxM

︸ ︷︷ ︸

dwH

. (19)

The term dwF in (19) represents the coalition’s welfare change due to the change of fuel

exports or imports induced by the coalition through the variation of its fuel supply (dxM 6=

0). dwF is the terms of trade effect of strategic action. The term dwH captures the welfare

change due to the change in climate damage which is induced by the coalition through the

variation of its fuel supply (dxM 6= 0). dwH is the climate damage effect of strategic action.

We explain the welfare changes exemplarily for a fuel exporting coalition (y∗M < x∗

M). If

the coalition refrains from strategic action, the fuel supply and the marginal extraction costs

of country N are characterized by point E in Figure 1. To figure out whether strategic action

pays, the coalition marginally increases xM . The consequence is a reduction of the fuel price
(

∂P
∂xM

< 0
)

which yields the negative terms-of-trade effect of strategic action (dwF < 0).

Reducing the fuel price (the movement from point E in the direction of point B in Figure 1)

does not change the fuel supply of country N , formally S ′ = 0 due to p ∈
[
C ′

N

(
ξ
)
, C ′

N

(
ξ
)]

in (9), and hence the climate damage effect of strategic action vanishes (dwH = 0). The total

effect dwF +dwH < 0 shows that increasing xM reduces the coalition’s welfare and strategic

action does not pay. Next, we investigate the welfare effects of reducing the fuel cap xM .

12This condition is satisfied if, but not only if, the economy consists of identical countries.
13The corresponding effects of changes in dyM are listed in Table 1 of the Appendix B.
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Decreasing xM raises the fuel price and the terms-of-trade effect of strategic action is positive

(dwF > 0). Country N increases its fuel supply (S ′ > 0) when the fuel price rises (the

movement from point E in Figure 1 in the direction of point F implies p > C ′

N

(
ξ
)

in (9)).

Thus the climate damage effect dwH is negative. Reducing xM diminishes the coalition’s

welfare, iff dwF + dwH ≤ 0, i.e. iff the negative climate damage effect overcompensates

the positive terms-of-trade effect. To conclude, if y∗M < x∗

M and y∗M − x∗

M +H
′
∗S

′
∗ ≥ 0 or

equivalently if the economy belongs to EO the coalition’s deviation dxM from x∗

M does not

pay. Analogous arguments apply to deviations dyM from y∗M . However, if y∗M < x∗

M and

y∗M − x∗

M +H
′
∗S

′
∗ < 0 strategic action is distortionary and pays.

A detailed analysis of all cases in which the coalition does not export fuel (y∗M ≥ x∗

M )

can be found in the Appendix B. The results are as follows: If the coalition neither imports

nor exports fuel in the social optimum (y∗M = x∗

M), its strategic action is non-distortionary,

because all feasible strategic actions have a zero terms-of-trade effect (dwF = 0) and a

non-positive climate damage effect (dwH ≤ 0). If the coalition imports fuel in the social

optimum (y∗M > x∗

M), its strategic action is distortionary, since decreasing xM has a positive

terms-of-trade effect (dwF > 0) and a zero climate damage effect (dwH = 0).

To understand better the intuition and the economic relevance of the constraints defin-

ing the sets of economies ENO and EO, we consider the parametric functions

Bi(yi) = αyi −
b

2
y2i , Ci(xi) =

ci
2
x2
i , H(xM + xN) = h(xM + xN ) i = M,N, (20)

where α, b, cM , cN and h are positive parameters. It is easy to show (in the Appendix A)

that the efficient allocation is characterized by

y∗M − x∗

M R 0 ⇐⇒ cM R cN and y∗M − x∗

M +H
′
∗S

′
∗ R 0 ⇐⇒ h R h̄, (21)

where h̄ := αcN (cN−cM )
(b+cN )cM+cN

. The equivalences (21) demonstrate that in the parametric model

(20), an economy’s socially optimal allocation
(
x∗

M , x∗

N , y
∗

M , y∗N , z
d∗
M , zs∗N

)
is uniquely deter-

mined by its parameters (α, b, cM , cN , h). Therefore the set of economies

M :=
{

(α, b, cM , cN , h)
∣
∣
〈
cM = cN

〉
∨

〈
cN > cM ∧ h ≥ h̄

〉}

is the parametric equivalent of the set E(=) ∪ EO in the more general non-parametric model.

Invoking (21) and the conditions defining the sets E(=) and EO, we get

Proposition 3 . Suppose the coalition purchases deposits for preservation and acts

strategically on the fuel market while country N takes the fuel price as given. In the game

with the parametric functional forms (20),

the coalition’s policy is

{

efficient

inefficient

}

, if and only if the economyE

{

∈

/∈

}

M.
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The condition
〈
cM = cN

〉
in the definition of the set M makes all countries alike in the

parametric model, and efficiency is the well-known result in the absence of fuel exports and

imports. The other condition
〈
cN > cM ∧ h ≥ h̄

〉
in the set M is more interesting. It

specifies in a straightforward way what is necessary for the deposit preservation policy to be

efficient, if countries are asymmetric. First, the coalition’s extraction costs must be lower

than those of country N , which secures x∗

N < x∗

M and y∗M < x∗

M because of y∗M = y∗N in our

parametric model. Second, the coalition’s marginal climate damage (parameter) must exceed

some threshold value such that the climate damage effect H
′
∗S

′
∗ > 0 overcompensates the

terms-of-trade effect induced by y∗M − x∗

M < 0.

