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Endogenous Growth with a Ceiling on the Stock of

Pollution

Abstract

The e�ects of an agreement such as the Kyoto Protocol, which imposes a ceiling

on the stock of pollution, have recently been studied in Hotelling models. We

add pollution and a ceiling to the endogenous growth model of Tsur and Zemel

(2005) to study the e�ects of the ceiling on capital accumulation and research

investments. The ceiling a�ects the characteristic lines determining economic

development only in the short run, i.e. an economy with a ceiling follows basi-

cally the same long run development path as an economy without the ceiling.

In the short run, the ceiling imposes an additional scarcity on the exhaustible

resource. That boosts backstop resource utilization, which implies the existence

of more states - described by the capital stock and technology - where research

instead of capital accumulation might be optimal. Thus, depending on its state,

the economy may invest more in R&D and less in capital stock in the short run.

Keywords: Environmental agreements, Fossil fuels, Nonrenewable resources,

Research, Endogenous growth

1. Introduction

Climate change has been one of the major issues both in public and aca-

demic discussion in recent decades. A wide range of nations agreed in the Kyoto

Protocol to limit climate change by meeting a global temperature stabilization

target, which allows for long-run global temperature increase of 2◦C. According

to Graÿl et al. (2003) this target translates into a maximum CO2 concentration

of 400 - 450ppm, while Hansen et al. (2008) advocate a maximum CO2 con-

centration of 350ppm. Regardless of who is right, it is necessary to impose a
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ceiling on the stock of CO2. Those nations that have signed the Kyoto Protocol

agreed that the consequences of climate change remain manageable as long as

the stabilization target, and therefore the ceiling on CO2 concentration, is not

violated. Since other agreements follow a similar approach, e.g. the Montreal

Protocol on Substances that Deplete the Ozone Layer, it seems likely that a

successor of the Kyoto Protocol will include an implicit ceiling on the stock of

CO2. Fossil fuels are one of the main sources of CO2 emissions. Therefore,

agreements such as the Kyoto Protocol might have a signi�cant impact on the

energy generation of the economy.

In the literature the e�ects of a ceiling on the stock of CO2, or more generally

pollution, have recently been examined by Chakravorty et al. (2006a), Chakra-

vorty et al. (2006b), Chakravorty et al. (2008), Chakravorty et al. (2011) and

La�orgue et al. (2008). This literature analyzes how a ceiling on the stock of

pollution changes the optimal resource utilization path. A Hotelling model with

polluting exhaustible resources and a renewable non-polluting resource serves

as the basic framework, which is augmented in several ways. Abatement activ-

ities are considered by Chakravorty et al. (2006a) and La�orgue et al. (2008).

Chakravorty et al. (2008) focus on the consequences of two di�erently polluting

exhaustible resources. Chakravorty et al. (2011) extend the model of Chakra-

vorty et al. (2006a) by technological progress, which is caused by a learning-

by-doing e�ect and decreases the costs of the backstop. It is shown that the

optimal resource utilization path depends on the cost structure established by

the standard assumption of the Hotelling model and the assumption related to

the speci�c augmentation.

Owning to its Hotelling based structure, the literature fails to consider capital

or research activities, which are both determinants of economic growth, struc-

tural change and changes of the energy mix as shown by Tsur and Zemel (2005).

R&D in particular seems to be a non-negligible factor, as it is the driving force

behind a steadily positive growth rate in many endogenous growth models, e.g.
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Rivera-Batiz and Romer (1991).1Therefore, this paper strives to analyze the

e�ects of a ceiling on the stock of pollution in an economy incorporating a pol-

luting exhaustible resource and a backstop as well as capital and research driven

technological progress. For this purpose we augment the suitable endogenous

growth model of Tsur and Zemel (2005) with both pollution and a ceiling on the

stock of pollution. Utilization of the two resources leads to costs. In contrast

to the usual assumption of endogenous growth models, technological progress

does not augment the productivity of resources or capital, but reduces the costs

associated with the use of the backstop. With regard to fossil fuel based en-

ergy generation, the chosen modeling constitutes the more realistic approach.

For clari�cation we refer to Stiglitz (1974). By modifying Solow's neoclassical

growth model, Stiglitz shows that sustainable economic development is compat-

ible with an exhaustible resource, if technology, which enhances the resource's

productivity, increases su�ciently fast.2However, the result rests upon the as-

sumption that a vast amount of goods can be produced by a vanishingly low

amount of resources and su�ciently advanced technology. With regards to ther-

modynamics, such an assumption seems unrealistic if fossil fuels are taken into

account.3Other features from the Hotelling models, such as abatement or dif-

ferently polluting exhaustible resources, are left for further research, in order to

keep the analysis as simple as possible.

In the present paper we show that the social optimum consists of three phases

which appear in the Hotelling models in a similar manner. As in Chakravorty

et al. (2006a), the only possible sequence containing all three phases starts with

a non-binding ceiling which becomes binding later on. After a phase with a bind-

ing ceiling, the ceiling becomes non-binding again and will stay it forever. Thus,

neither capital nor research can explain other sequences. However, research re-

duces the costs of the backstop. As long as the backstop is used, the unit costs

1A comprehensive review of the endogenous growth theory is given by Aghion et al. (1998)
and Barro and Sala-i Martin (2003).

2See Solow (1956).
3Compare Meyer et al. (1998), page 171.
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of the backstop determine the energy price as well as the marginal costs of the

last used unit of exhaustible resources. Technological progress implies there-

fore a reduction of both. Together with changing energy demand, caused by

the variable capital stock, and in contrast to Chakravorty et al. (2006a), the

model can explain a decreasing scarcity rent of the exhaustible resource endoge-

nously. By analyzing the development during the three phases and taking the

only possible sequence into account, we can describe the optimal path of the

economy. The development of the economy depends on its state described by

capital stock and technology in relation to two characteristic lines. The ceiling

a�ects one of the lines in the short run, i.e. in the �rst two phases, resulting in

more capital-technology combinations with the optimality of research instead

of capital accumulation than in an economy without the ceiling. This could

be interpreted as higher incentives for R&D. During the phase with a binding

ceiling these excess incentives are eliminated. In the long run, i.e. in the last

phase, the lines are identical with those of the unconstrained economy of Tsur

and Zemel (2005). Hence, the constrained economy will basically follow the

same long run development path as the unconstrained economy. To sum up,

the model clari�es how the ceiling a�ects capital accumulation and research ac-

tivities and gives an endogenous explanation for decreasing scarcity rents of the

exhaustible resource.

To complete the discussion, we decentralize the social optimum in a competitive

market. The analysis is based upon a neoclassical framework with price-taking

composite product manufacturers and individuals, as well as Cournot competi-

tion on the resource market between two resource owning companies. Neither

the individuals nor the companies take their in�uence on the emission stock into

account. Therefore, the exhaustible resource has to be taxed in the short run.

In the long run, the tax is not needed due to the high scarcity of the resource.

To adjust for market power e�ects resulting from the Cournot competition both

resources must be subsidized at all times.

The outline of the paper is as follows. Section 2 gives a description of the

model. The social optimum is described in section 3. The market economy
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and government interventions necessary for the social optimum are discussed in

section 4. Section 5 concludes the discussion.

