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Abstract

In this paper, we explore how intergenerational disagreement constrains the cal-

culus of second-best growth. We illustrate the contrast between two natural sources

of disagreement when generations are overlapping and preferences are aggregated in

a utilitarian manner. Social preferences tend to exhibit a present-bias because gener-

ations are imperfectly altruistic about future generations; but they tend to exhibit a

bias against the present because coexisting generations are imperfectly altruistic about

currently older generations. Equilibrium growth is ineffi ciently low when the former

bias dominates. Otherwise society faces a diffi cult intergenerational equity problem.

Ironically, altruistic generations tend to support institutions that enable commitments

to lower growth, at the expense of future generations. Our analysis suggests that the

ability of actual governnments to improve the welfare of future generations can be

significantly constrained, even in an altruistic society.
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1 Introduction

Government intervention to target social investments is often justified upon the existence of

intergenerational disagreement arising from imperfect altruism. Yet, the desired targets are

commonly characterized as optima of some intertemporal social welfare function within the

optimal growth framework developed by Ramsey (1928), Cass (1965) and Koopmans (1965).

This framework relies on the assumption that social preferences are time-consistent, which

ensures that the relative valuation of utility flows at different dates remains unchanged as

the planning date evolves. When applied to the intergenerational context, the familiar time-

consistency requirement amounts to an assumption of perfect altruism, leaving no room for

intergenerational disagreement to constrain optimal growth paths. In this paper, we explore

how intergenerational disagreement constrains the calculus of second-best growth.

Phelps and Pollak (1968), and more recently Barro (1999) and Krusell et al. (2002),

analyze equilibrium saving in the presence of imperfect altruism about future generations,

where private agents suffer from a present-bias, favoring short-term consumption, under the

assumption that the planner inherits the specific form of time inconsistency that affl icts

private agents. Such an assumption is natural in their non-overlapping generations setting,

which is the standard setting considered in other analyses of equilibrium growth with imper-

fect intergenerational altruism (e.g., Kohlberg, 1976, Bernheim and Ray, 1987, Ray, 1987).

We focus on intergenerational disagreement that stems from the combination of imperfect

altruism about past generations and the overlap of generations in actual economies, which

translates into disagreement between coexisting generations about the distribution of current

aggregate consumption. It is well known that this kind of intergenerational disagreement

renders plausible social welfare functions time-inconsistent, even if individuals are perfectly

altruistic towards future generations.1 However, today’s young generations are tomorrow’s

old, and so it is unclear how intergenerational disagreement at each point in time translates

into intertemporal allocations. In particular, neither the specific form of time-inconsistency

that one may expect to affl ict the planner nor its implications for (second-best) government

1See, e.g., Burbridge (1983), Calvo and Obstfeld (1988), Bernheim (1989), and Hori (1997).
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intervention in this context are well understood. The goal of our analysis is to shed some

new light into these issues.

Formally, we consider a tractable endogenous growth model with overlapping altruistic

generations, and characterize Markov perfect equilibrium behavior of a sequence of short-

lived utilitarian planners. We assume that each planner’s objective function is a weighted

sum of the utilities of generations that are currently alive. Our modeling choices reflect the

facts that actual generations coexist, and democratic governments are unlikely to be immune

to disagreement between current generations. Our restriction to Markov perfect equilibria

captures the idea that intergenerational coordination of intertemporal choices is diffi cult,

focusing our analysis on discretionary government intervention.

For simplicity, we develop our main arguments in the natural case where individuals

are perfectly altruistic towards the next generation, but not about past generations (e.g.,

Barro, 1974). With overlapping generations, such a disagreement immediately translates

into disagreement between current generations about the distribution of current aggregate

consumption. In turn, since current generations do agree on the future distribution of aggre-

gate consumption, there must be disagreement between current and future planners about

future aggregate consumption. The simplicity of our example allows us to characterize the

specific form of time-inconsistency that one may expect and its consequences for Markov

perfect equilibrium plans.

We begin by showing that planners whose objective function is a weighted sum of utilities

of the currently alive generations in effect have quasi-hyperbolic preferences over aggregate

consumption, even if all individuals have standard geometric discounting. This provides a

simple application where quasi-hyperbolic discounting arises naturally. Moreover, we con-

clude that the specific bias of individual preferences and that of the planners’can be differ-

ent. We show that the planner is biased against the present when individuals have standard

time-consistent preferences. The current planner’s preferences exhibit a bias against present

aggregate consumption, because the current young does not value the consumption of the

current old, and social welfare puts positive weight on the current young. Since the current

generations value future consumption equally, the current planner favors future aggregate
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consumption over current aggregate consumption. We also show that the direction of the

planner’s bias may remain unchanged even if private agents are imperfectly altruistic towards

future generations, suffering from a present-bias.

The above bias in social preferences underlies the manner in which intergenerational dis-

agreement constrains equilibrium growth. It should be noted that Markov perfect equilibria

are time-consistent by construction, and the planners need to anticipate the equilibrium be-

havior that will actually be followed in the future. In addition, the current planner realizes

that future investment will respond to future income, and so he has an incentive to invest

strategically in order to manipulate future investment decisions. Our analysis focuses on

the tractable class of Markov equilibria in linear strategies. When we analyze the properties

of equilibrium growth, our main conclusion is that intergenerational disagreement can be

conducive to growth, rather than inimical to it, as is commonly concluded from the analysis

of non-overlapping generations models (e.g., Sen, 1967, Kohlberg, 1976).

Accounting for the overlapping generations demographic structure of actual economies

not only gives different results, but it has implications for welfare. Strotz’s (1956) semi-

nal work, and more recently Laibson’s (1997) demonstrate the general relevance that the

economic agents’ time-inconsistency has for the design of institutions that can cope with

intertemporal disagreement by facilitating commitments. An implication of our analysis is

that the availability of commitment mechanisms to cope with intergenerational disagreement

would lower growth below the second-best, benefiting current generations at the expense of

future generations. Thus, rather than following the second-best, living generations would

unanimously support the introduction of constitutional rules that lead to a permanent reduc-

tion in the growth rate of the economy. However, it is well known that dynamic ineffi ciency

on the production side of the economy is ruled out in standard models of endogenous growth,

such as the one we consider here (Saint Paul, 1992, King and Ferguson, 1993). Accordingly,

equilibrium growth cannot be reduced without hurting future generations eventually.