4 An efficient deposit policy in the economies E ∈ ENO

(Harstad 2012)

Section 3 has established that in all economies E ∈ ENO the coalition’s policy of purchas-

ing deposits for preservation distorts the allocation, if the coalition acts strategically in the

deposit market. This section briefly reconstructs the deposit policy suggested by Harstad

(2012) that achieves efficiency in the economies belonging to ENO despite the coalition’s

option to manipulate the fuel price in its own favor. Essentially, Harstad suggests a modifi-

cation of the deposit preservation policy analyzed in the last section. The crucial difference

is that his policy requires not only trade in deposits for preservation, but also some specific

trade in those deposits, which the seller would have exploited and the buyer does exploit.

In the sequel, we go through the three-stage game of the previous section focusing on the

modifications necessary to implement the policy suggested by Harstad. We describe the

implementation for economies in ENO that are characterized by y∗M > x∗

M , and after that we

briefly indicate how an analogous procedure can be applied to those economies in ENO that

satisfy the condition
〈
y∗M − x∗

M < 0 and y∗M − x∗

M +H
′
∗S

′
∗ < 0

〉
.

Stage 3. M and N know that at stage 1 N sold to M the deposits in the interval [ξ, ξ]C′

N

for preservation and the deposits in some interval [χ, χ]C′

N
⊂ [0, ξ]C′

N
for exploitation. M

and N have also agreed at stage 1 that N ’s extraction firm extracts and sells the fuel from

[χ, χ]C′

N
and then transfers the profits p(χ−χ)−

[
CN(χ)− CN(χ)

]
to M . These actions and

decisions at the earlier stages of the game imply that N ’s extraction cost function CN(xN )

turns into the function K(xN , ξ, ξ) (see also (8)) after the deposit sale for preservation at

stage 1. It follows that at stage 3 the representative consumer of country N determines her

13



fuel demand by maximizing with respect to yN her welfare

BN(yN)−K(xN , ξ, ξ)− p(yN − xN ) + θ −
{
p(χ− χ)−

[
CN(χ)− CN(χ)

]}
. (22)

The welfare (22) differs from (6) by the term {·} that represents the profit of selling the

fuel from the deposits [χ, χ]C′

N
, which N agreed to transfer to M . Although the trade in

deposits differs from that in the last section, the conclusions at stage 3 about N ’s demand

and supply of fuel and about the fuel market equilibrium remain unchanged.

Stage 2. Next we investigate how M determines its fuel supply and demand at stage 2. As

described above, M bought the deposits [ξ, ξ]C′

N
for preservation and the deposits [χ, χ]C′

N

for exploitation. Since M ’delegated’ the extraction and sale of the fuel from the deposits

[χ, χ]C′

N
to N ’s extraction firm, M ’s deposit purchases at stage 1 do not change its initial

extraction cost function CM . However, M ’s welfare is now given by

UM (·) = BM(yM)− CM(xM )− p(yM − xM )−H
[
xM + S(p, ξ, ξ)

]
− θ

+
{
p(χ− χ)−

[
CN(χ)− CN(χ)

]}
, (23)

which differs from (12) by the profit transfer p(χ− χ)−
[
CN(χ)− CN (χ)

]
that M receives

from N . M chooses its fuel supply and demand by maximizing with respect to xM and yM

its welfare (23) subject to (11). The first-order conditions are

∂UM

∂yM
= B′

M − p−
[
(yM − xM )− (χ− χ) +H ′S ′

] ∂P

∂yM
= 0, (24)

∂UM

∂xM

= −C ′

M + p−H ′ −
[
(yM − xM )− (χ− χ) +H ′S ′

] ∂P

∂xM

= 0. (25)

The conditions (24) and (25) differ significantly from (13) and (14), and this difference will

turn out to be crucial.14

Stage 1. Finally, we have to investigate how the deposit market clears at stage 1. All

considerations regarding the deposits [ξ, ξ]C′

N
that M seeks to purchase for preservation, in

particular Lemma 1, remain unchanged. In addition to their actions at the stage 1 in the

last section, M and N must now reach an agreement (i) on the size of the interval [χ, χ]C′

N
,

and (ii) on the total price θ of the package deal of transferring the ownership of the deposits

