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1 Introduction

This study is devoted to the analysis of the tension between individual and col-

lective rationality in a dynamic environment where economic transactions are

insecure. The more general intellectual challenge to identify the mechanisms

relevant for the evolution of property rights in society apart, there are many

reasons why we believe this analysis to be of interest. Specifically, the struggle

of pharmaceutical, software and music enterprises exert great efforts to protect

their intellectual property rights and their investments.1 Business organizations

of all kinds attempt to encourage autonomous individuals to sacrifice for the

overall benefit of the firm, yet rewards and performance measures are struc-

tured around individual contributions. Many of the global frictions we witness

today can be traced to large scale divergences between the self interests of polit-

ical elites and the well being of the global community2 — most conflicts have

their origin in a quasi-Darwinian fight for existence between religious and ra-

cial groups.3 Influential literature argues that resource abundance increases rent

seeking activities.4

To endogenize the emergence of spontaneous order, more specifically, of prop-

erty rights requires the dynamic analysis of behavior that predicts a trajectory

of property rights. Building on the static models of Grossman (2001), Skaper-

das (1992) and Hirshleifer (1991), we develop an agent-based infinite horizon

general-equilibrium model to study the dynamic evolution of self-enforcing prop-

erty rights. Such an analysis is potentially complicated because of the complex

intertemporal interdependence between the desire to obtain the best possible

outcome for oneself, i.e., aggression or greed, and production. The relevant

1According to the Pew Internet & American Life Project, 29% of internet users have in-
dicated usage of file sharing computer applications.

2Collier and Hoeffler (2004) cite the Stockholm International Peace Research Institute,
according to which only two of the 27 major armed conflicts listed in 1999 were internal.

3There are many real world economic amalgamations in which conflict can take place
(between the states in a federation, between or within nations, ethnic groups, religious groups,
etc.). For concreteness the argumentation here is primarily based on conflicts within a nation.

4Sachs and Warner (1999) estimate that an increase in natural resource intensity on GDP
leads to a reduction in economic growth. Torvik (2002) shows that resource abundance in-
creases the payoff from conflict and lowers growth of the economy.
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state variable in the model we use is a durable (capital) stock which is produced

using collective efforts of all involved in the production process. This durable

stock is exhaustible or rival in the sense that one agent’s use of the stock does

diminish its availability to other agents. Hence each of the agents is tempted by

the immediate benefit attainable from capturing the stock.

This model structure allows to explicitly consider insecure market transac-

tions. They enter through the assumption that property rights are determined

by the equilibrium level of aggression or greed. The basic mechanism is the

following. We model the incentives of agents to exert effort in an attempt to

defend their claims on the stock and challenge the claims of others. All agents

who succumb to the temptation reduce their help in production of the common-

pool stock to increase their efforts to convert claims on the common stock into

effective property rights. More specifically, agents derive utility (or a payoff)

from owning capital stock and, at every instant in time, choose how to alloc-

ate an endowment between appropriation of the common-pool stock (creating

property rights) and participating in the production process to increase level of

the capital stock in the economy. The investment decisions made independently

and noncooperatively by each of the contenders jointly determine the evolution

of the commonly accessible stock (the state variable).

We present a tractable version of a differential game formulation of this

model of conflict between several agents who attempt to appropriate a common-

pool durable stock over an infinite horizon. The solution concept employed is

Markov perfect equilibrium, restricting strategies to be functions of the current

payoff-relevant state variable. Not all the strategies that describe a solution of

the intertemporal optimizing problem of an agent are Markov perfect equilib-

ria. The key to determining which describe equilibrium outcomes is subgame

perfection over the entire domain of a state variable. In our model, this require-

ment produces a unique linear strategy. This linear strategy has the following

characteristics and implications. First, the solution suggests that initially poor

countries will exhibit an increase in appropriation as the aggregate stock of

the capital stock gets larger until a steady state is reached. Second, on the
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other hand, in economies with an affluent endowment of natural resources the

‘marginal gain’ of appropriation is high and agents substitute appropriation for

production for a while until the state variable reaches a threshold level. From

that threshold onwards, agents choose to invest in production to some extent

until a steady state is reached where the output of production is only just suf-

ficient to replace the capital stock. This result relates to the observation that

rent-seeking activities in rich countries may result in deindustrialization as sug-

gested by the literature on the resource curse (e.g., Sachs and Warner, 1999;

Auty, 2001).5 Third, our results also suggest that regardless of the difference in

the initial levels of common-pool endowment economies converge to the same

steady state. There, property rights are ’partially’ enforced in the sense that

appropriation and productive activities coexist, so that neither a totally peace-

ful (disarmed) equilibrium nor a full-fighting equilibrium emerges as a long run

outcome.

Fourth we identify the possibility that countries may reach different long run

equilibria in a case where each of the contenders anticipates that the domain

of the prize in the contest is limited. We present the exact domain restriction

required to obtain Markov perfect equilibrium strategies leading to a multipli-

city of equilibria. As a result, the model predicts that some countries converge

to a low-income steady state with more unstable property rights (which is so-

cially less desirable), and some converge to a high income equilibrium with more

stable property rights (which is socially more desirable).6 Potentially, at least,

a humped-shaped relation between appropriation and wealth can constitute a

long run outcome.

There are a few papers which examine a dynamic variation of the one-shot

conflicting game analyzed by Grossman (2001), Hirshleifer (1991, 1995) and

5There is evidence that resource abundance in the definition used by Sachs and Warner
(1999) is associated with civil war (e.g., Collier and Hoeffler, 1998; Hodler, 2005).

6Auty (2001) argues that experiences in different countries are complex and diverse. Some
countries like Malaysia, Australia, Norway, Botswana and Canada appear to have used their
resources judiciously, whereas countries like Nigeria, Mexico and Venezuela seem to have
squandered their oil windfalls. According to Acemoglu et. al. (2001) the limiting force of
conflict is institutional quality as a key driver for economic growth and prosperity.
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Skaperdas (1992).7 Garfinkel (1990) examines a dynamic model in which agents

make choices between productive and fighting activities. She uses a repeated

game setting where threats and punishments are available. Existence of cooper-

ative (or disarmament) equilibria can be established using Folk Theorem arge-

ments. Skaperdas and Syropoulos (1996) discuss a two-period model of conflict

in which time-dependence is introduced by the assumption that second period

resources of each agent are increasing in first-period’s payoff. As a result, ‘the

shadow of the future’ may impede the possibilities for cooperation. In other

words, competing agents engage more in appropriation in order to capture a

bigger share of today’s pie. The equilibrium solution concept we employ in this

paper allows us to identify possible cooperative outcomes as a result of decent-

ralized decision-making by agents, without having to rely on the Folk Theorem

of repeated games or enforceable commitments.