2. Model

We augment the endogenous growth model of Tsur and Zemel (2005) with

a pollution stock and a ceiling on the stock of pollution. For that purpose

we describe the model structure of Tsur and Zemel (2005) brie�y.4A single

composite good Y is produced by using capital K and energy x according to

the production function Y = F (K,x), with F (0, x) = F (K, 0) = 0, FK > 0,

Fx > 0, FKK < 0, Fxx < 0, FKx = FxK > 0 and J = FKKFxx − F 2
Kx > 0. To

avoid a collapse of production, the assumptions lim
K→0

FK =∞ and lim
x→0

Fx =∞

are added. Energy is generated by a one to one transformation of an exhaustible

resource R or a backstop b, i.e. x = R+ b. The cost of supplying the resources

is M(R) in the case of the exhaustible resource and MbB(A)b in the case of the

backstop. The �rst cost function is increasing and strictly convex, i.e. M ′(R) >

0 and M ′′(R) > 0. Furthermore, we assume M(0) = M ′(0) = 0. The second

cost function is composed of a �xed cost parameter Mb > 0 and a function

B(A).5The latter re�ects the in�uence of technology A on the backstop unit

costs. Additionally to B′(A) < 0 and lim
A→∞

B(A) = B̄ > 0 we assume B(A0) >

0, B′′(A) > 0 and lim
A→∞

B′(A) = 0, where A0 is the initial value of technology.

The net income is given at each point in time by Y n = F (K,x) − M(R) −

MbB(A)b and can be used for consumption C, physical capital (dis)investment

K̇ or research I. Then the capital stock evolves as follows:

K̇ = F (K,x)− C −M(R)−MbB(A)b− I. (1)

Technology A increases in research investment I in compliance with

Ȧ = I. (2)

4We refer to Tsur and Zemel (2005) for details. Deviations from Tsur and Zemel (2005)
are indicated explicitly. For the sake of simplicity time index t is suppressed. It is only added,
if needed for understanding.

5Tsur and Zemel (2005) assume Mb = 1.
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R&D investments are limited by the net income, i.e. I ∈ [0, Y n]. Hereafter the

upper bound is represented by Ī. As long as the exhaustible resource is used,

the resource stock SR, with the initial value SR0
, decreases according to

ṠR = −R. (3)

At every point in time the representative household exhibits a strictly concave

utility function U(C), which increases in consumption with lim
C→0

U ′(C) = ∞.

To avoid the optimality of C = 0, the assumption U(0) = −∞ is made addi-

tionally.6Therefore, the utility is given by

U(C)

≥ 0, for C > 0,

= −∞, for C = 0.

(4)

As in the Hotelling models mentioned above, utilization of exhaustible resources

causes pollution E. To keep the model simple, it is assumed that utilization of

one resource unit generates one unit of pollution, i.e. R = E. Thus, R and

E are used synonymously. The stock of pollution is SE , while its initial value

is denoted by SE0 . With γ being the natural regeneration rate, SE develops

according to

ṠE = E − γSE . (5)

The ceiling S̄E is imposed exogenously.7Then S̄E − SE ≥ 0 must hold at

every point in time. Due to the ceiling, it is possible to divide the complete

planning period into three phases depending on the ceiling's status. Phase 1 is

characterized by a non-binding ceiling. In phase 2 the ceiling is binding for the

time interval [ti, tj [, with 0 ≤ ti ≤ tj <∞. In phase 3 the ceiling is non-binding

for [tk,∞], with tk <∞.

6Due to lim
K→0

FK = ∞ and (15) decreasing capital stock is accompanied by increasing

consumption. Therefore, K = 0 and C = 0 could be reached in �nite time, if the assumption
U(0) = −∞ is not made.

7A reason for the ceiling can be prohibitive high costs if the emission stock increases to a
level above the ceiling. Since the emission stock does not in�uence utility or production, the
costs of the emission stock are negligible as long as the ceiling is not violated.
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3. Social Optimum

In the following section we derive the social optimum. Thus, we assume that

a social planner maximizes the utility over the complete planning period given

the initial state (K0, A0, SR0 , SE0) and subject to (1), (2), (3), (5), S̄E−SE ≥ 0,

K ≥ 0, SR ≥ 0, 0 ≤ I ≤ Ī and E, b, C ∈ [0,∞[. The present value of utility

is given by
∫∞

0
U(C)e−ρtdt, with ρ as the time preference rate. Thus, with λ,

κ, τ and θ representing the current-value costate variables of K, A, SR and

SE , and µ representing the Lagrange multiplier associated with the ceiling, the

current-value Lagrangian is

L = U(C)+λ[F (K, b+R)− C −M(E)−MbB(A)b− I] + κI − τE

+ θ[E − γSE ]− µ[E − γSE ]. (6)

Analogous to Tsur and Zemel (2005), an interior optimum is given by the fol-

lowing necessary conditions:8

∂L

∂C
= UC − λ = 0, (7)

∂L

∂E
= λ[Fx −M ′]− τ + θ − µ = 0, (8)

∂L

∂b
= λ[Fx −MbB(A)] = 0. (9)

The total energy supply, as well as the energy mix, can be determined graphi-

cally by means of (8) and (9). In Fig. 1 the energy demand function is given

by Fx, while MbB(A) and M ′ + τ−θ+µ
λ represent the supply functions of the

backstop and the exhaustible resource, respectively. The total energy supply x

is given by Fx = MbB(A) if both resources are used, and by Fx = M ′ + τ−θ+µ
λ

if only the exhaustible resource is used.9In the latter case, total energy equals

E# and MbB(A) > M ′(E#) + τ−θ+µ
λ must hold. In the �rst case, the amount

8It can be shown that the su�cient conditions hold as long as B′′(A) ≥
Mb
b

(B′(A))2
[

1
M′′(R)

− FKK
J

]
. Due to B′′(A) > 0, M ′′(R) > 0 and FKK

J
< 0 both sides

of the inequality are positive. As long as the backstop is used, which is assumed, the inequal-
ity holds if Mb is su�ciently small.

9A similar �gure with θ = µ = 0 can be found in Tsur and Zemel (2005), p. 488. Thus,
the �gure of Tsur and Zemel (2005) is a special case of Fig. 1.

7



of exhaustible resources is given by MbB(A) = M ′(E) + τ−θ+µ
λ and the amount

of backstops by the di�erence x − E. Both resources are only used simulta-

neously as long as M ′(0) + τ−θ+µ
λ < MbB(A) < M ′(E#) + τ−θ+µ

λ holds. If

MbB(A) < M ′(0) + τ−θ+µ
λ , only the backstop is used.

In the following we assume that both resources are used. The second term of

the supply function M ′(E) + τ−θ+µ
λ compares the shadow prices related to the

exhaustible resource with the shadow price of capital, i.e. it re�ects the scarcity

of the resource in relation to the scarcity of capital. Therefore, τ−θ+µλ should be

called the relative scarcity index. It will be used below to identify the possible

sequence of phases. In the following, the index ∗ denotes optimal values, while

Figure 1: Usage of exhaustible resource and backstop

unmarked variables denote values of any possible path. The maximization of

(6) with respect to the R&D investments I gives

I∗ = 0, if− λ+ κ < 0,

0 ≤ I∗ ≤ Ī , if− λ+ κ = 0, (10)

I∗ = Ī , if− λ+ κ > 0.
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Depending on the relation of κ to λ, R&D investments are minimal, singular or

maximal. The costate variables grow according to

∂L

∂K
= λFK = ρλ− λ̇, (11)

∂L

∂SE
= −θγ + µγ = ρθ − θ̇, (12)

∂L

∂SR
= 0 = ρτ − τ̇ , (13)

∂L

∂A
= −λMbbB

′ = ρκ− κ̇. (14)

Combining (11) with (7) establishes the well-known Ramsey - rule

Ĉ =
FK − ρ

η
. (15)

This states that the growth rate of consumption Ĉ is positive as long as the

marginal product of capital is higher than the time preference rate. Consump-

tion reacts the stronger to the di�erence the smaller the positive elasticity of

marginal utility (η) is.