[ξ, ξ]C′

N
and [χ, χ]C′

N
from N to M .15 Observe first that whatever interval [χ, χ]C′

N
⊂ [0, ξ]C′

N

14The first-order conditions (6) and (7) in Harstad (2012, p. 88) are equivalent to our conditions (13)

and (14), which we proved to characterize the deposit preservation policy. Thus, they deviate from the

first-order conditions (24) and (25), which we proved to characterize Harstad’s extended deposit policy.
15We easily verify that mutually beneficial deals exist as follows. Let θo be the price M and N agreed

upon in the game of the last section and suppose that M pays N for the package the price θo plus the profits

foregone of extracting and selling the deposits [χ, χ]C′

N
. That deal clearly makes both countries better off.
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is chosen, there exist prices θ for the package deal that are strictly beneficial for M and

N . We assume that some mutually beneficial price is chosen, and we will be more specific

about that price below. The interesting and decisive issue is the agreement on the size of

the interval [χ, χ]C′

N
, because according to (24) and (25) the choice of χ− χ influences M ’s

incentive to manipulate the fuel price. In the Appendix A we prove

Lemma 2. Suppose, at stage 1 of the game M and N agree on the package deal of

selling/buying [ξ, ξ]C′

N
for preservation and [χ, χ]C′

N
with χ− χ = y∗M − x∗

M for exploitation.

Then the outcome of the game is efficient.

The intuition of Lemma 2 is clear. As the comparison of (13), (14) with (24), (25) shows,

in both policies strategic action generates a terms-of-trade effect and a climate-damage

effect that are specified in (19). When the extended deposit policy is applied, we have the

additional effect
(
χ− χ

)
∂P
∂yM

generated by the transfer of profits. The profit-transfer effect

and the terms-of-trade effect work in opposite directions, and by design the extended deposit

policy chooses the size of the interval of deposits for exploitation such that the associated

profit-transfer effect exactly offsets the terms-of-trade effect.16

In the preceding analysis we focused on an economy in ENO that satisfies the condition

y∗M > x∗

M . There is another subset of economies in ENO that is characterized by y∗M < x∗

M .

We can modify the extended deposit policy described above such that it achieves an efficient

outcome for all E ∈ ENO satisfying y∗M < x∗

M as well. To that end, we specify the deposits for

preservation as before, but let the coalition sell some of its profitable deposits to country N

(rather than let it buy some profitable deposits from N). Specifically, if M sells the deposits

in an interval [χ, χ]C′

M
⊂ [0, x∗

M ]C′

M
of size χ − χ = x∗

M − y∗M , it is then straightforward to

prove along the lines of Lemma 2 that the outcome of the three-stage game is efficient. We

summarize the results in

Proposition 4 (Harstad 2012, Theorem 1).17

Consider the following extended deposit policy. The coalition buys from country N for

preservation those highest-cost profitable deposits, which internalize the climate damage for

any given fuel price, as in the deposit preservation policy of Section 3. In addition, the

coalition and country N trade profitable deposits for exploitation such that

- either N sells the deposits in an interval [χ, χ]C′

N
of size χ−χ = y∗M −x∗

M , if y∗M > x∗

M

16Harstad (2012, p. 92) incorrectly argues that if ". . . M buys a small deposit from i, which is such that

any owner would exploit it . . ., then M imports less afterward". Socially optimal fuel imports and exports

are not affected by any trade in deposits.
17Some remarks to the exact relation of Proposition 4 and Harstad’s (2012) Theorem 1 can be found in

the Appendix B.
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- or M sells the deposits in an interval [χ, χ]C′

M
of size χ− χ = x∗

M − y∗M , if x∗

M > y∗M .

The outcome of the three-stage game with the extended deposit policy is efficient.

Proposition 4 reconstructs Harstad’s (2012) Theorem 1 and covers all economies in the set

E as does Harstad’s theorem. However, in contrast to Harstad we showed in the previous

section that the deposit preservation policy is efficient in all economies E ∈ E(=)∪EO without

trade in deposits for exploitation and hence without the extension that is constituent for

Proposition 4. Consequently, the extended deposit policy removes an allocative distortion

in the economies in ENO only, and therefore its application is unnecessary in the economies

E ∈ E(=) ∪ EO. We conclude that trade in deposits can be an efficient climate policy

instrument in all economies E ∈ E . In the economies E ∈ E(=) ∪ EO, efficiency is attained

by a policy involving only trade in deposits for preservation as specified in Proposition

2(ii). In the economies E ∈ ENO, efficiency requires applying the extended deposit policy of

Proposition 4.

The preceding analysis suggests to apply the deposit preservation policy in the economies

E ∈ E(=) ∪ EO and the extended deposit policy in the economies E ∈ ENO. We have shown

above that both policies then secure efficiency but that they differ with respect to the de-

posit transactions they require. Since efficiency may go along with different distributions of

welfares between the coalition and the country N , it is interesting to investigate whether or

how the welfare implications of the two policies differ. That question can be conveniently

investigated by means of Figure 3. The origin 0 in Figure 3 corresponds to the (normalized)

welfares of M and N in the no-policy regime and the negatively sloped straight line WW

is the welfare frontier. If M and N are price takers in the fuel market in any E ∈ E , M ’s

deposit preservation policy shifts the welfares (UM , UN) from the origin 0 to some point on

the welfare frontier18 such as the point D. Taking the point D as a benchmark, we now

distinguish three different cases.