The organization of the paper is as follows. The next section describes the

basic model. Section 3 derives an efficient solution (i.e., cooperative solution) as

a reference path. Section 4 conducts comparative static analysis with respect to

several principle structural parameters. Section 5 concludes the paper.

2 The Model

Consider an infinite horizon economy populated by n ≥ 2 agents who stra-

tegically interact. Each of the agents derives utility from the consumption (or

services) of a common-pool asset (such as land territories and natural resources)

7More recently, there is another class of dynamic conflicting models that include, e.g.,
Gradstein (2003) and Gonsalez (2005). There are several important differences between the
models in these papers and the one in ours. First, in their models a flow of the output
produced each period is subject to predation, while in our model a stock variable is subject to
predation. Secondary and more importantly, those papers investigate the relationship between
conflict and economic growth in the standard growth model based explicitly on the investment
and saving decisions of a large number of economic agents. Hence, their models are mostly
concerned with the macroeconomic consequences, such as growth effects, of insecure property
rights. Since our model is a straightforward dynamic extension of Grossman, Hershleifer and
Skaperdas which allows for static interaction among a few economic agents, it enables one to
directly compare our results with those in static conflicting models and thus to highlight the
strategic role of appropriation among those few agents in the intertemporal context.

4



or (tangible and intangible) capital stocks. We want our model to capture the

role of productive and aggressive activities with the understanding that aggress-

ive investment causes an inward shift of the aggregate production possibility

frontier. Accordingly, we use a setup where appropriation and production are

two substitutable investment choices. Specifically, let an individual decide at

each point in time how much resources to devote for appropriation ai ≥ 0 and
production li ≥ 0. The individual resource (e.g. time) constraint is:

ai + li = ei, (1)

where ei is the endowment of a fill-in activity that is not subject to appropri-

ation.8 We will set ei = 1 for ease of exposition. The time arguments have been

suppressed in this and all subsequent equations.

The common-pool stock is subject to appropriation. The stock is gener-

ated by accumulation of output. Output is produced with a linear production

technology:

Y (l1, . . . , ln) =
nX

j=1

lj, (2)

which captures the idea that higher productive efforts by agents cause an out-

ward shift of the production possibility frontier for the economy as a whole.

The output of production can be stored to augment the common-pool stock.

However, storage entails costs such that the stock Z evolves according to

Ż = Y (l1, . . . , ln)− δZ, (3)

where δ ∈ (0, 1) is the rate at which output will depreciate if stored for future
consumption, Ż denotes the change of Z over time and Z (0) ≥ 0 is the initial
stock.

8The standard assumption that each agent has some essential property rights is implicit
in this formulation. In the standard rent-seeking contests this activity is, for example, the
investment in a perfectly secure project with a return that is normalized to be equal to one.

5



A main ingredient of the model is the conflict technology which, for any

given values of a1, . . . , an, determines each agent’s probability of winning sole

possession in obtaining the stock Z in a given period. To model this probability

for agent i, a natural assumption is that the probability is increasing in aggressive

investment of agent i, the fraction of time player i devotes to aggression, and

decreasing in the sum of aggressive investment of all agents. A plausible form of

the conflict technology is the Tullock contest success function (Tullock, 1980).

In its standard formulation this function reads:

pi (a1, . . . , an) =

⎧⎨⎩ari

.³
ari +

Pn
j 6=i a

r
j

´
for ai > 0

1/n for ai = 0 ∀i
(4)

where the parameter r captures the effectiveness of aggression. From the contest

success function (4) we obtain the relative success of contender i in the contest.

Alternatively, the contest success function (4) may be interpreted as a sharing

rule, or ownership of assets that depends on the respective efforts of aggression.

It is natural to assume in the analysis that each agent has an equal access to the

prize when agents do not engage in aggressive behavior; hence the assumption

that pi (0, . . . , 0) = 1/n will be in force throughout the analysis.

The instantaneous expected payoff to each agent is given by pi (a1, . . . , an)Z.9

Each of the agents chooses the streams of ai and li to maximize the discounted

value of total expected payoffs subject to the feasibility conditions introduced

in (1)-(4):

max
ai

Z ∞

0

pi (a1, . . . , an)Ze
−ρtdt subject to

Ż =
nX

j=1

(1− aj)− δZ, Z (0) = Z0 ≥ 0,

0 ≤ ai (t) ≤ 1 for all t ∈ [0,∞) ,
9Alternatively, one may view the prize as flow services, such as output or utility from the

stock variable Z rather than Z itself. In this case we have to introduce a concave function,
say u (Z) instead of Z . This complication does not affect our results at all.
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where ρ > 0 is the rate of time preference.

2.1 Solution Concept

We solve the differential game using the notion of a (stationary) Markov perfect

Nash equilibrium, because we think that this equilibrium concept captures the

essential strategic interactions over time. Markov prefect strategies are decision

rules such that each agent’s decision is the best response to those of the other

players, conditional on the current payoff-relevant state variable Z (see, e.g.,

Chapter 4 in Docker et al., 2001). Markovian strategies rule out path dependence

in the sense that they depend only on the current values of the state variables

rather than strategy choices in history. As a result, it does not matter how one

gets to a particular point, only that one gets there.

Markov perfect equilibrium strategies must satisfy the Hamiltonian-Jacobi-

Bellman equation given by:

ρVi (Z) = max
ai∈[0,1]

"
pi (a1, . . . , an)Z + V 0

i (Z)

(
nX

j=1

(1− aj)− δZ

)#
, (5)

where Vi denotes the maximum value agent i attributes to the game that starts

at Z. Notice that

∂2pi
∂a2i

Z = r (n− 1) n (r − 1)− 2r
n3a2i

Z < 0 for

⎧⎨⎩n = 2 ∧ r > 0,
n > 2 ∧ 0 < r < n/(n− 2),

(6)

implying that the r.h.s. of (5) is concave in ai ∈ [0, 1]. We assume that r <

1/(n − 1) in what follows, anticipating that the linear strategy of each agent,
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which plays an important role in the later analysis, is a nonnegative value. The

function that maximizes (5) can then be derived from

∂pi
∂ai

Z − V 0
i (Z)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
= 0 =⇒ ai ∈ [0, 1] ,
> 0 =⇒ ai = 1,

< 0 =⇒ ai = 0,

(7)

the l.h.s. of which is evaluated for all ai ∈ [0, 1]. According to (7) each agent,
when choosing ai, trades the marginal increase in expected payoff from an in-

crease in appropriation against the marginal loss in the discounted value of the

future stream of payoffs which results from a reduction of productive effort. If

the payoff gain from an increase in ai is larger than the payoff loss implied by the

decrease in li for all levels of ai, then agent i will rationally devote all resources

to appropriation. In contrast, the agent chooses ai = 0 in cases where the dis-

counted marginal gain from productive investment exceeds the instantaneous

marginal gain from aggressive behavior for all levels of ai.