When accounting for imperfect altruism about future as well as past generations, the

above implication is ironic, because the very commitment mechanisms that are justified upon

the grounds of intergenerational disagreement need to be introduced by current generations
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and so their introduction may hurt precisely those generations that is supposed to help. Of

course, there are other sources of intergenerational disagreement that we have not considered

here. Indeed, the problem of aggregation of heterogeneous preferences over consumption

streams has received attention during the last decade (e.g., Weitzman, 2001, Caplin and

Leahy, 2004, Blackorby et al., 2005, Gollier and Zeckhauser 2005, Jackson and Yariv, 2010,

Zuber, 2010). For instance, Jackson and Yariv (2010) show that weighted averaging of

utilities across individuals with geometric, but heterogeneous, time preferences tends to

translate into time inconsistency that is necessarily characterized by a present-bias. Here,

we have emphasized the relevance of heterogeneity of preferences about current consumption

in an overlapping generations economy, which tends to generate a counteracting bias.

The next section presents the basic model. Section 3 illustrates the source of the bias in

the planner’s preferences in the context of the first-best allocation for an arbitrary planner.

Section 4 analyzes the interior Markov perfect equilibrium in linear strategies and discusses

the main implications of our analysis. Section 5 concludes. All proofs are found in a separate

Appendix.

2 The model

Consider an economy with overlapping altruistic generations. In particular, a unit mass of

individuals are born every period t ≥ 0, each individual lives for two periods, and individuals

born at date t have preferences given by

ut = u (cyt ) + u
(
cot+1

)
+ δut+1

= u (cyt ) + u
(
cot+1

)
+
∞∑
s=1

δs
(
u (cyt+s) + u

(
cot+1+s

))
, (1)

with δ ∈ (0, 1), where cyt is the consumption of young agents at date t, and c
o
t+1 is their

consumption when old. We assume that individuals do not discount their second-period
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felicity, and also that felicities each period are isoelastic, with

u (c) =

{
c1−σ−1
1−σ if σ 6= 1, σ > 0

ln (c) if σ = 1.
(2)

Output is linear in the capital stock at the aggregate level, where kt units of capital

produce Akt units of output that become available at date t+ 1, with A > 0. The aggregate

resources constraint in the economy is given by

Akt ≥ cyt + cot + kt+1 − kt, (3)

where we have ignored depreciation of the capital stock. We assume that δ (A+ 1) > 1 in

order to ensure positive equilibrium growth rates. We also assume that δ (A+ 1)
1−σ
σ < 1, in

order to ensure that growth is not so high that it leads to unbounded utility.

We consider a sequence of planners, each of which seeks to maximize

vt = ut−1 + aut, (4)

where a > 0. Note that the utility of individuals born in period t can be written as

ut = u (cyt ) +
∞∑
s=1

δs
(
u (cyt+s) + δ−1u

(
cot+s

))
.

The difference between individuals born at date t − 1 and those born at date t, is that the

latter do not care about the former. Otherwise, their preferences are time consistent: the

trade-off between dates t and t+ 1 is perceived the same way by all individuals at date t− 1

and at date t. Accordingly, the date-t planner’s preferences are given by

vt = u
(
cyt−1

)
+ u (cot ) + (δ + a)u (cyt ) + (δ + a)

∞∑
s=1

δs
(
u (cyt+s) + δ−1u

(
cot+s

))
. (5)

Consider the left side of (5). The planner at date t must treat the old individuals’felicity

at date t − 1 (first term) as sunk. The felicity from consumption of old individuals at

date t (second term) enters with weight 1, the weight at which the planner values the old

individuals’utility. However, the felicity of young individuals at date t (third term) enters
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not only with the direct weight on their young individuals’ utility, given by a, but also

indirectly because the old care about the young (with weight δ) and the planner cares about

the old (with weight 1). The last term reflects that both young and old individuals care

about future consumption through altruism, and the young care about their own future

old-age consumption.

Inspection of (5) indicates that the planners’preferences are time inconsistent as long

as a > 0, that is, as long as the date-t planner’s preferences put any weight on the utility

of currently young individuals. The weight of old-age consumption at t relative to old-age

consumption at t + 1 equals 1/(δ + a), and this is smaller than the weight on the felicities

of old-age consumption at t + s relative to old-age consumption at t + 1 + s, which equals

1/δ. This stems from the fact that the currently old care about the future consumption of

the currently young, but the young do not care about the currently old. However, both the

currently young and currently old care about the consumption of all future generations. As

a result, consumption of the currently old gets a relatively small weight.2

Thus, current and future planners evaluate future consumption streams differently, and

so equilibrium behavior will be shaped by the underlying intergenerational conflict. Markov

perfect equilibria provide a useful way to capture the consequences of such a conflict by

focusing on behavior that depends solely on payoff-relevant state variables, reflecting the

diffi culties that current and future planners face to coordinate their behavior.

The welfare of each generation is influenced by the actions of different planners. Con-

sequently, each planner’s optimal behavior depends on its expectation of future planners’

behavior. Since every planner can affect future aggregate economic conditions, equilibrium

2The time inconsistency of government’s preferences would still arise in the presence of two-sided altruism
(as in, e.g., Kimball, 1987). In particular, consider the following utility ut = u (cyt ) + u

(
cot+1

)
+ δFut+1 +

δBut−1 = ũt+ δFut+1+ δBut−1. Kimball (1987) shows that this can, under certain conditions, generate the

following time-consistent individual preferences: ut =
∞∑
b=1

(λB)
−bũt−b +

∞∑
f=0

(λF )
f ũt+f , where the discount

factors λB and λF are functions of δB and δF . Following the same procedure as above, we see that time
inconsitency of the government preferences arises if and only if λB 6= λF and that the currently old get too
small a weight whenever λB > λF . Note that the latter inequality arises whenever individuals care less about
future and previous generations’felicity than they care about their own felicity, which can be assumed as
the most natural assumption. This formulation would generate the same conclusions as our simpler case of
one-sided altruism.
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allocations depend on the interaction between current and future planners. We consider the

following problem for each planner. Every period t the planner’s objective is to maximize

(5) subject to (2) and (3), taking as given the strategies of all other planners. Planners

allocate aggregate resources among investment (kt+1 − kt), and consumption (c
y
t and c

o
t ).