The complementary slackness condition is given by

∂L

∂µ
= −E + γSE ≥ 0, µ ≥ 0, µ

∂L

∂µ
= 0,

S̄E − SE ≥ 0, µ[S̄E − SE ] = 0, (16)

ρµ− µ̇ ≥ 0, [= 0 if S̄E − SE > 0].

To complete the equation system the transversality conditions

(a) lim
t→∞

e−ρtλ(t) [K(t)−K∗(t)] ≥ 0, (b) lim
t→∞

e−ρtτ(t) [SR(t)− S∗R(t)] ≥ 0,

(c) lim
t→∞

e−ρtθ(t) [SE(t)− S∗E(t)] ≥ 0, (d) lim
t→∞

e−ρtκ(t) [A(t)−A∗(t)] ≥ 0

(17)

are needed.

Before analyzing the three phases it is useful to determine the possible se-

quences of phases. This will also reveal information about the sign and exis-

tence of θ during the three phases. For this purpose, the behavior of the relative
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scarcity index at the junction points is observed. The jump conditions for the

costate variables at a junction point j is10

Γ+(j) = Γ−(j) +B
∂[S̄E − SE ]

∂ΓV
, B ≥ 0, (18)

with Γ = τ, θ, λ; ΓV being the associated state variable SR, SE ,K as well as +

and − denoting the values just after and just before the junction point, respec-

tively. It shows that τ and λ are continuous while θ may jump. Due to (7),

the continuity of λ implies a continuous consumption path. Since the indirect

approach is used for (6), the jump condition can be written as11

θ+(j) = θ−(j) + µ+(j)− µ−(j) +Bθ, Bθ ≥ 0. (19)

Due to (16), µ = 0 during phase 1 and 3. In phase 3 the ceiling is non-binding

and will never be reached. Since pollution has then no e�ect on production or

utility, it is irrelevant for the social planner. Thus, its shadow price θ must

be zero. Therefore, the relative scarcity index in phase 1, phase 2 and phase

3 is τ−θ
λ , τ−θ+µλ and τ

λ , respectively. At a junction point the used amount of

exhaustible resources can exhibit a jump, because E is a control variable. If the

ceiling becomes binding at the junction point, a jump upwards is prevented by

the natural regeneration rate. If the ceiling becomes non-binding, the ceiling

itself prevents an upward jump. However, jumps downward are possible in both

cases. The necessary changes can be derived from Fig. 1. It does not matter

whether the backstop is used. As the demand function Fx and the marginal

extraction costs function M ′(E) are not a�ected by a junction point, a sudden

drop in E is only possible if the relative scarcity index increases. Therefore, the

following conditions must hold at junction points between phase 1 and 2 as well

as between phase 2 and 3.

• At a junction point t1 from phase 1 to phase 2:
τ−(t1)−θ−(t1)

λ−(t1) ≤ τ+(t1)−θ+(t1)+µ+(t1)
λ+(t1) ⇔ θ+(t1) ≤ θ−(t1) + µ+(t1)

10Cf. Feichtinger and Hartl (1986), p. 166 et seq.
11Cf. Chiang (1992), p. 300 et seq.
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• At a junction point t2 from phase 2 to phase 3:
τ−(t2)−θ−(t2)+µ−(t2)

λ−(t2) ≤ τ+(t2)
λ+(t2) ⇔ µ−(t2) ≤ θ−(t2)

• At a junction point t3 from phase 2 to phase 1:
τ−(t3)−θ−(t3)+µ−(t3)

λ−(t3) ≤ τ+(t3)−θ+(t3)
λ+(t3) ⇔ θ+(t3) ≤ θ−(t3)− µ−(t3)

Substituting (19) shows that all three conditions must hold equally. This implies

the continuity of E, since the state variables capital K and technology A have

to be continuous, too. The total energy input depends only on K and A, so that

its continuity, as well that of b = x(K,A) − E(K,A), follows directly. Thus,

both production factors are continuous, which implies the continuity of Y . The

one of consumption C results from the continuity of λ and (7). Therefore, the

economy switches smoothly from one phase to the next.

If we denote the variables by the corresponding phase, we can rewrite the con-

ditions at the junction points as θ2(t1) = θ1(t1) + µ2(t1), θ2(t2) = µ2(t2) and

θ2(t3) = θ1(t3) + µ2(t3), respectively. Obviously, the �rst and third conditions

are identical. Thus, should there be more than one junction point between phase

1 and 2, the conditions must hold for two or more di�erent points in time.

However, by solving (12) and (16) for θ1, θ2 and µ2, i.e. θ1(t) = θ01e
(ρ+γ)t,

θ2(t) = θ02e
(ρ+γ)t − γµ02e

(ρ+γ)t
∫
e−(ρ+γ)t+ρ

∫
ξ(t)dtdt and µ2(t) = µ02e

ρ
∫
ξ(t)dt,

with θ01, θ02 and µ02 > 0 as constants of integration and ξ(t) ≤ 1, the conditions

can be written as

θ02e
(ρ+γ)t − γµ02e

(ρ+γ)t

∫
e−(ρ+γ)t+ρ

∫
ξ(t)dtdt = θ01e

(ρ+γ)t + µ02e
ρ
∫
ξ(t)dt

⇔ θ02 − θ01

µ02
= e−(ρ+γ)t+ρ

∫
ξ(t)dt + γ

∫
e−(ρ+γ)t+ρ

∫
ξ(t)dtdt, for t = t1, t3 (20)

and

θ02e
(ρ+γ)t − γµ02e

(ρ+γ)t

∫
e−(ρ+γ)t+ρ

∫
ξ(t)dtdt = µ02e

ρ
∫
ξ(t)dt

⇔ θ02

µ02
= e−(ρ+γ)t+ρ

∫
ξ(t)dt + γ

∫
e−(ρ+γ)t+ρ

∫
ξ(t)dtdt, for t = t2. (21)

The right hand side of (20) and (21) is called Tf (t). It is continuous in time

and dTf
dt < 0 for ξ(t) < 1. As long as the growth rate of µ is lower than the time
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preference rate, Tf descreases strictly. In this case, (20) as well as (21) holds

only for one point in time, which implies just one junction point between both

phase 1 and 2 and between phase 2 and 3. Furthermore, θ01 must be negative.

Otherwise, the junction point between phase 2 and 3 would be located before the

junction point between phase 1 and 2 on the time line, which is impossible due

to the de�nition of phase 3. The only possible sequence containing all phases is

1, 2, 3. In the case of ξ(t) = 1 the right hand side of (20) and (21) reduces to

zero. It follows θ02 = θ01 = 0, i.e. the shadow price of the emission stock equals

zero in phase 1 and 2. This implies that the emission path will be only tangent

to the ceiling. Therefore, we neglect the second case in the following.

θ < 0 during phase 1 can be easily explained by its interpretation as the shadow

price of the emission stock. An external marginal increase of the stock narrows

the problem of the social planner. Therefore, the increase has a negative value,

which implies θ < 0 in phase 1. The binding ceiling during phase 2 requires

a slightly di�erent approach. If only the ceiling is marginally increased, more

exhaustible resources can be used. Therefore, the corresponding shadow price µ

is clearly positive. On the other hand, it is possible to increase both the ceiling

and the emission stock, so that the ceiling remains binding. The corresponding

shadow price is µ+ θ > 0. Because the amount of exhaustible resources which

can be used additionally is smaller in the second case, the shadow price must

be smaller. This implies θ < 0 in phase 2.