2.2 Equilibrium

We can then make use of (7) to characterize subgame perfect equilibria of the

differential game. Since we have started our analysis assuming identical agents,

a natural focus is on symmetric equilibria. The symmetry assumption allows us

to drop the subscript i in the subsequent discussion, and we will suppress this

index unless strictly necessary for expositional clarity.

Let us first analyze interior solutions of ai. Differentiation of the interior

first-order condition in (7) gives

V 00 (Z) =
nX

j=1

∂2pi
∂ai∂aj

a0j(Z)Z +
∂pi
∂ai

= −r (n− 1)
n2a2

a0(Z)Z +
r (n− 1)

n2a
. (8)
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At an interior solution of a (Z) we may apply the envelope theorem to char-

acterize a0 (Z). Using the symmetry assumption we obtain

a0 (Z) = −
1

n
+

r (n− 1)
n2a (Z)

[(1− a (Z))n− (ρ+ 2δ)Z]
r (n− 1)
n2a (Z)2

Z (n− δZ)

. (9)

We will employ phase-plane methods to characterize the qualitative solution

of the nonlinear differential equation (9) and the associated Markov strategies.

For this purpose we have to identify the steady state locus where Ż = 0, calledC1
in the following. Let us denote by C2 the loci where a0 (Z) approaches infinity,

and by C3 the loci where a0 (Z) equals zero in the (Z, a) space:

C1 := {(Z, a) : Ż = (1− a (Z))n− δZ = 0},
C2 := {(Z, a) : a0 (Z)→ ±∞}, (10)

C3 := {(Z, a) : a0 (Z) = 0}.

The steady-state line C1 is a downward-sloping, straight line in the (Z, a) space.

It intersects the vertical axis at the point (0, 1) and the horizontal axis at (n/δ, 0).

Turn to C2. Setting the denominator in (9) equal to zero, we obtain a vertical

line at (n/δ, 0). The locus C3 is obtained by setting the numerator in (9) equal

to zero. Solving for a gives the following locus:

a = − r (n− 1)
1− r (n− 1) +

r (n− 1)
1− r (n− 1)

ρ+ 2δ

n
Z. (11)

Using 1 − r (n− 1) > 0, which ensures the second-order condition (6) holds,

(11) shows that the straight line C3 has a positive slope and a negative intercept

on the vertical axis, as shown in Figure 1. Moreover, the point of intersection
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−
r n −1( )

1 − r n −1( )

n
ρ + 2δ

a

Z

a + l = 1

Z LZ E
≡ n δ( )

C1

C2

C3

E
S

1

0

a1

a2

a4
a3

aL

ZS

aE

Figure 1: Phase diagram when aE < 1.

between the straight lines C2 and C3, labelled E, is situated in the nonnegative

region of the (Z, a) plane:

(ZE, aE) =

µ
n

δ
,
r (ρ+ δ) (n− 1)
[1− r (n− 1)] δ

¶
. (12)

Note, however, that since point E may be located below or above the resource

constraint (1), the value of aE may or may not be less than 1. Depending on

this value, we can draw two diagrams such as in Figs. 1 and 2.

It follows from (3) that any strategy a (Z) above line C1 implies that Z

declines in time, while any strategy a (Z) below line C1 entails an increase of Z

over time.

Collecting the arguments we can illustrate an uncountable number of the

hyperbolic curves corresponding to the solutions satisfying the HJB equation

(5) in Figs. 1 and 2. These figures display representatives of those integral

curves that are divided into five types of the families of strategies. Arrows on

the families of integral curves aj, j = 1, . . . , 4, and aL illustrate the evolution
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r n −1( )

1 − r n −1( )

n
ρ + 2δ

a

Z

a + l = 1

Z L Z E
≡ n δ( )

C1

C2

C3

E
Q

S

a1

a2

a3a4

aL

ZS

1

0

aE

Figure 2: Phase diagram when aE > 1.

of Z over time. Strategy aL stands for the linear strategy which is obtained from

the solution to (9):

aL (Z) =
r (n− 1) (ρ+ δ)

[1− r (n− 1)]nZ. (13)

This strategy aL can also be obtained from the well-established guessing method

for a value function (see Appendix C). The left branch of the linear strategy aL
to the left of the steady state line C1 starts from the origin, and then reaches

point S on the steady state line C1, while its right branch starts from any initial

value Z0 > ZS (we do not here take into account the resource constraint (1)),

then reaching point S also. Moreover, it can be verified by substitution that

this linear strategy also goes through the singular point E.

The left branch of the a1-family of strategies starts from the origin and

reaches a point on the steady state line C1, while its right branch starts from

point (n/δ, 0) and reaches the same point on line C1; therefore, those strategies
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never hit the horizontal axis.10 The left-branch of the a4-family of strategies also

starts from the origin, while its right-branch starts from any initial value Z0 <

ZE, both of which reach the same point on line C1. On the other hand, when

the a2- and a3-families of strategies start from any initial value Z0 > ZE, the a2-

family of strategies approaches point (n/δ, 0), while the a3-family of strategies

goes to plus infinity, as illustrated in Figs. 1 and 2.

However, not all integral curves in Figs.1 and 2 are Markov perfect equi-

librium strategies. There are three additional requirements which have to be

met. The first prerequisite is that strategies should not violate the resource

constraint (1). This implies that a (Z) should be bounded to the nonnegative

region below a horizontal line with intercept 1 in Figs. 1 and 2.

The second requirement is that strategies should cover the entire domain

in a continuous way.11 At first glance this requirement seems to eliminate all

strategies aj, j = 1, . . . , 4, and aL. But strategies can potentially be continuously

extended either by the upper bound a = 1 given by the resource constraint (1),

or by the non-aggressive strategy a = 0 on the horizontal axis. Both potential

extensions are triggered by the corner solutions where the equality in (7) does

not apply. In light of these observations, some strategies of the a3-family (that do

not reach the resource constraint (1)) are immediately eliminated because they

can neither cover the entire domain by themselves nor can they be extended by

any strategy in a continuous way.