(i) Suppose first that M implements the deposit preservation policy with the option to

manipulate the fuel price in an economy in E(=) ∪ EO. According to Proposition 2(ii) M is

not able in that case to raise its welfare by manipulating the fuel price above the level it

enjoys as a fuel price taker. Hence, in all economies E ∈ E(=) ∪ EO the welfares of M and

N are the same as in case of price taking. That is, the point D in Figure 3 is attained in

all E ∈ E(=) ∪ EO without and with the option to act strategically, because terms-of-trade

manipulations are ineffective.

18The position of the point D on the welfare frontier depends on how M and N share the surplus from

the trade in deposits. For more details we refer to Figure 4 of the Appendix B.
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Figure 3: Welfare implications

(ii) Consider next an economy in ENO in which M implements the deposit preservation

policy with the option to manipulate the fuel price. According to Proposition 2(i), now M

is able to raise its welfare above the ’price-taking level’ via its choice of fuel demand and

supply. Since the outcome is inefficient, the result corresponds to a point such as the point

E in Figure 3 below the welfare frontier. The move from D to E is welfare increasing for

the coalition, welfare reducing for country N , and it is wasteful.

(iii) Finally, consider an economy in ENO in which M implements the extended deposit

policy with the option to manipulate the fuel price. According to Proposition 4 the extended

deposit policy is efficient in all economies E ∈ ENO. Hence, some point on the welfare frontier

is realized in Figure 3. However, this point must differ from the point D for the following

reason. The extended deposit policy requires M to buy or sell some deposits for exploitation

in addition to purchasing the same deposits for preservation as in the deposit preservation

policy of Proposition 2. Hence, the coalition rejects all those proposals of sharing the gains

from implementing the extended deposit policy, which make it worse off than it would be

in the point E in Figure 3. In other words, the point E is M ’s threat point. Country N is

aware of the coalition’s strong bargaining power and therefore it knows that M would only

agree to implement the extended deposit policy if M ’s share of the surplus is so large that a

welfare point on the line segment FF is attained in Figure 3. Since there are deals (i.e. all

points on the line segment FF excluding the boundary points) that make M and N strictly
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better off under the extended deposit policy than under the deposit preservation policy (in

point E), they will agree on the former.

We summarize these results as follows.

Proposition 5 .

(i) Suppose country N takes the fuel price as given, the coalition has the option to act

strategically in the fuel market, and the deposit preservation policy is implemented

in an economy belonging to the set E(=) ∪ EO (Proposition 2(ii)). Then the welfare of

the coalition and of country N does not differ from the level they enjoy when both of

them take the fuel price as given.19

(ii) Suppose country N takes the fuel price as given, the coalition has the option to act

strategically in the fuel market, and the extended deposit policy is implemented in

an economy belonging to the set ENO (Proposition 4). Then the welfare of the coalition

and of country N differs from the levels they enjoy when both of them act as price

takers in the fuel market. Compared to the price taking case, the welfare of country N

is smaller and the coalition’s welfare is larger.

The difference in the welfare implications of efficient deposit policies stated in Proposition 5

is remarkable. If we relate the coalition’s option to act strategically in the fuel market to the

notion of market power in the fuel market, we may interpret Proposition 5 as follows. Under

the conditions of Proposition 5(i), the coalition is not able to translate the option to act

strategically into market power. In contrast, under the conditions of Proposition 5(ii) the

option of strategic action gives the coalition market power. However, the coalition does not

use that power to enhance its welfare by distorting the allocation, as the standard analysis

of market power would suggest. Instead, here the market power is non-distortionary, but it

shows up in the coalition’s welfare gain that is even larger than it would be, if the coalition

would use its strategic action to manipulate the terms-of-trade in its favor.

5 Concluding remarks

While most analytical studies on fighting climate change with demand-side policies are quite

pessimistic with respect to international cooperation and the effectiveness of (sub-global)

climate agreements, Harstad’s (2012) message is that the perfect solution to the climate

problem is a supply-side policy that consists of a set of transactions in an international

19Comparability requires assuming that the distribution of the trade surplus that M and N agree upon

is the same in both scenarios.

18



market for fossil energy deposits. In general, the policy he suggests requires the coalition not

only to buy deposits to prevent their exploitation, but also to buy or sell certain deposits that

will then be exploited. Such an ’extended deposit policy’ secures the first-best allocation,

and more surprisingly, it does so even if a sub-global climate coalition is able to manipulate

the fuel price.