Proposition 1 Both consumption and extraction of the exhaustible resource
are continuous. The only sequence containing all three phase begins with phase
1, switches over to phase 2 and ends with phase 3.

3.1. The phases

In this section we turn to the analysis of the three phases. As the ceiling

is never reached in phase 3, it is irrelevant and µ = θ = 0, which implies the

identity of phase 3 with an unconstrained economy described by Tsur and Zemel

(2005).12Therefore, the analysis starts with phase 3. Phase 1 and 2 follow in

12µ = 0 follows directly from (16) and θ = 0 from the irrelevance of the emission stock in
phase 3.
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numerical order.

3.1.1. Phase 3 - the long run

Since phase 3 is identical with the economy of Tsur and Zemel (2005), the

following remarks are limited to the extent that is necessary for understanding.

For proofs, as well as for more detailed explanations, we refer to Tsur and Zemel

(2005). As mentioned above phase 3 is characterized by θ = µ = 0. If both

resources are in use, (8) and (9) gives

Fx(K,x(K,A)) = M ′(E(A)) +
τ

λ
= MbB(A). (22)

(22) determines b(K,A), E(A) and x(K,A). The optimal R&D investments are

given by (10). Thus, the optimization problem reduces to the task of identifying

optimal consumption and capital accumulation for every point in time. Tsur

and Zemel (2005) show that this can be done by means of two characteristic

lines. Assuming SR = ∞, the �rst line is given by the no-arbitrage condition

∂Y n

∂A = ∂Y n

∂K of R&D and capital accumulation:

−MBB
′(A)b∞(K,A) = FK(K,x(K,A)). (23)

(23) de�nes a line in the A,K - space given by KS(A), which describes all

points in the A,K - space on which singular R&D is optimal. Therefore, we

refer to this line as the singular line (SiL). Assuming monotony, KS(A) growths

in A. Above (below) the SiL ∂Y n

∂A > ∂Y n

∂K (∂Y
n

∂A < ∂Y n

∂K ). Since the second

characteristic line is de�ned by the steady state Ĉ = K̂ = Â = 0, we refer to

it as the steady state line (SSL). It is given by the derivations of (7) and (11)

with respect to time:

FK(K,x(K,A))− ρ = 0. (24)

(24) determines implicitly the function KN (A), with dKN

dA ≥ 0. Above (below)

the SSL consumption declines (increases). If lim
A→∞

KS(A) > lim
A→∞

KN (A) the

economy converges to a steady state. On the other hand, if lim
A→∞

KN (A) >

lim
A→∞

KS(A) the economy may grow for ever.

The SiL has been de�ned for SR = ∞. Taking the limited resource stock into
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Figure 2: SiL and SSL in the A,K,mq space

account, and therefore the relative scarcity mq, changes the position of the

SiL. As can be seen from Fig. 1, the amount of backstop resource utilization

increases under ceteris paribus conditions if mq is higher. Thus, the higher mq

the greater is the left hand side of −MBB
′(A)b(K,A,mq) = FK(K,x(K,A)),

the equation that establishes the SiL. K has to be smaller for all A to guarantee

equality, implying a lower position of the SiL in the A,K space. Therefore,

the SiL depends as well on mq or SR, respectively, as SR declines in time and

mq increases, with dKS

dmq < 0. The SiL is then a two-dimensional manifold in

the three-dimensional (A,K,mq) or (A,K, t) space, respectively. On the other

hand, the SSL is not a�ected by the scarcity of R, which implies dKN

dmq = 0.

The situation is illustrated by Fig. 2. To describe the optimal development

path we use the formulation "the economy lies above (on, below) the SiL or

SSL, repectively", if the point in the A,K,mq space describing the economy's

A,K,mq combination is located above (on, below) the SiL (SSL). Assuming

maximal one intersection of SiL and SSL, Tsur and Zemel (2005) show that

the economy develops according to the following program. Above the SiL the

economy approaches the SiL with maximal R&D (i. standard case) or a steady

state on the SSL (i. exception), which lies below the SiL in this case, with

14



minimal R&D. Both cases establish a most rapid approach path (MRAP). Once

reached, the SiL cannot be departed from, i.e. the economy conducts singular

R&D for ever, or switches into a steady state at the intersection of SSL and SiL

for SR = 0, if the SiL lies below the SSL for huge A. Below the SiL the economy

follows an MRAP with minimal R&D investments and approaches either the SiL

(ii. standard case) or the SSL (ii. exception) by means of capital accumulation

or reduction. Thus, positive R&D investments are only feasible above or on the

SiL, while capital can only accumulate on or below the SiL.

Proposition 2 (Property 3.1 of Tsur and Zemel (2005)) The optimal path con-
verges either to the SSL or the SiL. In the �rst case, the economy switches into
a steady state. In the latter, capital and technology grow forever.

The interpretation of dKS

dmq < 0 is straightforward. Since the scarcity of R

implies greater utilization of the backstop, a reduction of its supply costs has

a greater e�ect on net production Y n. On the other hand, the e�ect of capital

accumulation remains unchanged. Thus, R&D becomes feasible for more A,K

combinations as scarcity of R increases, while capital accumulation becomes

unfeasible for these A,K combinations. This process could be interpreted as an

increase of R&D incentives, and will play a major role in the following discussion

of the other two phases and economic development over the whole time.

3.1.2. Phase 1

Phase 1 is characterized by a non-binding ceiling that becomes binding in

the future. Thus, from (16) we get µ = 0. Since the ceiling becomes binding

later on, changes of the emission stock are valued by the social planner by θ < 0,

as shown before. By using θ1 to indicate the phase the shadow price belongs to,

we get from (8) the variant of phase 1 for (22):

Fx(K,x(K,A)) = M ′(E(A)) +
τ − θ1

λ
= MbB(A). (25)

The relative scarcity index mq
1 is now given by τ+|θ1|

λ . Its growth rate is

m̂q
1 = FK + γ

|θ1|
χ
, with χ := τ + |θ1|. (26)
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For all capital - technology - combinations both the relative scarcity index and

its growth rate are higher than in an economy in the same situation but without

the ceiling, i.e. with the same A,K combination and the same costate variables

but without θ1. In the following, such a economy will be called unbounded. The

e�ect of the higher relative scarcity index are shown in Fig. 3. As long as both

Figure 3: Usage of exhaustible resource and backstop in phase 1

resources are used, x remains unchanged. However, a greater scarcity index in-

creases the marginal costs of the exhaustible resource, implying a reduction of its

utilization. Since the marginal costs of the backstop are not a�ected, the gap in

energy supply (E−E1) is closed by an increase of backstop utilization. As shown

in chapter 3.1.1, a higher b a�ects the position of the SiL in the A,K space.

With a greater left hand side of −MbB
′(A)b(K,A,mq

1) = FK(K,x(K,A)), a

lower capital stock is needed for all A to guarantee equality. Thus, the SiL of

the bounded economy lies below the SiL of an unbounded one. Following the

known argumentation, the higher scarcity of R causes a higher utilization of b,

implying a greater e�ect on net production of decreasing backstop supply costs.

Therefore, R&D instead of capital accumulation becomes feasible for more A,K

combinations. Since mq
1 grows steadily in time, the SiL is shifting downwards

in the A,K space, i.e. dKS

dmq1
< 0.