10To see this note that there exists the self-evident solution a (Z) = 0 to the non-linear
differential equation (9) for any Z ≥ 0. Because the Lipschitz condition, which is satisfied for
any Z ≥ 0 except for the origin and point (n/δ, 0), requires the uniqueness of a solution from
the Cauchy-Peano theorem, any other solution curves in the a1-family of strategies cannot hit
the horizontal axis. Note, moreover, that the Lipschitz condition is not satisfied at both the
origin and point (n/δ, 0), since the denominator of (9) is equal to zero at either point. These
facts together imply that there are many (a continuum of) solution curves emitting from these
two points. However, it is easy to show that a (Z) = 0 cannot be consistent with the equality
in the first-order condition (7), implying that it does not constitute a solution to (5).
11Tsutsui and Mino (1990), and Itaya and Shimomura (2001) restrict the state space in

order to generate multiple equilibrium strategies. In particular, Tsutsui and Mino treat the
domain of a state variable as endogenous to get different stable Markov perfect strategies
associated with different steady states. Unfortunately, this approach prevents comparison of
payoffs between strategies.
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We then examine which of the other families of strategies may be continu-

ously extended by the patching strategy a = 1 or a = 0. Extending the a1-

and a2-families of strategies by the patching strategy a = 0 is not possible

since both extended strategies are discontinuous at point (n/δ, 0). Furthermore,

the a3-family and the a4-family of strategies cannot be continuously extended

by the patching strategy a = 1. The reason is that both are also discontinuous

at ZE = n/δ.

Turn to the linear strategy baL, where the hat indicates those strategies ex-
tended by the patching strategy a = 1. Since strategy baL can continuously pass
through point E in Fig. 1, the coordinates of which are given by (12), strategy baL
is continuos over the entire domain [0,∞). This property is also obtained in the
case illustrated in Fig. 2 where strategy baL does not go through point E. Here,
the patching strategy a = 1 instead of the interior strategy aL will cross locus C2
and thus strategy baL is again continuos over the entire domain of Z. As a res-
ult, only the extended linear strategy baL survives as a candidate for a subgame
perfect strategy.

The third and final requirement is subgame perfection. We have to show that

there do not exist profitable deviations from strategy baL. Strategy baL is stable
in the sense that from an arbitrary initial value of Z strategy baL can reach the
steady state point S in the long run. As a result, the convergence towards the

bounded steady state point S ensures that the value function associated with

strategy baL is bounded. Armed with this fact, we outline in Appendix B that
the extended strategy baL can meet the requirement of subgame perfection over
the global domain [0,∞). We summarize with the following theorem:

Proposition 1 Assume that the domain of the state variable Z is given

by [0,∞) and
Z0 − (ρ+ δ)−1 − δ−1G (Z0) > 0, (14)

where Z0 is an arbitrary initial value of Z,

G (Z0) ≡
µ

ρ

ρ+ δ

ZL

Z0
− ZS

Z0

¶µ
Z0
ZL

¶− ρ
δ

−
µ
ZL

Z0
− ZS

Z0

¶µ
Z0
ZL

¶− ρ+δ
δ[1−r(n−1)]

,
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and ZL ≡ n [1− r (n− 1)] / (n− 1) r (δ + ρ). Then there exists a unique linear

Markov perfect equilibrium strategy that supports the steady state equilibrium

(ZS, aS) ≡
µ
n [1− r (n− 1)]
(n− 1) rρ+ δ

,
r (n− 1) (δ + ρ)

(n− 1) rρ+ ρ

¶
. (15)

Proof. See the Appendix B.
Proposition 1 implies that a unique linear MP strategy exists, even in the

case where the domain is globally defined. As a result, given any initial stock

of Z, the economy approaches the steady state point S where the common-pool

stock takes a positive value and individual aggressiveness takes an intermediate

value between zero and one. In this sense, (implicit) ‘partial cooperation’ can

be seen as a best response to the risk of appropriation.

Although the sufficient condition for subgame perfection (14) appears to be

complicated, we can easily check that (14) holds in cases where Z0 is sufficiently

close to ZL and where Z0 is sufficiently large (see (B8) in Appendix B). To gain

further economic insights, we can give a more restrictive but simpler sufficient

condition than (14) (to be derived in Appendix B):

ZL ≥ ρ+ 2δ

(ρ+ δ) δ
⇐⇒ nδ

nδ + ρ+ δ
− r (n− 1) > 0, (16)

which also ensures that condition 1 − r (n− 1) > 0. When ZL ≥ ZE (= n/δ),

which is illustrated in Fig. 1, it is easy to see that condition (16) is satisfied.

The intuition for Proposition 1 is best understood from the observation that

each contender will have a stronger incentive to engage in appropriation if the

prize Z(t) is large. Consequently, strategy a = 1 is more likely to be subgame

perfect at larger values of Z. Moreover, in view of (16) either the larger is the rate

of time preference ρ or the larger is the rate of depreciation δ, the more likely the

first inequality in (16) is to hold and thus the lower is the incentive to deviate

from strategy a = 1. These results are clearly consistent with the intuition

according to which higher values of those parameters make the accumulation of

the stock Z less attractive, reducing the incentives to engage in production of the

common-pool stock. The effect of the effectiveness parameter r on appropriation
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is subtle in the following sense. A higher r makes the contenders more aggressive

(i.e., strategy aL becomes steeper), so that appropriation can reach an upper

bound on the resource constraint (1) at lower levels of ZL. Since the resulting

smaller ZL in turn makes fighting activity less attractive when Z(t) is close

to ZL, the subgame perfection of strategy a = 1 is less likely to hold.

We are now in a position to discuss the time profile of baL associated with
the evolution of Z. In affluent economies where the level of the stock variable is

sufficiently large, investment in aggression reaches the maximum possible level

in finite time. It then is decreasing until the steady state S is reached. Put

differently, in affluent societies where there is a large amount of the common

pool stock, a full fighting strategy (i.e., a = 1) will be rationally and inevitably

chosen during the transition to the steady state. On the other hand, if the level

of the initial stock level is relatively low at the start of the game investment in

aggressive behavior is monotonically increasing toward the steady state S over

time. That is, as the common-pool stock Z gets larger over time, the contenders

will become greedier, because the marginal gain of appropriation will be higher.

In the long run (i.e., the steady state point S) the economy will reach a situation

where ‘partial cooperation’ prevails in the sense that every agent chooses to

contribute to the production of the common-pool stock Z to some extent.