A Markov strategy of the planner in period t consists of an investment policy it (kt), and

consumption policies cyt (kt) and cot (kt), which are only functions of the payoff-relevant state

variable kt. A sequence of Markov strategies for each planner {ft (it (kt) , c
yt (kt) , c

ot (kt))}∞t=0
is a symmetric Markov perfect equilibrium if it is a subgame perfect equilibrium for every

realization of the state variable kt, and all planners follow the same strategy, that is, if

ft (it (kt) , c
yt (kt) , c

ot (kt)) = f (i (kt) , c
y (kt) , c

o (kt)), for all t. We will restrict attention to

symmetric Markov perfect equilibria in linear strategies.

In order to understand the impact of time inconsistency on equilibrium behavior, it will be

useful to consider first a benchmark problem for an arbitrary planner under the assumption

that it can control future allocations.

3 Benchmark commitment solution

In order to understand the date-t planner incentives, suppose for a moment that it can control

future allocations. The nature of this first-best solution is clarified by formulating the date-t

planner problem recursively. We will simplify notation by avoiding time subscripts, and

using primes to denote next-period values.

First, consider the static intergenerational allocation of consumption every period from

the viewpoint of the date-t planner. At date t the optimal intergenerational allocation of

consumption solves:

max
cy ,co

{
u (cy) + (δ + a)−1u (co)

}
(6)

subject to cy + co ≤ c, with cy, co ≥ 0,
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and so the young’s share of aggregate consumption is given by

τ c ≡
cy
c

= 1− co
c

=
1

1 + (δ + a)−1/σ
, (7)

where c = cy + co.

In contrast, from date t + 1 onwards, the date-t planner would choose intergenerational

consumption allocations every period differently than future planners would actually do.

Instead, the date-t planner’s optimal allocation would solve the static problem:

max
cy ,co

{
u (cy) + δ−1u (co)

}
(8)

subject to cy + co ≤ c, with cy, co ≥ 0.

Accordingly, the young’s share of aggregate consumption at every future date would be

τ c ≡
cy
c

= 1− co
c

=
1

1 + δ−1/σ
, (9)

where c = cy + co. It is easy to see that τ c > τ c. The date-t planner prefers to allocate a

larger share of aggregate consumption to the current young than the share he would like to

allocate to the young in every future period.

Now consider the date-t planner’s investment problem. Taking into account the optimal

allocations of aggregate consumption every period, the relevant preferences for the date-t

planner can be expressed in terms of aggregate consumption levels as

ṽt = q (τ c, a)u (ct) +

∞∑
s=1

δsq (τ c, 0)u (ct+s) , (10)

where

q (τ , a) = τ 1−σ + (δ + a)−1 (1− τ)1−σ . (11)

Note that ṽt is simply a positive linear transformation of the preferences for the date-t planner

given in equation (5). The representation of social welfare in equation (10) reveals the key

to understanding the planners’problem. It shows that the planners’preferences are time
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inconsistent whenever q (τ c, a) 6= q (τ c, 0), which in turn is the case if and only if a > 0. Even

though all individuals have standard time-consistent, geometric preferences, planners in effect

have time-inconsistent, quasi-geometric preferences (over aggregate consumption streams) of

the form used by Phelps and Pollak (1968), Laibson (1997) and Krusell, Kuruşçu and Smith

(2002). In our model, it is the overlapping generations demographic structure and the fact

that current generations care insuffi ciently about previous generations that imply that the

planners’ preferences, which aggregate the preferences of the generations currently alive,

are quasi-geometric. Furthermore, it can be easily seen that q (τ c, a) < q (τ c, 0), and thus,

planners have an “excessive” incentive to postpone current consumption. This will be the

source of our main results below.

From date t + 1 onwards, the date-t planner has time consistent preferences, and so it

would solve the problem:

W (k) = max
0≤k′≤Ak

{q (τ c, 0)u (Ak − k′ + k) + δW (k′) } , (12)

where q (τ , a) is given by equation (11) and τ c is given by (9). It is easy to verify that the cor-

responding first-order condition equates the marginal disutility from additional investment

and the marginal value of additional capital next period:

−q (τ c, 0)
∂u (c)

∂c

∂c

∂k′
= δ

∂W (k′)

∂k′
. (13)

Furthermore, since preferences are time consistent from date t + 1 onwards, the solution to

the above problem satisfies the familiar envelope condition

∂W (k)

∂k
= q (τ c, 0)

∂u (c)

∂c

∂c

∂k
(14)

every period. Combining (14), evaluated one period ahead, and (13), it is easy to see that

the intertemporal allocation of aggregate consumption satisfies the familiar Euler equation

∂u (c) /∂c

δ (∂u (c′) /∂c′)
=
−∂c′/∂k′
∂c/∂k′

,

which equates the marginal rate of substitution between current and next-period consump-
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tion and the corresponding marginal rate of transformation. Taking derivatives and noting

that consumption and capital grow at the common rate gc, it can be verified that the so-

lution to the above standard dynamic programming problem implies that investment from

date t+ 1 onwards is given by k′ − k = gck, where

1 + gc = [δ (A+ 1)]1/σ . (15)

Finally, the investment problem at date t can be formulated as:

W0 (k) = max
0≤k′≤Ak

{q (τ c, a)u (Ak − k′ + k) + δW (k′) } , (16)

where q (τ , a) is given by equation (11) and τ c is given by (7). As before, the corresponding

first-order condition equates the marginal disutility incurred from additional investment and

the marginal value of additional capital next period:

−q (τ c, a)
∂u (c)

∂c

∂c

∂k′
= δ

∂W (k′)