The motivation for and the aim of the present paper is to understand better and to

complement Harstad’s ’extended deposit policy’. To that end, we investigate the outcome

of the game under the assumption that the coalition applies what appears to be the natu-

ral internalization policy, namely that it purchases deposits exclusively for the purpose to

prevent their exploitation (deposit preservation policy). The surprising result is that the

deposit preservation policy is efficient in a non-trivial proper subset of economies. That

is, the extended deposit policy is sufficient for attaining efficiency in all economies, but it

is not necessary in a significant subset of economies. Another important difference relates

to the distribution of welfare among the coalition and the non-signatories. If the deposit

preservation policy is efficient, the welfares of all countries are as in the efficient Coaseian

benchmark case, in which all countries take the fuel price as given. In the economies, in

which the deposit preservation policy is inefficient, the (efficient) extended deposit policy

makes the coalition better off and the non-signatories worse off than in the benchmark case.

The game model is based on a number of restrictive assumptions that may limit its

relevance as a guide for policy. First, the assumption that only a subset of countries, called

the coalition, suffers from climate damage is a simplification that is not harmless because

it is unclear whether or how the first-best can be attained via an international market for

deposits without that assumption. Second, even if one accepts that only the members of the

sub-global coalition suffer from climate damage, the assumption that the coalition acts as

one agent is strong. Essentially, it expresses a Coaseian optimism with respect to reaching

an agreement on the distribution of costs and benefits among all signatories. Not least, the

market power on the fuel market is asymmetric since the coalition has the option to act

strategically, whereas the non-signatories take the fuel price as given. One may question the

plausibility of such asymmetric fuel market power, when at the same time non-signatories are

supposed to exert bargaining power in the deposit market in their deals with the coalition.
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Appendix

Appendix A: Proofs

Derivation of (9):

Maximizing (6) with respect to xN yields

K ′(xN , ξ, ξ) = p.

Suppose that xN ≤ ξ, then we obtain

C ′

N(xN ) = p ⇐⇒ xN = C
′
−1
N (p) .

Suppose that xN ≥ ξ, then we get

C ′

N

(
xN + ξ − ξ

)
= p ⇐⇒ xN = C

′
−1
N (p)− ξ + ξ.

�

Proof of Lemma 1:

The coalition chooses that value of zdM and the lumpsum transfer θ under consideration of

zdM = zsN which maximizes its welfare subject to some given welfare ūN of N . In formal

terms, it solves the Lagrangean

L(zN , zM , θ) =

BM (yM)− CM

[
XM(ξ, ξ)

]
− p

[
yM −XM(ξ, ξ)

]
−H

[
XM(ξ, ξ) + ξ − zdM

]
− θ

+λN{BN (yN)− CN

(
ξ − zsN

)
− p

(
yN − ξ + zsN

)
+ θ − ūN}+ λz

(
zsN − zdM

)
(A1)

with respect to zdM , zsN , θ, λN and λz for predetermined p, ξ, ξ = ξ (p) = C
′
−1
N (p), yM and

yN . The first-order conditions yield λN = 1,

C ′

N(xN ) = p− λz and hence xN = ξ = ξ (p) := C
′
−1
N (p− λz) (A2)

and λz = H ′
[
XM(ξ, ξ) + ξ

]
. (A3)

�
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Proof of Proposition 2:

The efficiency condition (5b) is satisfied for N due to B′

N(yN) = p from (7) and xN = ξ =

C
′
−1
N (p − H ′), which is equivalent to C ′

N(xN ) + H ′ = p, from Lemma 1. To show that the

efficiency conditions (5a) and (5b) for M do (not) hold, the partial derivatives of (12) with

respect to yM and xM are evaluated at the first-best equilibrium values of the game

∂UM

∂yM

∣
∣
∣
∣
y∗
M

= B
′
∗

M − p∗
︸ ︷︷ ︸

=0

−
(

y∗M − x∗

M +H
′
∗S

′
∗

)

·
∂P

∂yM

∣
∣
∣
∣
y∗
M

, (A4)

where ∂P
∂yM

> 0 and for all i ∈ N

S
′
∗ =

∂S

∂p

∣
∣
∣
∣
p∗

=







S
′
∗

+ > 0, if dp = ∂P
∂yM

dyM
︸︷︷︸

(+)

> 0,

S
′
∗

−
= 0, if dp = ∂P

∂yM
dyM
︸︷︷︸

(−)

< 0,
(A5)

and

∂UM

∂xM

∣
∣
∣
∣
x∗

M

= −C
′
∗

M + p∗ −H
′
∗

︸ ︷︷ ︸

=0

−
(

y∗M − x∗

M +H
′
∗S

′
∗

)

·
∂P

∂xM

∣
∣
∣
∣
x∗

M

, (A6)

where ∂P
∂xM

< 0 and for all i ∈ N

S
′
∗ =

∂S

∂p

∣
∣
∣
∣
p∗

=







S
′
∗

+ > 0, if dp = ∂P
∂xM

dxM
︸︷︷︸

(−)

> 0,

S
′
∗

−
= 0, if dp = ∂P

∂xM

dxM
︸︷︷︸

(+)

< 0.
(A7)

Consider first the marginal welfare (A4) and distinguish the following four cases.