3 Comparative Static Analysis

In this section we discuss the effects of a change in the model parameters on the

transition path of the linear strategy aL as well as on the associated long-run

equilibrium point S. Consider first the effects of a change in the productivity

(or effectiveness) of conflict technology. The recent developments in computer

networks and their applications mentioned in the introduction are an example of

technological change that potentially puts at risk the intellectual property rights

of the software and music industry. In the model, a change in the productivity

of the conflict technology is captured by a change in r. The shift of point S
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can be calculated by differentiating (15) with respect to the parameter r. This

yields:

daS
dr

= δ (δ + ρ) (n− 1)∆−2 > 0,
dZS

dr
= −n (n− 1) (δ + ρ)∆−2 < 0,

where ∆ ≡ (n− 1) rρ + δ > 0. Although an increase in r does not affect the

line C1, this increase strengthens the intensity of appropriation associated with

every level of the common-pool stock Z during the transition path, thus making

the linear strategy (13) steeper. Since the productivity of appropriation becomes

more effective with higher r, all competing agents engage in more aggressive

behavior in the hope of capturing more resources. This finding is quite intuitive,

and is also consistent with the static conflict models of Hirshleifer (1991, 1995).

An increase in the number of agents augments the aggregate endowment in

proportion to n, since each entrant provides one additional unit of the endow-

ment. The larger aggregate endowment will increase the payoff each agent can

expect to obtain from a given investment in aggression, thereby intensifying each

agent’s aggressive behavior and thus making the linear strategy aL steeper. At

the same time the amount of aggregate endowment devoted to productive as

well as to appropriation will be larger, which corresponds to an outward shift

of the aggregate resource constraint C1 (i.e., scale effect). Although these two

effects together intensify individual appropriation, the long run effect on the

common-pool stock Z is ambiguous:12

daS
dn

= r (δ + ρ) δ∆−2 > 0,

dZS

dn
=

£{1− r (n− 1)− nr} (−rρ+ δ)− ρn2r2
¤
∆−2 R 0.

A higher depreciation rate causes a reduction in the level of the common-

pool stock Z available to contenders, thereby discouraging appropriation. This

negative effect on the prize causes a clockwise turn of line C1 around point (0, 1)

12This effect has been also found in Result 4B of Hirshleifer (1995).
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(i.e., the aggregate resource constraint C1 moves inward toward the origin). At

the same time, a higher δ implies that the cost of maintaining the common-

pool stock is increased relative to the cost of aggressive behavior, which in turn

strengthens an incentive for investment in aggressive behavior, thus making the

linear strategy aL steeper. Although these two effects on appropriation operate

in opposite directions, the following result indicates that the former effect will

outweigh the latter effect in the long run:

daS
dδ

= −ρr (n− 1) [1− r (n− 1)]∆−2 < 0,
dZS

dδ
= −n [1− r (n− 1)]∆−2 < 0.

A decrease of the subjective rate of time preference makes the linear

strategy aL steeper, but it has no effect on line C1. Hence we obtain the

following long run effects:

daS
dρ

= r (n− 1) [1− r (n− 1)] δ∆−2 > 0,
dZS

dρ
= −n (n− 1) [1− r (n− 1)] r∆−2 < 0.

The economic explanation is that there is a tendency to spend less resources on

aggressive investment when contenders become more far sighted (i.e., smaller ρ).

This result has apparently not been addressed by Hirshleifer (1991, 1995) and

Skaperdas (1992), who use the static conflict models. It stands in contrast to

Skaperdas and Syropoulos’s (1996) result in which the higher is the valuation

of the future (i.e., smaller ρ), the stronger is the intensity of fighting. The

reason for this difference is that in their two-period’s model agent’s first-period

expenditure on appropriation increases agent’s second-period payoff. Rather,

our result is similar to Garfinkel’s (1990) Folk Theorem type result in repeated

games where higher discount factors (i.e., smaller ρ) make it easier to sustain

cooperative outcomes. An interpretation of our result is that long-sighted agents

become less aggressive because they are more concerned about the future. We

may then summarize the discussion in the following proposition:
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Proposition 2
(i) An increase in the effectiveness of aggression leads to a higher level of ag-

gression and to a lower level of the common-pool stock;

(ii) an increase in the number of agents leads to a higher level of aggression, but

the effect on the common-pool stock is ambiguous;

(iii) an increase in the depreciation rate leads to a lower level of aggression and

of the common-pool stock; and

(iv) a decrease in the subjective rate of time preference leads to a lower level of

aggression and to a higher level of the common-pool stock.

4 The Cooperative Solution

We will characterize the explicit cooperative solution as a benchmark steady

state in the following. Assume an outside enforcer or centralized agency has

the power to induce every contender to execute its command. The cooperat-

ive strategy is one for which a centralized agency chooses the infinite-horizon

planning profile of strategy a ∈ Rn
+ at the outset of the game so as to max-

imize
R∞
0

Ze−ρtdt subject to Ż = n −Pn
j=1 aj − δZ where aj ∈ [0, 1] for all j.

Clearly this optimization yields a totally peaceful solution, that is, aj (t) = 0

for t ∈ [0,∞) for all j. The result is understood by noting that expenditure on
appropriation is socially wasteful in the sense that it causes a deadweight loss

because of the non-productive use of resources. This deadweight loss should be

zero in the hypothetical case where a central agency can directly control the

allocation between productive and appropriation. As a result, the superior au-

thority should establish point (n/δ, 0) in the long run. Agents would benefit from

an enforced peaceful resolution because Pareto-inefficient aggressive activity is

completely eliminated.

Combined with the comparative static results in the previous section, we

obtain the following results:

Proposition 3 Assume that a centralized agency chooses an allocation between
aggressive and productive investment so as to maximize aggregate payoff. The
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resulting allocation dictates that agents devote all resources to the socially pro-

ductive activity to obtain the Pareto efficient point (n/δ, 0) in the long run.

Moreover, a decrease in either the productivity of aggressiveness, the depreci-

ation rate, or the subjective rate of time preference moves the resulting long run

equilibrium closer to a Pareto efficient one.

The nuclear nonproliferation treaty which deters the development of nuclear

weapons (i.e., aggressive technology) would be socially desirable in a way that

makes the long run outcome closer to the peaceful and efficient one. Another

example is patent law, which aims at enforcing property rights on investment

return and thus limits socially wasteful activities. Patent law potentially pre-

vents a rapid fall in the expected return from new innovation, which would be a

consequence of imitation by rivals. The increase in return on investment caused

by secure property rights is approximately captured by the effect of a lower

depreciation rate in our model.