∂k′
. (17)

Noting that the growth rate from date t + 1 onwards is the constant gc, as given by (15),

and noting that

δW (k′) =
∞∑
s=1

δsq (τ c, 0)u (ct+s) ,

it can be verified that

W (k′) = constant+

(
q (τ c, 0)

1− δ (1 + gc)
1−σ

)
u (c′) ,

and so we have

∂W (k′)

∂k′
=

(
q (τ c, 0)

1− δ (1 + gc)
1−σ

)
∂u (c′)

∂c′
∂c′

∂k′
. (18)

Combining (17) and (18), it is easy to see that time inconsistency influences the date-t

planner’s allocation of aggregate consumption at date t by introducing a wedge between

the marginal rate of substitution between current and next-period consumption and the
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corresponding marginal rate of transformation:

∂u (c) /∂c

δ (∂u (c′) /∂c′)
=

(
q (τ c, 0) /q (τ c, a)

1− δ (1 + gc)
1−σ

)
−∂c′/∂k′
∂c/∂k′

.

The magnitude of the wedge takes into account that cy = τ cc and c′y = τ cc
′, through the

term q (τ c, 0) /q (τ c, a), and applies an effective discount rate equal δ (1 + gc)
1−σ to

(
τc
τc

)−σ
,

because the young’s share of aggregate consumption in all future periods is equal to τ c rather

than τ c. To interpret the wedge, note that the ratio q (τ c, 0) /q (τ c, a) specifies the relative

weight placed on u (ct+1) rather than u (ct) by the social welfare function in equation (10).

It is now easy to verify that the solution to the current problem (16) implies that invest-

ment at date t is given by k′ − k = gck, with

1 + gc =
A+ 1

1 +
(
q(τc,a)
q(τc,0)

δ−1−(1+gc)1−σ

(A−gc)1−σ

)1/σ , (19)

where q (τ , a) is given by equation (11) and τ c, τ c and gc are given by (7), (9), and (15),

respectively. In the Appendix we show that gc > gc, for all σ > 0. Thus, if the date-t planner

could commit future allocations, it would choose a current growth rate that is larger than the

growth rate it would dictate to future generations. This is because the current planner cares

more about the future old than it does about the current old generation, and so q(τc,a)
q(τc,0)

< 1,

for a > 0. In turn, this occurs because the current planner puts positive weight on the

current young, but the current young does not care about the current old. Indeed, it can be

verified that the right side of (19) is equal to 1 + gc if and only if a = 0 (see Appendix). It

should be noted that our assumption that the current young do not place any weight at all

on the current old is made for simplicity. The essential feature of the above problem is that

the current young do not place suffi cient weight on the current old.3

The following proposition summarizes our discussion so far.

Proposition 1 If the date-t planner could precommit future allocations, optimal allocations
3See Hori (1997), and foonote 1.
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would be given by i(k) = gk, cy(k) = τ (A− g) k, and co(k) = (1− τ) (A− g) k, with

(τ , g) =

{
(τ c, gc) in the first period

(τ c, gc) in every future period,

where τ c and τ c are given by (7) and (9), respectively, with τ c > τ c, and gc and gc are given

by (19) and (15), respectively, with gc > gc.

Of course, the problem with the above solution is that it is time inconsistent. Accord-

ingly, each planner needs to take into account that future planners will deviate from the

allocation that the current planner would dictate if it could control future allocations. In

the following section we consider equilibrium behavior when current planners recognize that

future allocations will be chosen optimally by future planners.

4 Markov perfect equilibrium

Now each planner recognizes that every future planner will choose the same optimal inter-

generational allocation of consumption each period as the one chosen in the current period

by the current planner. This is the allocation that solves the above problem (6) and so the

young’s share of aggregate consumption is now given by

τ ∗ ≡ cy
c

= 1− co
c

=
1

1 + (δ + a)−1/σ
. (20)

every period. Of course, τ ∗ = τ c.

Now suppose that the current planner anticipates that every future planner follows the

linear investment policy i′ = ĝk′, with δ (1 + ĝ)1−σ < 1. Then, the current investment

decision solves the following problem:

V0 (k) = max
0≤k′≤Ak

{q (τ ∗, a)u (Ak − k′ + k) + δV (k′) } , (21)

where

V (k) = q (τ ∗, 0)u (Ak − (1 + ĝ) k + k) + δV ((1 + ĝ) k) , (22)
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where q (τ , a) is given by equation (11), and τ ∗ is given by equation (20). An investment

policy i (k) = gk that is part of a symmetric Markov perfect equilibrium must be such that

g = ĝ.

In order to appreciate the role of commitment problems, it will be useful to examine

the first-order condition of the above problem. To that end, first note that the first-order

condition with respect to k′ at date t is given by

−q (τ ∗, a)
∂u (c)

∂c

∂c

∂k′
= δ

∂V (k′)

∂k′
. (23)

Solving the recursion in equation (22) it can be verified that

V (k′) = constant+

(
q (τ ∗, 0)

1− δ (1 + ĝ)1−σ

)
u (c′) ,

and so we have

∂V (k′)

∂k′
=

(
q (τ ∗, 0)

1− δ (1 + ĝ)1−σ

)
∂u (c′)

∂c′
∂c′

∂k′
. (24)

As shown above, the first-order condition at date t if the date-t planner could control

future allocations would be the same as (23), except that V is replaced by W . The main

difference lies in the marginal effect of current investment on the value function next period.

The difference may be understood as follows. Each planner recognizes that a marginal

increase in current investment results in extra income next period that will in turn influence

investment next period. Since current and future planners disagree about future investment

decisions, current planners have an incentive to manipulate future investment decisions via

current investment.

In contrast, if the current planner could control future allocations, time consistency of the

date-t planner’s preferences from date t+ 1 onwards would ensure that the familiar envelope

condition holds, which ensures that the above effect of current on future investment can be

ignored when making current investment decisions. In turn, this guarantees that investment

in every future period will be given by gck. The difference between (24) and (18) lies in

that, in the Markov perfect equilibrium, the current planner anticipates intergenerational
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disagreement in every future period.