As shown in chapter 3.1.1, the SSL is not a�ected by the scarcity. Therefore,

the arti�cial scarcity has no e�ect on the SSL.
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The development program is not a�ected by the ceiling. However, the economy

cannot be in phase 1 for ever. If it were, the emission stock converges to the

ceiling for t → ∞. This implies lim
t→∞

E(t) = γS̄E and therefore the exhaustion

of SR in �nite time. But with SR = 0 the emission stock decreases to zero, con-

tradicting lim
t→∞

SE(t) = S̄E . Thus, the economy cannot reach the steady state

at the intersection of SSL and SiL for SR = 0 during phase 1. Two possibilities

for reaching a steady state remain. In the �rst one, the capital stock is too low

to conduct R&D and the economy converges to the SSL by capital reduction.

In the other case, the capital stock is high and the economy conducts maximal

R&D to switch to minimal R&D and reach the SSL by capital reduction.

Proposition 3 During phase 1 the SiL is shifted downward in the A,K space by
the prospectively binding ceiling, which increases the scarcity of the exhaustible

resource. The relative scarcity index increases monotonously, with dKS

dmq1
< 0.

Compared with a economy with the same capital stock, technology and costate
variables, but without the ceiling, the bounded economy exhibits higher and in-
creasing research incentives. The SSL is not a�ected by the ceiling during phase
1.

3.1.3. Phase 2

During phase 2 the ceiling is binding. (16) implies µ2 > 0. Since the emission

stock is still of relevance, θ < 0 remains. To indicate the phase we use the

notation θ2 and µ2. (8) can be rewritten to form the variant of phase 2 for (22):

Fx(K,x(K,A)) = M ′(Ē) +
τ − θ2 + µ2

λ
= MbB(A). (27)

The relative scarcity index is given by mq
2 := τ−θ2+µ2

λ . The economy cannot

stay in phase 2 forever, since E(t) = γS̄E implying the exhaustion of SR in �nite

time and therefore the violation of SE(t) = S̄E , ∀t > t1, with t1 being the point

in time the ceiling becomes binding. Thus, the economy has to switch from

phase 2 to phase 3 at t = t2. It was shown that µ2(t) − θ2(t) ≥ 0, t ∈ [t1, t2[

holds. Therefore, the relative scarcity index mq
2 is higher than in an unbounded

economy. The growth rate m̂q
2 is unknown, because no exact information is

given about µ̂2 in (16):

m̂q
2 = FK + γ − µ2

ψ
[ρ− µ̂2]− γ τ

ψ
, with ψ := τ − θ2 + µ2. (28)
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However, the binding ceiling implies E(t) = Ē, t ∈ [t1, t2[. Figure 4 shows

how the binding ceiling restricts the possible changes of mq
2. As long as both

Figure 4: Usage of exhaustible resource and backstop in phase 2

resources are used, an increase of mq
2 implies a decrease of R and is therefore not

possible. mq
2 remains constant if the supply costs of the backstop are constant,

i.e. if no R&D is conducted. If R&D investments are either maximal or singular,

A increases (A1 → A2) and the backstop supply costs decline. To keep the uti-

lization of the exhaustible resource constant mq
2 must decline, too (m

q
21 → mq

22).

Thus, the binding ceiling establishes a link between R&D investments and the

relative scarcity index during phase 2. Together with µ2(t)−θ2(t) ≥ 0, t ∈ [t1, t2[

the consequences for the SiL and SSL are as follows. The SSL is not a�ected,

because it is independent of the scarcity of the exhaustible resource. Since the

relative scarcity index is higher than in an unbounded economy, backstop uti-

lization is higher. As in phase 1 this implies a lower position of the SiL in the

A,K space. The development of the SiL depends on mq
2. As discussed in chap-

ter 3.1.1 a higher (lower) relative scarcity index increases (decreases) backstop

utilization under ceteris paribus conditions, implying a higher (lower) left hand

side of −MbB
′(A)b(K,A,mq

2) = FK(K,x(K,A)) and therefore a lower (higher)

capital stock, which guarantees equality, i.e. dKs

dmq2
< 0. Thus, as long as R&D

is minimal and the relative scarcity index constant, the position of the SiL in

the A,K space is unchanged. With I > 0 and a decreasing relative scarcity the

SiL shifts upwards in the A,K space. Since a development path needs to be
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located on or above the SiL to allow R&D investments, R&D reduces/increases

the number of A,K combinations at which R&D/capital accumulation can be

optimal. The reason will be discussed as a part of the following chapter.

As in phase 1 the development program is not a�ected by the ceiling, just as the

steady state at the intersection of SSL and SiL for SR = 0 is ruled out by the

fact that the economy cannot be in phase 2 for ever. Therefore, only the two

possibilities mentioned in chapter 3.1.2 are left to reach a steady state during

phase 2.

Proposition 4 Due to the constant resource input R̄, the ceiling establishes
a link between research activities and the development of the SiL during phase
2. The SiL remains unchanged if R&D investments are minimal and shifts
upwards in the A,K space if R&D investments are either singular or maximal,
reducing the number of economy states with feasibility of research. Compared
with a economy with the same capital stock, technology and costate variables
but without the ceiling, the bounded economy exhibits higher research incentives.
The SSL is not a�ected by the ceiling during phase 2.

3.2. Optimal development

To analyze the development over the whole planning period [0,∞] it is nec-

essary to join the analysis of the three phases. For this purpose we use the

relative scarcity indices mq
1, m

q
2 and mq. Furthermore, the smooth transition

from one phase to the next must be noticed. Therefore, the SiL and SSL of the

three phases can be attached to each other. Since the SSL is independent of

scarcity and time t, respectively, it is qualitatively identical to the one described

in chapter 3.1.1. The SiL shifts steadily downwards in the A,K space during

phase 1 and phase 3. During phase 2 it can shift upward as well as keep un-

changed. Since the upward shift requires singular or maximal R&D investments,

there are two more, mixed possibilities. The �rst one appears if the development

path approaches the SiL from below, i.e. the economy is accumulating capital

to realize the research option. In this case, the SiL remains unchanged until the

path reaches it and then shifts upwards afterwards. In the second case, maximal

R&D investments are reduced to minimal investments before the SiL is reached,

i.e. the economy converges to a steady state. Then the SiL shifts upwards at the

beginning of the phase and remains unchanged at the end. Figure 5 illustrates
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the two border cases of a completely unchanged and a steadily upward shifting

SiL in the A,K, t space. The development of the SiL is closely related to the

Figure 5: SSL and SiL with no or maximal R&D in Phase 2

relative scarcity indices, since a higher index corresponds with a lower SiL, and

therefore with a higher research incentive. Figure 6 shows how the development

of the index in time must look like to generate the both SiL variants of Fig.

5. TR denotes the point in time at which the resource stock SR is exhausted.

As stated in chapter 3.1.2, the relative scarcity index of phase 1 (mq
1) both

lies above and grows faster than its equivalent of an economy that ignores the

ceiling (mq), implying higher and faster growing R&D incentives. The driving

force behind the increase of mq = τ
λ is the exhaustibility of R, which is referred

to below as the natural scarcity. In phase 1, the relative scarcity index also

entails the term |θ1|
λ > 0, which represents the prospectively binding ceiling.

Therefore, the ceiling enhances the scarcity of R during phase 1 by adding an

arti�cial scarcity to the natural one. As shown above, a higher relative scarcity

index implies higher R&D incentives, which corresponds with a decline in the

number of A,K combinations with feasibility of capital accumulation. The ad-

ditional R&D incentives increase during phase 1, because the arti�cial scarcity
|θ1|
λ grows at the rate |̂θ1|λ = γ + FK > 0, explaining m̂q

1 > m̂q. In Fig. 6, the

arti�cial scarcity equals the gap between mq and mq
1. The gap also indicates

the amount of R which would be used, if the ceiling were ignored. During phase
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Figure 6: Relative scarcity index

2 the arti�cial scarcity is reduced passively and possibly actively. In the �rst

case, R&D investments are minimal and the relative scarcity index mq
2 remains

constant. Since the utilization of the exhaustible resource is constant, the nat-

ural scarcity increases, reducing the gap between mq
2 and mq, i.e. the arti�cial

scarcity. In the second case, R&D investments are either singular or maximal.