The problem with using the cooperative solution as a benchmark is that the

socially attractive steady state is not self-enforcing because it does not consti-

tute a subgame perfect (Nash) equilibrium. There is a strong argument that

a necessary condition for self enforcing agreements at every moment in time is

that they can be established as a subgame perfect equilibrium. There must exist

other ways to realize socially desirable outcomes (or making the long run equi-

librium closer to the Pareto efficient point (n/δ, 0)) without the need to assume

outside enforcement or compulsion imposed by a strong central agency. For

several reasons (see, e.g., Itaya and Shimomura, 2001), the domain of the state

variable could be restricted, which may generate a multiplicity of equilibria.

This is a defining characteristic of dynamic games which has never been cap-

tured by the one-shot conflict models. In the present model, if the domain of Z

is restricted over the interval [0, Z̄], where Z̄ (< ZE) represents the upper bound

on the domain, we obtain an uncountable number of the a1- and a4-families of

strategies which are subgame perfect over that domain. These strategies lead

to a continuum of steady state equilibria. Figs. 3 and 4 draw a continuum of
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Figure 3: Multiplicity of equilibria in the restricted domain of Z when aE < 1.

steady state equilibria as the bold line segments.13 More importantly, it follows

from Figs. 3 and 4 that more peaceful (efficient) transition paths and long run

equilibria, as compared to the transition path of the linear strategy baL and the
associated long run equilibrium point S, could be possible:

Proposition 4 Assume (14) holds and that the domain of the state variable Z
is restricted over the interval [0, Z̄] with 0 < Z̄ < ZE. There exist uncountable

many nonlinear Markov perfect equilibrium strategies that constitute a continuum

of steady states. When the domain of the state variable Z is restricted over

the interval [0, Z̄] with Z̄ > ZE, there exists only the linear Markov perfect

equilibrium strategy that supports a unique steady state point S.

When the domain of the state variable is restricted on the prescribed range

stated above, agents in (initially) poor economies may have an infinite number

of choices to increase the stock of the common-accessible stock since there exist

an uncountable number of Markov perfect equilibrium strategies emitting from

13Although the upper bound on the state variable domain, Z̄, can be closer to ZE(≡ n/δ)
as much as possible, this upper bound cannot coincide with ZE . This is because at ZE
the a1-family of strategies are discontinuous.
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Figure 4: Multiplicity of equilibria in the restricted domain of Z when aE > 1.

the origin. One of those strategies (i.e., strategy baL) would lead the economy
to point S. But other options exist. Following any of the strategies in the a1-

family of strategies implies that the level of aggression increases (and then may

decrease) towards a continuum of steady states ranging over a proper set of

the interval [0, Z̄]. It is socially desirable to follow one of the less aggressive

strategies and thus potentially realize socially better outcomes in the long run

compared to the steady state point S supported by the linear Markov perfect

strategy. As a result, agents have to be confronted with a coordination problem

in order to select the most efficient strategy.

Accordingly, governments or central agencies can play dual roles in restricting

the domain of the state variable as well as in solving the coordination problem

stated above. Multiplicity entails that a window of opportunity is available for

an anarchic society in the sense that the equilibrium is not only predetermined

by the capital stock Z0. A coincidental start abstracts from all means of commu-

nication and trust between agents. But agents have an interest in avoiding the

loss caused by aggression and may transcend their lack of confidence to achieve

the Pareto-dominant equilibrium. Benevolent governmental institutions might

be important devices for solving the coordination problem, such that the soci-
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ety in the best circumstance is able to coordinate on the preferred among all

feasible equilibria. Nevertheless, it should be stressed here that the multiplicity

of equilibria we derive as a special case is vulnerable on theoretical grounds.

5 Conclusions

The first conclusion of this paper is that completely aggressive behavior is not

necessarily a rational strategy for an agent in anarchic situations. Rather, every

agent will voluntarily and uniquely choose ‘partial cooperation’, in which each

agent devotes his individual resource both to productive and appropriation at

the same time, even though agents act fully rational and are guided by their

self-interest. The primary driving force is the durability of the common-pool

stock in conjunction with the forward looking behavior of agents. These intrins-

ically dynamic ingredients induce each contender to behave ‘partially cooperat-

ively’, even without punishments and threats, unlike Garfinkel (1990). In other

words, either if the stock depreciates completely each period or if contenders

have myopic foresight, they are less motivated to follow a cooperative behavior

in producing a commonly-accessible good.

The second conclusion is that the domain of a state variable also plays a

critical role in determining the nature of the equilibrium in addition to the equi-

librium concept, which has not been addressed by the static conflict models.

Nevertheless, one may cast doubt on the possibility of restricting the domain in

reality. We may provide one possible justification for this argument. In reality

agents cannot have the sophisticated ability to perfectly foresee and calculate

any possible strategic interaction over an infinite horizon. More realistic agents

do have a limited ability of calculating, collecting information and forecasting

future events. Restricting the domain of a state variable may provide a good sub-

stitute mechanism for describing the behavior of such bounded rational agents.

Properly speaking, economic intuition suggests that those agents could volun-

tarily narrow the domain of a state variable or truncate part of the domain.

With such a voluntary restriction the possibility of multiple equilibria would be-

22



come more likely. The multiplicity of equilibria then may be more causal than

predicted by this theory. In this case it may be one of the primary functions

of centralized institutions to play a critical role to resolve such a coordination

problem.14 It is a lesson from history that centralized institutions need to be

an equilibrium outcome. It is this constructive aspect of anarchism that can

explain the evolution of nation states. Therefore, bounded rationality paired

with limited cognitive ability of the agents and the necessity for confidence in

others may be the primary rational for the existence of a centralized institution

or a constitution.

In addition to the above-mentioned role of the government, the results of the

paper suggest that the government (or central agency) should also play the fol-

lowing roles in order to achieve a socially desirable outcome, and thus move the

long run outcome closer to the more efficient ones. First, governments should

attempt to contain the development of the conflict technology, reduce the depre-

ciation rate of common-pool assets or induce people to have longer sight. Such

structural or institutional reforms, including laws or institutional schemes, could

reduce the likelihood of aggression, and thus lead to peaceful and more efficient

outcomes in the long run. Second, if intervention by a centralized agency to dir-

ectly control fighting expenditures is impossible, it would be socially desirable

to introduce the domain restriction through some kinds of indirect regulation

such as an imposition of a ceiling or floor imposed on the state variable.

The model presented in this paper should be developed further in several

directions. In particular, introducing asymmetry among agents would enable us

to compare the results of the present model with those static models which do

incorporate asymmetric agents. The ‘paradox of power’ (Hirshleifer, 1991) may

be generated in such an asymmetric dynamic conflicting model.