Let us return to the characterization of the Markov perfect equilibrium. Combining (23)

and (24) we have

∂u (c) /∂c

δ (∂u (c′) /∂c′)
=

(
q (τ ∗, 0) /q (τ ∗, a)

1− δ (1 + ĝ)1−σ

)
−∂c′/∂k′
∂c/∂k′

. (25)

Although the intertemporal allocation of aggregate consumption in the Markov perfect equi-

librium is time consistent by construction, there is a wedge between the marginal rate of

substitution between current and next-period consumption and the corresponding marginal

rate of transformation. The magnitude of the wedge takes into account that the young’s

share of aggregate consumption every period is equal to τ ∗ = τ c > τ c rather than τ c, and

also anticipates that investment in all future periods is given by i′ = ĝk′.

It is now straightforward to write the above Euler equation as(
k′

Ak − k′ + k

)σ
=

q (τ ∗, 0) (A− ĝ)1−σ

q (τ ∗, a)
(
δ−1 − (1 + ĝ)1−σ

) ,
which describes the best response k′ to the anticipation of ĝ, for given k. Clearly, the best

response to any given ĝ is linear in k. Consequently, we obtain the best-response mapping

1 + g =
A+ 1

1 +
(
q(τ∗,a)
q(τ∗,0)

δ−1−(1+ĝ)1−σ

(A−ĝ)1−σ

)1/σ ≡ 1 +B (τ ∗, τ ∗, ĝ) . (26)

The best response function g = B (τ , τ ′, ĝ) characterizes the best investment response by a

planner that allocates a share τ of current consumption to the current young and anticipates

that future planners will allocate a share τ ′ of consumption to the young and invest according

to i′ = ĝk′. Note that the structure of the best response function in equation (26) is identical

to that in equation (19). In particular, the above commitment solution has gc = B (τ c, τ c, gc),

whereas a symmetric Markov perfect equilibrium has g∗ = B (τ ∗, τ ∗, g∗).

Proposition 2 (i) There exists a unique symmetric, interior, Markov perfect equilibrium in

linear strategies. The equilibrium is characterized by i(k) = g∗k, cy(k) = τ ∗ (A− g∗) k, and

co(k) = (1− τ ∗) (A− g∗) k, where τ ∗ is given by (20), and g∗ = B (τ ∗, τ ∗, g∗) ∈ (gc, A), where
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B is given by (26) and.gc is given by (15). (ii) For all ĝ ∈ (gc, A), ∂B (τ ∗, τ ∗, ĝ) /∂ĝ ≥ 0 if

and only if σ ≥ 1, with equality if and only if σ = 1.

Part (i) characterizes the unique symmetric, interior Markov perfect equilibrium in linear

strategies. Part (ii) provides additional insight into the role of commitment problems. Note

that the disagreement between planners about investment decisions takes the particular form

that date-(t+ 1) planner invests too much from the viewpoint of date-t planner. The best

response mapping (26) indicates how current planners will attempt to manipulate investment

next period. Part (ii) of the proposition says that locally around the equilibrium current and

next-period investments are “strategic”complements if σ > 1 and “strategic”substitutes if

σ < 1. The panels in Figure 1 plot the different types of best-responses. A detailed analysis

is found in the Appendix.

Figure 1: best investment responses

(1) σ < 1 (2) σ = 1 (3) σ > 1

Panel (1) shows that B (τ ∗, τ ∗, g) increases at first, peaking at gc, and then decreases,

when σ < 1. Panel (2) shows that the best response is flat when σ = 1. In this case,

g∗ = B (τ ∗, τ ∗, g∗) has a closed-form solution and the equilibrium growth rate is given by

1 + g∗ =
A+ 1

1 +
(
δ+a+1
δ+a

) (
1−δ
1+δ

) . (27)

Panel (3) in the above figure illustrates that B (τ ∗, τ ∗, g) decreases at first, reaching a mini-

mum at gc, and then increases, when σ > 1.

The role of the elasticity of intertemporal substitution, given by 1/σ, is particularly

interesting in the present context. With respect to a generation’s lifetime, higher values
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of σ indicate greater aversion to differences in consumption over the life cycle. However,

since individuals are altruistic, higher values of σ also indicate greater aversion to unequal

consumption across generations. With balanced growth, the higher the value of σ, the less

individuals are willing to tolerate larger positive, or smaller negative, growth rates. Indeed,

in the Appendix we show that the equilibrium growth rate decreases as individuals are less

willing to substitute consumption intertemporally. This is as expected. The role of σ when

comparing growth rates with and without commitment is more interesting, as illustrated in

the following proposition.

Proposition 3 (i) g∗ > gc for all σ > 0, with g∗ > gc if and only if σ > 1. (ii) Suppose

that σ > 1. Then,

lim
δ→1

g∗ > gc, a > 0,

lim
a→0

g∗ = gc, 0 < δ ≤ 1,

lim
a→∞

g∗ = A, 0 < δ ≤ 1.

This proposition compares long-run growth in the Markov perfect equilibrium and the

commitment solution. The key feature of the equilibrium is that the economy’s growth rate

is permanently higher than gc. Part (i) of the proposition also states that a property of the

equilibrium is that g∗ > gc if and only if σ > 1. Thus, if the elasticity of intertemporal

substitution is suffi ciently low (σ > 1), the equilibrium growth rate would exceed even

the current growth rate that an arbitrary planner would prefer under the assumption that

future allocations can be precommitted. To see why, first note that inspection of (26) and

(19) immediately shows that gc = g∗ if σ = 1. Moreover, note that future planners weight

future consumption too little relative to the current planner, that is, q (τ ∗, a) < q (τ ∗, 0).

With σ > 1 (higher inequality aversion) income effects of the poor dominate, hence the

current planner has an incentive to favor future consumption, which it can do by growing

relatively faster.