Therefore, utilization of the backstop increases, implying a decreasing relation

of R to total production Y . Since the exhaustible resource is less important,

its relative scarcity declines. Hence, singular or maximal R&D reduces the ar-

ti�cial scarcity, actively establishing a second driving force in addition to the

passive reduction of arti�cial scarcity. As backstop utilization declines ceteris

paribus with a lower scarcity index, the incentives for R&D (capital accumula-

tion) decrease (increase). To switch over to phase 3, the arti�cial scarcity must

be eliminated completely. The phase itself is equivalent to an economy without
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a ceiling.

Thus, the ceiling causes an increase in the scarcity of the exhaustible resource

and thereby a reduction in its usage during phase 1 and 2. Since the ceiling

would be violated without the additional or arti�cial scarcity, the result is quite

intuitive. The arti�cial scarcity increases as the pollution concentration ap-

proaches the ceiling, indicating a smaller growth rate of R. At the ceiling, the

arti�cial scarcity decreases due to the declining resource stock SR and possi-

bly increasing utilization of the backstop. The scarcity induced reduction of R

causes an increase in backstop utilization. This connotes that the reduction of

backstop unit costs has a stronger e�ect on net income Y n. Therefore, more

possible A,K states exist at which the e�ect is stronger than that of capital ac-

cumulation, implying stronger R&D incentives and weaker capital accumulation

incentives.

The analysis of Chakravorty et al. (2006a) is based essentially on the scarcity

of the exhaustible resource, which translates directly into the price of the re-

source in a Hotelling model. Not every feature related to abatement activities

appears here, since abatement and other possible extensions are ignored. How-

ever, Chakravorty et al. (2006a) needed the assumption of decreasing global

energy demand to explain a decreasing scarcity of the exhaustible resource at

the ceiling. In the current model a rising (declining) capital stock increases

(decreases) energy demand.13However, the backstop absorbs all changes in to-

tal energy demand caused by a variation of the capital stock at the ceiling.14A

decreasing scarcity is caused here by R&D, which increases the utilization of

the backstop. Consequently, the importance of the exhaustible resource for to-

tal production declines, i.e. its share of total energy output is shrinking.15The

opposite e�ect of increasing scarcity at the ceiling cannot be explained, since

there is no possibility of increasing the (potential) importance of the exhaustible

13See Fig. 1.
14If b = 0, a decreasing (increasing) capital stock and therefore a lower (higher) energy

demand implies a lower (higher) scarcity to ensure Ē.
15Chakravorty et al. (2011) get a similar result due to a learning - by - doing e�ect which

decreases the costs of the backstop.
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resource. For this purpose, either depreciation with respect to technology or a

second technology that is related to the exhaustible resource must be taken into

account.

The development of the relative scarcity index together with Fig. 1 allows

a qualitative statement about the extraction path of the exhaustible resource.

Proposition 5 During phase 1 (3) R decreases monotonically due to the in-
creasing mq

1 (mq) and the constant or decreasing unit costs of the backstop re-
source. On the other hand, phase 2 is characterized by constant utilization of
the exhaustible resource.

Figure 7 illustrates a corresponding path. The path denoted with Eb shows

Figure 7: extraction path of the exhaustible resource

how the resource is extracted in the bounded economy. The other path, Eu, il-

lustrates the path of an economy that is identical with the bounded one at t = 0

but without the ceiling. Since the complete resource stock SR must be used,

the area under Eb, and under Eu, equals SR. Thus, the area marked with D1

represents the amount of exhaustible resource that is not used at early points

of time in the bounded economy. Therefore, this amount must be used later on.

The corresponding area is denoted by D2. Because the areas under both paths

equal SR, D1 = D2 must hold. Note that Eb must not lie below EU at t = 0.

Since both economies are identical at the starting time, this only happens if the

relative scarcity index mq
1(0) = τ(0)+|θ1(0)|

λ(0) is greater than its equivalent of the
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economy without the ceiling mq
u(0) = τu(0)

λu(0) . Even if τu(0) = τ(0) holds, there

are two possible e�ects left. On the one hand |θ1(0)| > 0 increases the numer-

ator of mq
1(0), indicating less usage of the exhaustible resource. On the other

hand λ(0) can be greater than λu(0). Due to (7) this implies lower consumption

in the bounded economy. If the reduction of consumption is large enough, the

second e�ect outweighs the �rst one and Eb(0) > Eu(0) holds. In this case, the

economy uses more of the exhaustible resource and consumes less. Both imply

a higher net income Y n, which can be used for either capital accumulation or

research. Thus, the economy tends to adjust to the ceiling with strong measures

than by gaining time to implement the necessary measures. The latter happens

rather if Eb(0) < Eu(0), as shown in Fig. 7. This solution is the one intuition

suggests, since it would be expected that a ceiling on the stock of pollution, as

an environmentally friendly measure, should decrease utilization of the polluting

resource. Therefore, if EU (0) < Eb(0) holds, we have a kind of a green para-

dox.16However, in contrast to Sinn (2008a) and Sinn (2008b) the greater usage

of the polluting resource is part of an optimal path for the entire economy and

does not violate the environmental protection measure, i.e. the ceiling. If the

intuitive solution holds, the economy will use more backstop, which implies a

lower net income. But the lower resource utilization R extends the time period

until the ceiling binds.

It is important to notice that both economies will exhibit the same SiL

(and SSL) after the resource stock SR is exhausted, because all the energy

is then generated by the backstop. Therefore, (23) allocates all capital stock

to the same technology level whether or not the economy was restricted by a

ceiling. This implies for the two standard cases that the position of the long

run development path is not a�ected by the ceiling. However, the position of a

bounded economy on the path may be di�erent from that of an economy without

16The concept of the green paradox was introduced by Sinn (2008a) and Sinn (2008b) to
describe a situation where a tighter environmental policy on the demand side of the economy
induces a higher supply of polluting goods, therefore harming the environment instead of
protecting it. The idea can be applied here in a more general sense.
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the ceiling at some speci�c point in time. In case of exception ii., the economy

does not conduct R&D and converges to the SSL. Positive R&D would be only

possible if the relative scarcity reaches a level higher than that of an exhausted

resource stock (mq
0). However, in this case the exhaustible resource is no longer

used. Thus, if the arti�cial scarcity had increased the relative scarcity index to

this level, it would have been impossible to reach or stay at the ceiling, which

contradicts the fact that the economy must be in phase 1 or 2 to justify the

arti�cial scarcity. However, the long run development may be a�ected by the

ceiling in case of exception i. This economy follows an MRAP with minimal

R&D investments above the SiL. If the MRAP with minimal R&D investments

is only a part of the development path, and was preceded by a part with maximal

R&D investments, higher (lower) net production in early periods may cause a

higher (lower) technology level and capital stock in the steady state.

The development of the emission stock follows directly from Fig. 7. It

increases during phase 1, is constant during phase 2 and converges to 0 during

phase 3. Figure 8 shows an appropriate path.