14In evolutionary games bounded players are usually assumed to be myopic. This assump-
tion may stand in the spirit similar to our voluntary restriction of the domain in the present
differential game.
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Appendix A: Derivation on the HJB equation

In this appendix we show how to derive (9) in the text. Assuming an interior

solution and solving (7) for each agent yields the optimal strategy ai = ai (Z).

By substituting this optimal strategy into (5), the HJB equation (5) associated

with agent i is transformed into

ρVi (Z) = pi(a1 (Z) , ..., an (Z))Z + V 0
i (Z)

"
nX

j=1

(1− aj (Z))− δZ

#
. (A1)

By differentiating (A1) with respect to Z and applying the envelope theorem to

the resulting expression, we obtain

ρV 0
i (Z) =

nX
j=1

∂pi
∂aj

a0j (Z)Z + pi(.) + V 00
i (Z)

"
nX

j=1

(1− aj (Z))− δZ

#

+V 0
i (Z)

"
−

nX
j=1

a0j (Z)− δ

#
. (A2)

Substituting (7) and (8) into V 0
i (Z) and V 00

i (Z) in (A2), respectively, and ex-

ploiting symmetry yields

0 = (n− 1)
∙
∂pi
∂ak

Z − ∂pi
∂ai

Z

¸
a0 (Z) + p(.)+∙

∂2pi
∂a2i

a0i(Z) + (n− 1)
∂2pi

∂ak∂ai
a0k(Z)

¸
Z [n (1− a(Z))− δZ]

+
∂pi
∂ai

[n (1− a(Z))− δZ]− (δ + ρ)
∂pi
∂ai

Z, k 6= i. (A3)

Since the assumption of symmetry further allows us to make use of the following

simple expressions:
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pi =
1

n
,
∂pi
∂ai

=
r (n− 1)

n2a
,
∂pi
∂ak

= − r

an2
,

∂2pi
∂a2i

= r (n− 1) n (r − 1)− 2r
n3a2

,
∂2pi

∂ak∂ai
=

r2 (−n+ 2)
n3a2

,

we substitute those expressions into (A3) yielding

0 =
n− 1
an2

[−r − r (n− 1)]Za0(Z) + 1
n
+

r (n− 1)
n3a2

[r (−n+ 2) + n (r − 1)− 2r]Z [n (1− a(Z))− δZ] a0(Z)

+
r (n− 1)

n2a
[n (1− a(Z))− δZ]− (δ + ρ)

r (n− 1)
n2a

Z. (A4)

Further rearranging (A4) gives rise to (9) in the text.

Appendix B: Subgame Perfection

In this appendix we shall check whether the extended linear strategy baL is sub-
game perfect over the global domain [0,∞). To do so, we divide the domain
[0,∞) into the subintervals [0, ZS] and [ZS,∞) , and then investigate whether
or not there is an incentive for each player to deviate from strategy baL when the
initial stock of the common-pool asset Z0 lies in the respective intervals. So we

first consider the case where the initial stock Z0 lies in the interval [0, ZS]. Since

in this case strategy baL satisfies the equality in (7) and thus the HJB equation
(5), it is subgame perfect over the domain [0, ZS]. In addition, the bounded-

ness of the value function associated with this strategy clearly follows from the

bounded instantaneous utility function, pZ, resulting from the bounded value

of Z in the steady state point S and the convergence of strategy baL towards this
steady state.
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Next, we investigate whether strategy baL is subgame perfect when it starts
from any initial stock Z0 ∈ [ZS,∞). We further subdivide this domain into two
intervals [ZS, ZL] and [ZL,∞), where

ZL ≡ n [1− r (n− 1)]
(n− 1) r (δ + ρ)

.

is given by the intersection point of the linear strategy aL, (13), with line a = 1,

provided 1− r (n− 1) > 0.
Without loss of generality, we suppose that strategy a = 1 is played from

time 0 to t1 and after time t1 the interior linear strategy aL (Z), (13), will be

taken, thus leading to the steady state point S. As a result, during t ∈ [0, t1] the
state variable Z evolves according to Ż = −δZ, so that we have Z (t) = Z0e

−δt.

After time t1, the linear strategy aL (Z) will be played, so that the evolution

of Z (t) follows

Ż = n

∙
1− (n− 1) r (δ + ρ)

n [1− r (n− 1)]Z
¸
− δZ = n− (n− 1) rρ+ δ

1− r (n− 1) Z,

the solution of which is given by

Z (t) = ZS + (ZL − ZS) e
− (n−1)rρ+δ

1−r(n−1) t, (B1)

noting that Z (t) → ZS as t → ∞. Substituting the values of ZL and ZS into

(B1) gives

Z (t) =
n [1− r (n− 1)]
(n− 1) rρ+ δ

∙
1 +

δ [1− (n− 1) r]
(n− 1) r (δ + ρ)

e−
(n−1)rρ+δ
1−r(n−1) t

¸
.

Taken together, the resulting value function which starts from Z0 ≥ ZL is given

by
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Vi (Z0) =

Z t1(Z0)

0

1

n
Z0e

−δte−ρtdt+

e−ρt1(Z0)
Z ∞

t1(Z0)

1

n

h
ZS + (ZL − ZS) e

− (n−1)rρ+δ
1−r(n−1) t

i
e−ρ(t−t1(Z0))dt. (B2)

Note that since Z (t) reaches ZL at time t = t1, we can express ZL = Z0e
−t1δ,

which implies that t1 = δ−1 log (Z0/ZL) (≡ t1(Z0)). Integration and rearrange-

ment gives

Vi (Z0) =
1

n (ρ+ δ)

£
Z0 − e−ρt1(Z0)Z0

¤
+

ZS

nρ
e−ρt1(Z0)

+
1− r (n− 1)
n (ρ+ δ)

(ZL − ZS) e
− ρ+δ
1−r(n−1) t1(Z0),

the differentiation of which with respect to Z0 yields

V 0
i (Z0) =

1

n (ρ+ δ)
+

1

nδZ0

∙µ
ρ

ρ+ δ
ZL − ZS

¶
e−ρt1(Z0) − (ZL − ZS) e

− ρ+δ
1−r(n−1) t1(Z0)