Part (i) of the above proposition is a striking result for two reasons. First, gc is the

first-best growth rate from the viewpoint of the old, and it is also the growth rate that every
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young generation, and every planner, would dictate on every future generation, if they could

do so. In this sense, commitment problems lead to equilibrium growth that is too high,

relative to the preferences of all generations. Second, the private return to investment is

lower than the social return to investment. The latter is given by the constant marginal

product of capital A, whereas the former is given by A − ∂ (g∗k) /∂k = A − g∗. Although

this has implications for effi ciency, as we discuss below, the fact that g∗ > gc is driven by the

time inconsistency of the planners’preferences, which implies that each planner perceives

the next planner to invest too much, as explained above.

Part (ii) of the proposition illustrates sharply the equilibrium implications of the time

inconsistency of planners’ preferences. Even in the limit as the discount rate on future

generations approaches zero, the equilibrium growth rate is strictly higher than gc. Note

that as δ → 1 the preferences of the young, the old and the planner become aligned every

period. Yet, as long as the planner puts weight on the current young the time inconsistency

of the planners’preferences creates a non-trivial problem, which does not disappear as δ

approaches 1.

Furthermore, as the weight the planner puts on the current old becomes negligible, the

equilibrium growth rate becomes arbitrarily close to A (for σ > 1), and so the savings rate

approaches 1. In this sense, the equilibrium growth rate is arbitrarily higher than the growth

rate that is preferred by all generations.

Recall that we have maintained the assumption that δ (A+ 1) > 1 in order to ensure

that gc > 0. This implies that the equilibrium growth rate is always positive, since we have

shown that g∗ > gc. We have also maintained the assumption that δ (A+ 1)
1−σ
σ < 1, in

order to ensure that gc < A. With logarithmic utility, equilibrium growth is given by (27).

Thus, g∗ approaches A, and so cy+co
k

approaches 0, as δ goes to 1. If σ < 1, the equilibrium

investment rate becomes negligible as δ approaches (A+ 1)
σ−1
σ < 1. In principle this can be

reconciled with the evidence if intergenerational altruism is suffi ciently low. Even so, it is

unclear why high social discounting would be a problem in this case. In particular, under

the (unpalatable) assumption that σ ≤ 1, and under the conventional utilitarian approach

that is being followed here, one would need to accept that individuals, and planners, would
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willingly sacrifice their lifetime consumption for the benefit of future generations, if only

they were suffi ciently altruistic. Most of us would agree that there is something wrong with

this. Moreover, upon reflection, the problem is that most of us, we believe, have a stronger

preference for intergenerational equity that is implied by σ ≤ 1. While this is a simple

proxy for individuals’preferences for intergenerational equity, it should be recognized that

the conventional focus on social discounting, here captured by δ, is simplistic, and it does

not capture well the relevant concern, namely intergenerational equity. Similarly, it should

be noted that the problems we are discussing here are not specific to low values of σ. They

arise for any fixed value of σ.

Now let us consider the effi ciency properties of the equilibrium. First, it should be noted

that the Markov perfect equilibrium in our context is Pareto ineffi cient, simply because

the private and the social return to investment are different. A Pareto improvement would

result from investing optimally from the viewpoint of the currently young generation at the

socially optimal rate of return, without changing the allocation for any other generation.

This is in contrast with the common perception that perfect altruism about the following

generation must lead to Pareto effi ciency (Streufert, 1993). This is the case in the non-

overlapping generations models studied in the literature, because it leads to time-consistent

preferences. However, with time-inconsistent preferences, as is the case here, the private

return to investment is necessarily lower than the social return, because the incentive to

manipulate future investment does not disappear.

Now consider the possibility of dynamic ineffi ciency. In principle, allocations can be dy-

namically ineffi cient on the production side and/or the consumption side of the economy. We

say that an investment allocation is dynamically effi cient if there is no alternative allocation

that provides more aggregate consumption in one period and at least the same consump-

tion in every other period. We say that consumption allocations are dynamically effi cient if

there is no alternative allocation of aggregate consumption across generations that provides

higher utility for one generation and at least the same utility for any other generation. The

following result follow from standard arguments (Saint Paul, 1992).

Proposition 4 Equilibrium investment is dynamically effi cient.
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In the Appendix we show that investment is dynamically effi cient if the growth rate is

lower than the social return to investment, that is, if A ≥ g∗. Then, the proposition follows

from the aggregate resources constraint: Akt ≥ ct + kt+1 − kt
In contrast, note that consumption is dynamically effi cient if the growth rate is lower

than the private return to investment. Since the private return to investment is given

by A − (1 + g∗), equilibrium consumption is dynamically effi cient if and only if 1 + g∗ ≤

(1/2) (A+ 1). It can be shown that there is a number δ (a, σ) ∈ (0, 1) such that consumption

is dynamically ineffi cient if and only if δ > δ (a, σ).

Our analysis so far implies that the commitment solution and the Markov perfect equi-

librium are not Pareto ranked. This has implications for the individuals’incentive to design

institutions to enable commitments that resolve intergenerational disagreements. The main

implication is easiest to see in the log utility case, but it should be clear that it follows more

generally.

Proposition 5 Assume that σ = 1. Consider the Markov perfect equilibrium, and suppose

that the date-t planner implements institutions to commit all future allocations optimally.

Current generations are made better off, but there is a time T ≥ t such that all generations

born after date T are made worse off, from the perspective of young age as well as old age.

The above proposition illustrates the possibility that individuals (and the planner) would

support institutions to enable commitments to lower the growth rate of the economy perma-

nently. With log utility, the shift from the Markov perfect equilibrium to the commitment

solution does not affect the first period consumption allocation, and it leads to the first best

allocation for both generations after the current period. Hence, both current generations

must be better off. If σ 6= 1, the first period allocations change as well, and one needs to

consider several possible cases, but it is not diffi cult to find conditions where the current

generations are better off under the planner’s commitment solution than they are under the

Markov perfect equilibrium.

The fact that an infinite number of generations must be made worse off by the move (at

date t) from the equilibrium allocation to the commitment solution follows trivially from
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the fact that the wealth differential between the two allocations grows without bound and

the original equilibrium allocation has lower growth at all times. Furthermore, it is easy to

verify that this is so even in the limit as individuals do not discount the future.