Figure 8: emission stock development

4. Market Economy

After having analyzed the social optimum we turn to a market economy in

this section. This economy consists of a great number of identical individuals
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and composite good producers as well as two resource owning companies.17The

individuals own all companies in the Y - and resource sector, as well as the capi-

tal stock. They maximize their intertemporal utility with respect to their budget

constraint. The companies in the composite good sector rent capital and buy

resources to generate energy. Since they do not face an intertemporal problem,

they maximize their pro�t at every point in time. The two resource owners sell

the resources and, in the case of the backstop resource owning company, conduct

research. Therefore, they maximize their intertemporal pro�t with respect to

either the resource stock or the technology. We assume a Cournot competition

on the resource market and perfect competition on all other markets. The gov-

ernment has the possibility of taxing the exhaustible resource, with φ denoting

the corresponding quantity tax rate. Additionally, both resources can be subsi-

dized with sR or sb, respectively. To balance the budget, the government can

levy a lump-sum tax or grant a lump-sum transfer, both denoted with T S 0.

Given the described market structure, a representative individual faces the

following intertemporal optimization problem:

max
C

∞∫
0

[
U(C)e−ρtdt

]
,

subject to K̇ =
r

pY
K +

π

pY
+
πb
pY

+
πR
pY

+
T

pY
− C. (29)

The interest rate and the price of the composite good are represented by r and

pY respectively. π, πb and πR denote the pro�ts of the composite good producers

and the two resource owners. From the necessary conditions for an optimum

λH = U ′(C), (30)

λ̂H = ρ− r

pY
(31)

17The assumption of two resource owners and a Cournot competition is made in order to
have some degree of private research expenditure. Otherwise, R&D would be totally govern-
ment driven, due to the linear backstop production function.
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we get18

Ĉ =

r
pY
− ρ
η

. (32)

λH represents the costate variable associated with the capital stock and η the

(positive) elasticity of U ′(C). The Ramsey rule (32) states that consumption

will increase as long as the real interest rate is greater than the time preference

rate. According to (30), the marginal utility equals λH , i.e. the price the

individual would pay for an increase of his capital stock. For an equilibrium on

the composite good market λH = pY is necessary. Otherwise, the individual

would buy more (less) Y for investing in the capital stock and consumption, if

λH < pY (λH > pY ).

As mentioned above, the composite good producers do not have to solve

an intertemporal optimization problem. Instead they maximize their pro�t at

every point in time. Omitting a �rm index and with pb and pR denoting the

resource prices, the representative producer's pro�t is given by

π = pY F (K, b+R)− rK − pbb− (pR + φ)R. (33)

The �rst order conditions ∂F
∂K = r

pY
and ∂F

∂x = pb
pY

= pR+φ
pY

state that the

marginal product of any input has to equal its real price. Since the composite

good producers have no market power, these conditions hold, if the capital and

resource market are cleared. By substituting r
pY

into (32) we get the socially

optimal Ramsey rule (15).

The resource owners know the pro�t maximization problem of the composite

good producers and therefore the price-demand functions for both resources:19

pY Fx(K, b+R) = pb = pR + φ. (34)

18The current value Lagrangian as well as the necessary conditions are presented in Ap-
pendix AppendixA.1

19For the resource owners the capital stock is a known but exogenous factor.
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The pro�ts of the resource owners for each point in time are then given by

πR = [pY Fx(K, b+R)− φ]R− pYM(R) + sRR, (35)

πb = pY Fx(K, b+R)b−MbB(A)b+ sbb− pY I. (36)

The owner of the exhaustible resource maximizes its discounted �ow of pro�ts

with respect to SR ≥ 0 and ṠR = −R ≤ 0. Appendix AppendixA.2 shows the

current value Lagrangian as well as the derivation of the �rst order conditions.

As long as the exhaustible resource is used, the �rst order condition with respect

to R can be written as

Fx(K, b+R) = M ′(R)− Fxx(K, b+R)R+
φ

pY
− sR
pY

+
τM
pY

. (37)

τM denotes the costate variable of the resource stock, which grows with the

constant rate ρ and is therefore determinate by its initial value τ0M . Since

the capital stock, the tax, the subsidy and the price pY are exogenous to both

resource owner and τM determinate by τ0M , equation (37) de�nes implicitly the

optimal resource supply R∗ subject to the amount of supplied backstop. Thus,

the reaction function is given by R∗ = R∗(b).

Using the same approach for the backstop owner we get for b > 0:20

Fx(K, b+R) = MbB(A)− Fxx(K, b+R)b− sb
pY

. (38)

(38) de�nes implicitly the optimal backstop supply subject to R and the tech-

nology level A, which increases with the resource owner's R&D expenditures.

We get b∗ = b∗(R,A). The optimal R&D expenditures are given by the max-

imization of the Lagrangian with respect to I, with κM denoting the costate

variable of technology:

I∗ = 0, if − pY + κM < 0,

0 ≤ I∗ ≤ Ī , if − pY + κM = 0, (39)

I∗ = Ī , if − pY + κM > 0.

20The Lagrangian and the derivation of the �rst order conditions can be found in Appendix
AppendixA.2.

28



κM evolves according to

κ̂M = ρ+
pY
κM

MbB
′(A)b. (40)

By substituting R∗(b) and b∗(R,A) in (37) and (38) respectively, the Nash -

Cournot equilibrium is implicitly given:

Fx(K, b∗(R∗, A) +R∗) =M ′(R∗)− Fxx(K, b∗(R∗, A) +R∗)R∗ +
φ

pY
−

sR
pY

+
τM
pY

, (41)

Fx(K, b∗ +R∗(b∗)) =MbB(A)− Fxx(K, b∗ +R∗(b∗))b∗ − sb
pY

. (42)

Table 1 summarizes and compares the results of the market economy with

the socially optimal solution. The Ramsey rule of the social optimum is identical

with that of market equilibrium. The same holds for the capital accumulation

equations. To reveal this, we substitute (33), (35), (36) and the government's

budget constraint T = φR−sbb−sRR into K̇ = r
pY
K+ π

pY
+ πb
pY

+ πR
pY

+ T
pY
−C.

For the further analysis we assume that the social planner values capital, the

resource stock SR, and knowledge A in the same way as the subjects of the

economy, which implies λ = λH = pY , τ = τM and κ = κM . In this case

the equations related to R&D are identical. Since the ceiling has no e�ect on

the economy in phase 3, the optimal subsidies will be calculated by comparing

the marginal products of R and b respectively. The irrelevance of the ceiling

suggests φ = 0. We then get for the subsidies

sb = −pY Fxxb > 0, (43)

sR = −pY FxxR > 0. (44)

Using (44) we get φ1 = −θ for the optimal tax during phase 1, and φ2 = µ− θ

during phase 2. Using the index i = 1, 2 as in section 2 the tax φ(t) is given by

φ(t) =


|θ1(t)|, if t ∈ [0, t1),

µ2(t)− θ2(t), if t ∈ [t1, t2),

0, if t ≥ t2.

(45)
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Proposition 6 The market equilibrium replicates the social optimum, if λ =
λH , τ = τM and κ = κM holds, the usage of both resources is subsidized accord-
ing to (43) and (44), and the exhaustible resource is taxed according to (45).

Since θ1(t) = θ01e
(ρ+γ)t, the tax increases during phase 1 at the rate ρ+ γ,

re�ecting the increasing emission stock, and therefore the tightening ceiling.