(a) Suppose that y∗M − x∗

M > 0. If dyM > 0, (A5) yields S
′
∗ = S

′
∗

+ > 0 and ∂UM

∂yM

∣
∣
∣
y∗
M

< 0

follows from (A4). Hence dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM < 0. If dyM < 0, (A5) yields S
′
∗ =

S
′
∗

−
= 0 and ∂UM

∂yM

∣
∣
y∗
M

< 0 follows from (A4). Hence dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM > 0.

(b) Suppose that y∗M − x∗

M < 0 and y∗M − x∗

M + H
′
∗S

′
∗

+ < 0. If dyM > 0, (A5) yields

S
′
∗ = S

′
∗

+ and ∂UM

∂yM

∣
∣
∣
y∗
M

> 0 follows from (A4). Hence dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM > 0.

If dyM < 0, (A5) yields S
′
∗ = S

′
∗

−
= 0 and ∂UM

∂yM

∣
∣
∣
y∗
M

> 0 follows from (A4). Hence

dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM < 0.

(c) Suppose that y∗M − x∗

M < 0 and y∗M − x∗

M + H
′
∗S

′
∗

+ ≥ 0. If dyM > 0, (A5) yields

S
′
∗ = S

′
∗

+ > 0 and ∂UM

∂yM

∣
∣
∣
y∗
M

≤ 0 follows from (A4). Hence dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM ≤ 0.
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If dyM < 0, (A5) yields S
′
∗ = S

′
∗

−
= 0 and ∂UM

∂yM

∣
∣
∣
y∗
M

> 0 follows from (A4). Hence

dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM < 0.

(d) Suppose y∗M − x∗

M = 0. If dyM > 0, (A5) yields S
′
∗ = S

′
∗

+ and ∂UM

∂yM

∣
∣
∣
y∗
M

< 0 follows

from (A4). Hence dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM < 0. If dyM < 0, (A5) yields S
′
∗ = S

′
∗

−
and

∂UM

∂yM

∣
∣
∣
y∗
M

= 0 follows from (A4). Hence dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM = 0.

Next we investigate whether variations of xM enhance welfare under the conditions specified

in the cases (c) and (d).

(e) Suppose y∗M − x∗

M < 0 and y∗M − x∗

M +H
′
∗S

′
∗

+ ≥ 0 (as in (c)). If dxM > 0, (A7) yields

S
′
∗ = S

′
∗

−
= 0 and ∂UM

∂xM

∣
∣
∣
x∗

M

< 0 follows from (A6). Hence dUM = ∂UM

∂xM

∣
∣
∣
x∗

M

· dxM < 0.

If dxM < 0, (A7) yields S
′
∗ = S

′
∗

+ > 0 and ∂UM

∂xM

∣
∣
∣
x∗

M

≥ 0 follows from (A6). Hence

dUM = ∂UM

∂xM

∣
∣
∣
x∗

M

· dxM ≤ 0.

(f) Suppose y∗M − x∗

M = 0 (as in (d)). If dxM > 0, (A7) yields S
′
∗ = S

′
∗

−
and ∂UM

∂xM

∣
∣
∣
x∗

M

= 0

follows from (A6). Hence dUM = ∂UM

∂xM

∣
∣
x∗

M

· dxM = 0. If dxM < 0, (A7) yields S
′
∗ = S

′
∗

+

and ∂UM

∂xM

∣
∣
∣
x∗

M

> 0 follows from (A6). Hence dUM = ∂UM

∂xM

∣
∣
∣
x∗

M

· dxM < 0.

In view of (a) - (b), the equilibrium of the three-stage game with the deposit preservation

policy and strategic action on the fuel market is inefficient, if and only if E ∈ ENO.

In view of (c) - (f), the equilibrium of the three-stage game with the deposit preservation

policy and strategic action on the fuel market is efficient, if and only if E ∈ E(=) ∪ EO. �

Proof of Proposition 3:

The efficient allocation follows from solving

α− byM = αbyN , (A8)

α− byM = cMxM + h, (A9)

α− byN = cNxN + h, (A10)

yM + yN = xM + xN , (A11)
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which yields

y∗M = y∗N =
(cM + cN)(α− h)

b(cM + cN ) + 2cMcN
, x∗

M =
2cN(α− h)

b(cM + cN) + 2cMcN
,

x∗

N =
2cM(α− h)

b(cM + cN ) + 2cMcN
. (A12)

From (A12) we infer

y∗M − x∗

M ⋚ 0 ⇐⇒
(α− h)(cM − cN)

b(cM + cN ) + 2cMcN
⋚ 0 ⇐⇒ cM ⋚ cN . (A13)

In addition, observe that

K ′(xN , ξ, ξ) =

{

cNxN for xN ≤ ξ,

cN
(
xN + ξ − ξ

)
for xN ≥ ξ,

(A14)

S(p, ξ, ξ) =







p

cN
for p ≤ cNξ,

ξ for p ∈ [cNξ, cNξ],
p

cN
− ξ + ξ for p ≥ cNξ.