¸
,

(B3)

noting that t01 (Z0) ≡ 1/(δZ0) > 0.
Finally, by making use of the value function (B2) (and (B3)) we have to prove

that ai (Z (t)) = 1 is a best-response to a−i = (1, . . . , 1) ∈ Rn−1
+ for every player i

at any point in time. In what follows, we suppose that only deviator i can adopt

any strategy ai ∈ [0, 1], while other players continue to play the (n− 1)-tuple of
strategies a−i = (1, . . . , 1). Following Theorem 16 in Rowat (2002), we have to

show that the following inequality holds for any strategy played by deviator i;

i.e., for ai ∈ [0, 1]

ρVi (Z (t)) =
1

n
Z (t) + V 0

i (Z (t)) [−δZ (t)] ,

≥ ar

n− 1 + ar
Z (t) + V 0

i (Z (t)) [1− a− δZ (t)] , (B4)
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where noting that by symmetry the same inequality (B4) holds for every player.15

By subtracting the l.h.s. of (B4) from its r.h.s., we define

F (a;Z (t)) ≡ (1− ar)(n− 1)
n (n− 1 + ar)

Z (t)− V 0 (Z (t)) (1− a), (B5)

We want to show that F (a;Z (t)) ≥ 0 for any deviator’s strategy ai ∈ [0, 1].
Without loss of generality, we set Z (t) = Z0.

When deviator i plays an interior strategy a ∈ (0, 1) (we drop subscript i on
strategy a from now on), the first-order condition (7) should hold with equality.

Thus we substitute this equality into (B5) and rearrange to get

F (a;Z0) ≡ arZ0
n− 1 + ar

(1− ar) (ar + n− 1)− (1− a)nrar−1

n (ar + n− 1) > 0, (B6)

because 1− ar > 1− a and ar + n− 1 > nrar−1.

Finally, when deviator i plays a = 0, we substitute (B3) and a = 0 into (B4)

to get

F (0;Z0) ≡ 1

n
Z0 − V 0 (Z0) =

1

n
Z0 − 1

n (ρ+ δ)
−

1

nδZ0

∙µ
ρ

ρ+ δ
ZL − ZS

¶
e−ρt1(Z0) − (ZL − ZS) e

− ρ+δ
δ[1−r(n−1)] t1(Z0)

¸
. (B7)

15In order to prove that the extended strategies, which are patched by either a = 1 or
a = 0, or both strategies are subgame perfect over the domain [0,∞), we shall apply Theorem
16 in Rowat (2002) with slight modifications as follows: Given the instantaneous objective
function ui (ai(Z (t)), a−i(Z), Z (t)) and equation of motion (3), if a∗i (Z) satisfies

ρVi (Z (t)) = ui
¡
a∗i (Z (t)), a

∗
−i(Z), Z (t)

¢
+ V 0

i (Z (t)) Ż (t)

≥ ui
¡
ai (Z) , a

∗
−i(Z), Z (t)

¢
+ V 0

i (Z (t)) Ż (t)

for all admissible strategies a∗−i(Z) ≡
¡
a∗1 (Z) , . . . , a∗i−1 (Z) , a

∗
i+1 (Z) , . . . , a

∗
n (Z)

¢ ∈ Rn−1
+

and all i, then a sufficient condition for a∗i (Z) to be a best response to a∗−i(Z) is that
limT→∞ e−ρTVi (Z(T )) ≥ 0, where Z(T ) is the result of any play, ai (Z (t)) against a∗−i(Z (t))
over t ∈ [0, T ] from the initial state Z0.
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It is easily verified that

lim
t1(Z0)−→0

F (0;Z0) =
1

n
ZL > 0 and lim

t1(Z0)−→∞
F (0;Z0) =

1

n
Z0 − 1

n (ρ+ δ)
−→∞,
(B8)

since Z0 −→ ZL as t1 (Z0) −→ 0, while Z0 −→∞ as t1 (Z0) −→∞.
Using the following relations:

e−ρt1(Z0) ≡
µ
Z0
ZL

¶− ρ
δ

and e−
ρ+δ

1−r(n−1) t1(Z0) =

µ
Z0
ZL

¶− ρ+δ
δ[1−r(n−1)]

,

(B7) can be rewritten as

nF (0;Z0) ≡ Z0 − 1

ρ+ δ
−

1

δ

"µ
ρ

ρ+ δ

ZL

Z0
− ZS

Z0

¶µ
Z0
ZL

¶− ρ
δ

−
µ
ZL

Z0
− ZS

Z0

¶µ
Z0
ZL

¶− ρ+δ
δ[1−r(n−1)]

#
. (B9)

Although the third term on the r.h.s. of (B9) may change its sign depending on

values of Z0, it is easy to show that nF (0;Z0) > 0 under condition (14).

Moreover, it is easy to confirm that

G (Z0) ≡
µ

ρ

ρ+ δ

ZL

Z0
− ZS

Z0

¶µ
Z0
ZL

¶−ρ
δ

−
µ
ZL

Z0
− ZS

Z0

¶µ
Z0
ZL

¶− ρ+δ
δ[1−r(n−1)]

< 1,

(B10)

since Z0 ≥ ZL and ZS > ZL. It follows from (B9) and (B10) that

nF (0;Z0) ≡ Z0 − 1

ρ+ δ
− 1

δ
G (Z0) > Z0 − 1

ρ+ δ
− 1

δ
≥ 0,

as long as Z0 ≥ ZL ≥ ρ+ 2δ

(ρ+ δ) δ
.
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Appendix C: Linear Strategy

Under symmetry, rewrite the HJB equation (5) as follows:

ρV (Z) = max
ai∈[0,1]

[p (a1, a2, ..., an)Z + V 0(Z) {n (1− a)− δZ}] . (C1)

Suppose that the value function is linear, that is, V (Z) = A+BZ, where A and

B are unknown constants. Substitute this hypothetical value function into the

above HJB equation to get

ρ [A+BZ] = max

∙
1

n
Z +B {n (1− a)− δZ}

¸
. (C2)

Substituting further the (interior) first-order condition (7) , that is, a =

r (n− 1)Z/Bn2 into a in (C2), we obtain

ρA+ ρBZ =
1

n
Z +B

½
n

µ
1− r (n− 1)

Bn2a
Z

¶
− δZ

¾
.

Further rearrangement gives

ρA−Bn+

∙
ρB − 1

n
+

r (n− 1)
na

+Bδ

¸
Z = 0,

which is equivalent to

ρA−Bn = 0 and ρB − 1
n
+

r (n− 1)
na

+Bδ = 0. (C3)

Solving the above simultaneous system of equations in terms of A and B to

yields

B =
1− r (n− 1)
(ρ+ δ)n

.

Further substitution of this expression into the second equality in (C3) yields

(13).
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