In other words, as the emission stock increases, the amount of possible new

emissions decreases, implying a higher tax. During phase 2, this amount is

�xed at Ē = γS̄E . However, this does not imply a constant tax but, (in the long

run) a decreasing one, because the natural scarcity of the exhaustible resource

increases. Thus, the tax at the second junction point at t = t2 equals φ(t2) =

µ2(t2)−θ2(t2) = 0. Using the equations for θ2(t) and µ2(t) the tax during phase

2 is given by

φ2(t) = µ02e
(ρ+γ)t

[
Tf (t)− θ02

µ02

]
. (46)

Since the growth rate of Tf (t) is not known exactly, φ2(t) may increase as

well as decrease. Nevertheless, Fig. 9 shows that the tax can only increase,

if the composite good price pY growths fast, i.e. if the in�ation is su�ciently

high. In this case the growth rate of the natural scarcity τ
pY

is small, while the

Figure 9: Condition for an increasing tax during phase 2

denominator of φ
pY

increases. To comply with E(t) = Ē the tax must increase.
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Since p̂Y = ρ − FK , a high capital stock is necessary for a su�ciently high

in�ation rate. Due to the Ramsey rule (32), a low marginal product of capital

implies decreasing consumption. By rewriting the growth rate of φ2 we can show

that consumption must indeed decline if the tax increases. Fur this purpose we

write φ̂2 as

φ̂2 = ρ+ γ − µ2

φ2
[ρ− µ̂2]. (47)

The tax increases if, and only if, FK + γ − µ2

ψ [ρ − µ̂2] − γ τψ > FK − ρφ2

ψ

holds. The left hand side equals m̂q
2, which can only decrease or stay unchanged.

Therefore, 0 > FK−ρφ2

ψ and because of φ2 < ψ it follows FK−ρ < 0. According

to the Ramsey rule (32) FK − ρ < 0 implies decreasing consumption, which is

only possible if the capital - technology - combination describing the status of

the economy lies above the SSL.

Proposition 7 The optimal tax increases during phase 1 due to the increasing
emission stock. Since the natural scarcity increases monotonically, the tax de-
creases to zero during phase 2. If in�ation is su�ciently high, and consumption
declines, the tax increases in the short run.

5. Conclusion

This paper analyzes the e�ects on R&D and the capital stock of a ceiling on

the pollution stock. For this purpose we augment the endogenous growth model

of Tsur and Zemel (2005) with a polluting resource and a ceiling on the stock

of pollution as known from e.g. Chakravorty et al. (2006a). We show that the

ceiling mainly a�ects the short run development of the economy by imposing an

arti�cial scarcity on the exhaustible resource. Since the costs of the backstop

can be reduced by R&D, the arti�cial scarcity increases the advantageousness

of R&D, such that R&D is optimal at more possible states of the economy.

Inversely, the number of possible states allowing capital accumulation declines.

As long as the economy belongs to one of the two standard cases, which both re-

quire singular R&D investments, the long run development is hardly a�ected by

the ceiling. In other words, the development path remains unchanged, whereas

the position of the economy on the path to one speci�c moment in time may be
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altered. If R&D is omitted, the ceiling has no e�ect. The ceiling may alter the

steady state of the economy if and only if maximal R&D is canceled in favor of

minimal R&D.

As in Chakravorty et al. (2006a), Chakravorty et al. (2006b), Chakravorty et al.

(2008), Chakravorty et al. (2011) and La�orgue et al. (2008), we are able to dis-

tinguish three time phases. Phases 1 and 3 are characterized by a non-binding

ceiling. However, in phase 1 it will become binding later on, while it will never

be binding in phase 3. During phase 2, the pollution stock is at the ceiling.

Analogous to Chakravorty et al. (2006a), the only sequence containing all three

phases starts with a non-binding ceiling that will bind later on to become non-

binding afterwards. In contrast to the Hotelling models we can explain changes

of total energy demand endogenously, since capital is taken into account. Similar

to Chakravorty et al. (2011) a declining resource scarcity at the ceiling is caused

by an increasing technology level. However, the necessary R&D is an explicit

decision and R&D can be abandoned, while Chakravorty et al. (2011) assumes

a cost reducing learning-by-doing e�ect. In both cases, the importance of the

exhaustible resource for production vanishes as the utilization of the backstop

is intensi�ed.

The optimal resource extraction path is a�ected by the ceiling, since it exhibits

a plateau during phase 2. While intuition suggests a reduction of resource uti-

lization at the starting time to delay the moment the ceiling becomes binding,

the results also permit some kind of green paradox. If the natural scarcity of

the exhaustible resource is not a�ected by the ceiling, both resource utilization

and non-consumed income are higher in this case, implying greater investments

in the capital stock and/or research to adjust to the ceiling.

We show that the social optimum is implemented by a market economy, if the

government subsidizes both resources to counter market power e�ects result-

ing from the Cournot competition on the resource market. Additionally, the

exhaustible resource has to be taxed during phases 1 and 2 to comply with

the ceiling. During phase 1, the tax increases monotonically, re�ecting the ris-

ing emission stock and the increasing arti�cial scarcity. During phase 2, the
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emission stock remains unchanged, while the natural scarcity of the resource

increases, resulting in the tax being abolished at the end of phase 2. If in�ation

is su�ciently high, the tax can increases in phase 2 temporary. In this case,

the capital stock must be high, and consumption decreases. It is noteworthy

that the model does not support subsidies for the backstop that are granted for

pollution control reasons.

To keep the model as simple as possible we have omitted several augmentations

of the Hotelling models, such as abatement activities or di�erently polluting

exhaustible resources. These are left for further research as are a second tech-

nology, or depreciations of technology that may explain an increasing scarcity

of the exhaustible resource at the ceiling.
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AppendixA. Appendix

AppendixA.1. Individual

The current value Hamiltonian of the representative individual is:

H = U(C) + λH

[
r

pY
K +

π

pY
+
πb
pY

+
πR
pY

+
T

pY
− C

]
(A.1)

The �rst order conditions and the transversality condition are given by:

∂H

∂C
= U ′(C)− λH = 0 (A.2)

∂H

∂K
= λH

r

pY
= ρλH − λ̇H (A.3)

lim
t→∞

e−ρtλH(t)[K(t)−K∗(t)] ≥ 0 (A.4)

AppendixA.2. Resource Owners

The current value Hamiltonian of the �rm owning the exhaustible resource

is:

H = [pY Fx(K, b+R)− φ]R− pYM(R) + sRR− τMR (A.5)

The �rst order condition as well as the transversality condition are given by:

∂H

∂R
= pY Fxx(K,x)R+ pY Fx(K,x)− φ− pYM ′(R) + sR − τM = 0 (A.6)

∂H

∂SR
= 0 = ρτM − τ̇M (A.7)

τM (TR) = γSR (A.8)

γSR ≥ 0, γSRSR(TR) = 0 (A.9)

H(TR) =


≤ 0, if TR = 0

= 0, if 0 < TR <∞

≥ 0, if TR =∞

(A.10)

TR denotes the point in time the resource stock SR becomes exhausted.

The current value Hamiltonian of the �rm owning the backstop is:

H = pY Fx(K, b+R)b− pYMbB(A)b+ sbb− pY I + κMI (A.11)
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The �rst order condition as well as the transversality condition are given by:

∂H

∂b
= pY Fxx(K,x)b+ pY Fx(K,x)− pYMbB(A) + sb = 0 (A.12)

∂H

∂A
= −pYMbB

′(A)b = ρκM − κ̇M (A.13)

lim
t→∞

e−ρtκM (t)[A(t)−A∗(t)] ≥ 0 (A.14)

The maximization of the Hamiltonian with respect to I gives:

I∗ = 0, if − pY + κM < 0 (A.15)

0 ≤ I∗ ≤ Ī , if − pY + κM = 0 (A.16)

I∗ = Ī , if − pY + κM > 0 (A.17)

The index ∗ marks the optimal value of the variable in question.

37


	Titlepage
	Manuscript