Finally, consider briefly the corresponding Ramsey-Cass-Koopmans problem, which amounts

to the case where the social welfare function is given by the utility of the currently old agents.

Interestingly, the solution to the Ramsey-Cass-Koopmans problem is Pareto ineffi cient. A

marginal transfer of consumption from the current old to the current young leaves the old

indifferent but is strictly preferred by the young. This presents a problem for the argument

that a “solution” to the problem is to have the planner “choose” a time-consistent social

welfare function at the outset (e.g., Strotz, 1956, Calvo and Obstfeld, 1988). The problem

is that this requires a commitment technology.

4.1 Imperfect altruism about future generations

The most natural departure from the perfect altruism assumption made in the Ramsey-

Cass-Koopmans optimal growth model is simply that individuals are imperfectly altruistic

about future generations. Indeed this is the standard assumption in the literature on equi-

librium growth with imperfect intergenerational altruism that originated with Phelps and

Pollak’s (1968) seminal work, although imperfect altruism has been formalized in several

different ways (compare e.g., Sen, 1967, Phelps and Pollak, 1968, Kohlberg, 1976). Ar-

guably, this is also precisely what those who justify government intervention to target social

investments on the grounds of intergenerational disagreement usually have in mind (e.g.,

Sen, 1967, Kohlberg, 1976). With respect to this, Strotz’s (1956) seminal work, and more

recently Laibson’s (1997) demonstrate the general relevance that the economic agents’time-

inconsistency has for the design of institutions that can cope with intertemporal disagreement

by facilitating commitments.

We can easily extend our analysis so far to allow for the fact that individuals themselves

may be imperfectly altruistic about future as well as past generations. Specifically, the

following analysis allows for individuals having quasi-hyperbolic discounting, with a present-
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bias, as in Phelps and Pollak (1968). Conversely, it extends Phelps and Pollak’s (1968) work

to account for overlapping generations.

Consider the above model, but assume that individuals born at date t have preferences

ut (β) = u (cyt ) + β

[
u
(
cot+1

)
+

∞∑
s=1

δs
(
u (cyt+s) + u

(
cot+1+s

))]
, (28)

whose discount structure implies that consumption streams are discounted according to

the sequence of discount factors 1, βδ, βδ2, βδ3, .... In this section, we assume that β ≤ 1.

When β = 1, discounting is geometric, and so individuals have standard, time-consistent

preferences. This is the case we analyze above. When β < 1, individuals have quasi-

hyperbolic discounting, with a present-bias, in the sense that the rate at which utility flows

at date t+ 2 are discounted falls between date t and date t+ 1.

It should be noted that the specification of individual preferences in equation (28) assumes

that the quasi-hyperbolic discounting structure applies equally to all future utility flows,

rather than applying only to the future generations’utility flows. This assumption implies

that individuals’relative valuation of utility flows for young and old agents at a given date

does not evolve with the passage of time. If it did, there would be an additional source of

disagreement, referring to the distribution of valuations between generations at a point in

time. Accordingly, equation (28) can be written as

ut (β) = u (cyt ) + β
∞∑
s=1

δs
(
u (cyt+s) + δ−1u

(
cot+s

))
.

It should be noted that quasi-hyperbolic discounting implies preference reversals, and so

the relevant preferences for the old in the social welfare function should be their current

preferences. Accordingly, we assume that the objective function of the date-t planner is

vt (β) = utt−1 (β) + aut (β) , (29)

where a > 0, and where utt−1 (β) is the utility of the currently old from the viewpoint of date
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t:

utt−1 (β) = u (cot ) + δ

(
u (cyt ) + β

∞∑
s=1

δs
(
u (cyt+s) + δ−1u

(
cot+s

)))
. (30)

Hence, we have

vt (β) = u (cot ) + (δ + a)u (cyt ) + (δ + a) β

∞∑
s=1

δs
(
u (cyt+s) + δ−1u

(
cot+s

))
. (31)

Equivalently, one can think of the planner as maximizing

ṽt (β) = u (cyt ) + (δ + a)−1 u (cot ) + β
∞∑
s=1

δs
(
u (cyt+s) + δ−1u

(
cot+s

))
. (32)

It is easy to verify that our previous analysis goes through essentially unchanged. If the

date-t planner could precommit future allocations, optimal allocations would be given by

i(k) = gk, cy(k) = τ (A− g) k, and co(k) = (1− τ) (A− g) k, with

(τ , g) =

{
(τ c, gc (β)) in the first period

(τ c, gc) in every future period,

where τ c and τ c are given by (7) and (9), respectively, with τ c > τ c, gc is given by (15), and

gc (β) solves

1 + gc (β) =
A+ 1

1 +
(
q(τc,a)
βq(τc,0)

δ−1−(1+gc)1−σ

(A−gc)1−σ

)1/σ . (33)

Using the definition of q (τ , a) in equation (11), one can verify that gc (β) > gc if and only if

β ∈
((

τc
τc

)σ
, 1
]
.

Similarly, there is a unique symmetric, interior, Markov perfect equilibrium in linear

strategies. The equilibrium is characterized by i(k) = g∗k, cy(k) = τ ∗ (A− g∗) k, and co(k) =

(1− τ ∗) (A− g∗) k, where τ ∗ is given by (20), gc is given by (15), and g∗ = Bβ (τ ∗, τ ∗, g∗),

where B is given by

1 + g =
A+ 1

1 +
(
q(τ∗,a)
βq(τ∗,0)

δ−1−(1+ĝ)1−σ

(A−ĝ)1−σ

)1/σ ≡ 1 +Bβ (τ ∗, τ ∗, ĝ) . (34)
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Finally, using the definition of q (τ , a) in equation (11), one can verify that g∗ > gc if and

only if β ∈ (b, 1], where

b =
1

1 + (1− τ ∗)a/δ ∈ (0, 1) . (35)

The main implication of the analysis in this section is that the effect of commitment

depends significantly on whether or not the individuals’ present-bias dominates the bias

against the present that results from aggregation of preferences in the social welfare function.

As in Proposition 5, it is easiest to illustrate the main implication of our analysis for the

case of log utility, although it holds more generally.