(A15)

Next, we calculate

y∗M − x∗

M +H
′
∗S

′
∗ =

bh(cM + cN) + cN [cM(α+ h)− cN(α− h)]

cN [b(cM + cN ) + 2cMcN ]
=: G(α, b, cM , cN , h),(A16)

where S
′
∗ = 1

cN
for p ≥ cNξ and H

′
∗ = h. Verify that Gh > 0 and

G(α, b, cM , cN , h̄) = 0 ⇐⇒ h̄ =
αcN(cN − cM)

(b+ cN)(cM + cN)
. (A17)

Hence, we conclude

y∗M − x∗

M +H
′
∗S

′
∗ ⋚ 0 ⇐⇒ h ⋚ h̄. (A18)

Making use of (A13) and (A18) in the sets E(=) ∪ EO and ENO establishes Proposition 3. �

Proof of Lemma 2:

The efficiency condition (5b) is satisfied for N due to B′

N(yN) = p from (7) and C ′

N(xN ) +

H ′ = p from Lemma 1. To show that the efficiency conditions (5a) and (5b) for M are

satisfied, the partial derivatives of (23) with respect to yM and xM are evaluated at the

first-best equilibrium values of the game

∂UM

∂yM

∣
∣
∣
∣
y∗
M

= B
′
∗

M − p∗
︸ ︷︷ ︸

=0

−
[

(y∗M − x∗

M)− (χ− χ) +H
′
∗S

′
∗

] ∂P

∂yM

∣
∣
∣
∣
y∗
M

, (A19)

∂UM

∂xM

∣
∣
∣
∣
x∗

M

= −C
′
∗

M + p∗ −H
′
∗

︸ ︷︷ ︸

=0

−
[

(y∗M − x∗

M )− (χ− χ) +H
′
∗S

′
∗

] ∂P

∂xM

∣
∣
∣
∣
x∗

M

. (A20)
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Suppose (y∗M − x∗

M ) = (χ − χ). If dyM > 0, (A5) yields S
′
∗ = S

′
∗

+ and ∂UM

∂yM

∣
∣
∣
y∗
M

< 0 follows

from (A19). Hence dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM < 0. If dyM < 0, (A5) yields S
′
∗ = S

′
∗

−
and

∂UM

∂yM

∣
∣
∣
y∗
M

= 0 follows from (A19). Hence dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM = 0.

If dxM > 0, (A7) yields S
′
∗ = S

′
∗

−
and ∂UM

∂xM

∣
∣
∣
x∗

M

= 0 follows from (A20). Hence dUM =

∂UM

∂xM

∣
∣
x∗

M

· dxM = 0. If dxM < 0, (A7) yields S
′
∗ = S

′
∗

+ and ∂UM

∂xM

∣
∣
∣
x∗

M

> 0 follows from (A20).

Hence dUM = ∂UM

∂xM

∣
∣
∣
x∗

M

· dxM < 0. �

Appendix B

An analysis of (19):

(i) dxM > 0 =⇒ dp = ∂P
∂xM

dxM < 0 =⇒ S
′
∗ = 0

=⇒ dUM =
∂U∗

M

∂xM

dxM =

{

−(y∗M − x∗

M) ∂P
∂xM

dxM ≥ 0, if y∗M ≥ x∗

M

−(y∗M − x∗

M) ∂P
∂xM

dxM < 0, if y∗M < x∗

M

(ii) dxM < 0 =⇒ dp = ∂P
∂xM

dxM > 0 =⇒ S
′
∗ > 0

=⇒ dUM =
∂U∗

M

∂xM

dxM =






−(y∗M − x∗

M )
∂P

∂xM

dxM

︸ ︷︷ ︸

(−,0)

−H
′
∗S

′
∗
∂P

∂xM

dxM

︸ ︷︷ ︸

(−)

≤ 0, if y∗M ≥ x∗

M

−(y∗M − x∗

M )
∂P

∂xM

dxM

︸ ︷︷ ︸

(+)

−H
′
∗S

′
∗
∂P

∂xM

dxM

︸ ︷︷ ︸

(−)

R 0, if y∗M < x∗

M

(iii) dyM > 0 =⇒ dp = ∂P
∂yM

dyM > 0 =⇒ S
′
∗ > 0

=⇒ dUM =
∂U∗

M

∂yM
dyM =







−(y∗M − x∗

M )
∂P

∂yM
dyM

︸ ︷︷ ︸

(−)

−H
′
∗S

′
∗
∂P

∂yM
dyM

︸ ︷︷ ︸

(−)

< 0, if y∗M > x∗

M

−H
′
∗S

′
∗ ∂P
∂yM

dyM < 0, if y∗M = x∗

M

−(y∗M − x∗

M )
∂P

∂yM
dyM

︸ ︷︷ ︸

(+)

−H
′
∗S

′
∗
∂P

∂yM
dyM

︸ ︷︷ ︸

(−)

R 0, if y∗M < x∗

M

(iv) dyM < 0 =⇒ dp = ∂P
∂yM

dyM < 0 =⇒ S
′
∗ = 0

=⇒ dUM =
∂U∗

M

∂yM
dyM =

{

−(y∗M − x∗

M) ∂P
∂yM

dyM ≥ 0, if y∗M ≥ x∗

M

−(y∗M − x∗

M) ∂P
∂yM

dyM < 0, if y∗M < x∗

M

We summarize the results (i)-(iv) in Table 1.

25



y∗M > x∗

M y∗M = x∗

M y∗M < y∗M

dxM > 0 dwF > 0, dwH = 0 dwF = dwH = 0 dwF < 0, dwH = 0

dxM < 0 dwF < 0, dwH < 0 dwF = 0, dwH < 0 dwF > 0, dwH < 0

dyM > 0 dwF < 0, dwH < 0 dwF = 0, dwH < 0 dwF > 0, dwH < 0

dyM < 0 dwF > 0, dwH = 0 dwF = dwH = 0 dwF < 0, dwH = 0

dUM dUM > 0 dUM = 0 dUM R 0

Table 1: Comparative statics of the fuel caps

Our Proposition 4 and Theorem 1 of Harstad (2012)

The proof Harstad (2012) offers for his Theorem 1 is incorrect in two points. First, Harstad’s

first-order conditions (6) and (7) are incorrect. They coincide with our conditions (13) and

(14) but they should equal our first-order conditions (24) and (25). Second, Harstad’s

Lemma 2, which is an indispensable part of his proof of his Theorem 1, is incorrect. Lemma

2 claims that xi = yi for i = M,N in every equilibrium. In our proof of our Proposition 4

we show that neither xi = yi holds in every equilibrium nor is that necessary for reaching

efficiency. The proof of our Proposition 5 demonstrates that the two flaws in Harstad’s proof

can be fixed.

Generalization of Figure 3:

Figure 3 is drawn for a specific distribution of the surplus from trade in deposits. That

surplus may be bargained as explained in the context of Figure 2. Figure 4 generalizes

Figure 3 without changing the principal outcome. The three cases following Figure 3 are

then captured by the three games

Game G(AO): Deposit preservation policy in the economy E ∈ E(=)∪EO (Proposition 2(ii),

case (i))

Game G(ANO): Deposit preservation policy in the economy E ∈ ENO (Proposition 2(i),

case (ii))

Game G(B): Extended deposit policy in the economy E ∈ ENO (Proposition 4, case (iii))

In the game G(AO) the deposit preservation policy leads to the welfare D [D], if all gains

from trade in deposits accrue to the coalition [country N ]. The result of deposit preservation

policy in game G(ANO) is the move from D to E and from D to E, respectively, in Figure

4. Finally, the result of the extended deposit policy in the game G(B) is some point on the

segment FG on the welfare frontier. The closer that equilibrium point is to the point F [G],

26



UM

UN
0

W

W

E

D

45◦

U
A

N

U
A

M

UA
M

UA
N

F

G

D

E

F

Figure 4: Welfare implications of different games

the larger is the climate coalition’s [country N ’s] share of the gains from bargaining. The

associated welfare levels of the three games are listed in Table 2.
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Coalition Country N

Game G(AO)
Best for coalition 1 UM(AO) = U

A

M UN(AO) = UA
N

Worst for coalition 2 UM(AO) = UA
M UN(AO) = U

A

N

Intermediate 3 UM(AO) = UA
M(λ) = λU

A

M + (1− λ)UA
M UN(AO) = UA

N (λ) = λUA
N + (1− λ)U

A

N

Game G(ANO)
Best for coalition 4 UM(ANO) = U

A

M +∆UM UN(ANO) = UA
N −∆UNO

M −∆UNO
N

Worst for coalition 5 UM(ANO) = UA
M +∆Us

M UN(ANO) = U
A

N −∆UNO
M −∆UNO

N

Intermediate 6 UM(ANO) = UA
M(λ) + ∆UNO

M UN (ANO) = UA
N (λ)−∆UNO

M −∆UNO
N

Game G(B)
Best for coalition 7 UM(B) = U

A

M +∆UNO
M +∆UNO

N UN (B) = UA
N −∆UNO

M −∆UNO
N

Worst for coalition 8 UM(B) = UA
M +∆UNO

M UN (B) = U
A

N −∆UNO
M

Intermediate 9 UM(B) = UM(λ) + ∆UNO
M + µ∆UNO

N UN (B) = UA
N(λ)−∆UNO

M + (1− µ)∆UNO
N

Table 2: Welfare implications of three different games in comparison (based on the Figures 3 and 4)

(U
A

M + UA
N = UA

M + U
A

N = first best; λ ∈ [0, 1];µ ∈ [0, 1])
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