Proposition 6 Assume that σ = 1. Consider the Markov perfect equilibrium, and suppose

that the date-t planner implements institutions to commit all future allocations optimally.

Current generations are made better off at date t.

(i) If β < b, there is a time T ≥ t such that all generations born after date T are made

better off, from the perspective of young age as well as old age.

(ii) If β = b, all generations born after date t are made better off, from the perspective of

young age as well as old age, if and only if δ > δ, for some δ ∈ (0, 1).

(iii) If β > b, there is a time T̂ ≥ t such that all generations born after date T̂ are made

worse off, from the perspective of young age as well as old age.

The statements in the proposition follow trivially from the fact that the wealth differential

between the equilibrium allocation and the commitment solution implemented at date t grows

without bound. Hence, whether future generations are made eventually worse off or better

off by the move (at date t) to the commitment solution depends only on whether the new

growth path lies above or below the original path, which is determined by whether β ≤ b

or β > b. It should also be noted that, for the case where β ≤ b, it is easy to construct

numerical examples where T = t, for δ suffi ciently hign, so all current and future generations

are made better off. However, whether or not some generations are made worse off depends

in general on the configuration of parameter values for β, δ, and a.

23



The bottom line of our analysis is that intergenerational disagreement can imply that

the incentive of individuals, and governments, are such that institutions that enable com-

mitments to cope with intergenerational disagreement will tend to favor the introducing

generations at the expense of future generations. This result, we believe, suggests more gen-

erally, that the ability of actual governnments to improve the welfare of future generations

is seriously constrained, even in an altruistic society.

5 Conclusion

In this paper, we explore how intergenerational disagreement constrains the calculus of

second-best growth. We illustrate the contrast between two natural sources of disagreement

when generations are overlapping and preferences are aggregated in a utilitarian manner.

Social preferences tend to exhibit a present-bias because generations are imperfectly altru-

istic about future generations; but they tend to exhibit a bias against the present because

coexisting generations are imperfectly altruistic about currently older generations. Equilib-

rium growth is ineffi ciently low when the former bias dominates. Otherwise society faces a

diffi cult intergenerational equity problem. Ironically, altruistic generations tend to support

institutions that enable commitments to lower growth, at the expense of future generations.

This is so even with perfect altruism about future generations and even without discounting.

We believe that our analysis can be fruitfully extended to analyze government intervention

to target social investments more generally, including climate change mitigation policies. Our

analysis suggests that the ability of actual governnments to improve the welfare of future

generations is seriously constrained, even in an altruistic society.

24



Appendix

Proof of Proposition 1

All parts of the proposition are proven in the main text, except for the inequality gc > ḡc.

To prove this, we first define the following function:

1 + B̃(ĝ, Q) =
A+ 1

1 +Q
(
δ−1−(1+ĝ)1−σ

(A−ĝ)1−σ

)1/σ (36)

Using (10), we can easily check that B̃(ḡc, 1) = ḡc.From (19) it follows that B̃(ḡc, Qc) =

gc,where we define

Qc =

(
q (τ c, a)

q (τ c, 0)

)1/σ
=
τ c
τ c
< 1,

where the second equality and the inequality follow from (7) and (9). Since ∂B̃(ĝ, Q)/∂Q < 0,

we can combine results as follows B̃(ḡc, Qc) = gc > B̃(ḡc, 1) = ḡc. This proves Proposition

1. QED

Proof of Proposition 2

We rewrite the best response (26) as B(τ̂ , τ̂ , ĝ) = B̃(ĝ, Q∗),where we define

Q∗ ≡
(
q (τ ∗, a)

q (τ ∗, 0)

)1/σ
=

(
1

1 + (1− τ ∗)a/δ

)1/σ
< 1.

which implies the following characteristics:

sign
∂B̃(ĝ, Q)

∂ĝ
= sign(σ − 1) [(1 + ĝ)σ − δ(A+ 1)]

Hence, for given Q the best response function B(.) has a global minimum (maximum) at

ĝ = ḡc if σ < 1 (if σ > 1) and is flat at ĝ = ḡc if σ = 1. This proves Part (ii) of the

proposition.

From (26), it follows that the equilibrium growth rate is the solution g∗ that satisfies

B̃(g∗, Q∗) = g∗.To show existence of a unique fixed point g∗, evaluate g = B̃(ĝ, Q) at ĝ = g

and rewrite it as
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g = B̃(g,Q)⇐⇒ δ−1Qσ(1 + g)σ + (1−Qσ)(1 + g)− (A+ 1) = 0 (37)

As long as Q ≤ 1, the LHS is increasing in g, is negative when g = −1, and positive when

g = A. Hence, there is exactly one fixed point, g∗ = g̃(Q∗) < A. Applying the implicit

function theorem to (37), we find g̃′(Q) < 0 iff 1 > δ (1 + g̃(Q))1−σ. For σ ≤ 1, the latter

inequality holds since g ≤ A and we assume 1 < (A + 1)1−σδ. For σ > 1, first note that

g̃(1) = ḡc and 1 > δ (1 + g̃(1))1−σ, so that g̃′(1) < 0; hence for all Q ≤ 1 the inequality

1 > δ (1 + g̃(Q))1−σ holds a fortiori. Since Q∗ < 1, we have g̃(Q∗) = g∗ > g̃(1) = ḡc. We

conclude A > g∗ > ḡc, which proves Part (i) of the proposition. QED

Proof of Proposition 3

Part (i) From the definitions in the previous two proofs, we have:

Qc

Q∗
=

(
τ 1−σc + δ−1(1− τ c)1−σ

τ̄ 1−σc + δ−1(1− τ̄ c)1−σ

)1/σ
Since the RHS is increasing (decreasing) in τ c for σ > 1 (σ < 1) and τ c > (1+ δ−1/σ)−1 = τ̄ c,

we find:

σ ≶ 1⇔ Qc ≶ Q∗

If σ > 1, B̃(g∗, Q∗) = g∗ > B̃(g∗, Qc) > B̃(ḡc, Qc) = gc, where the first inequality follows

from ∂B̃(ĝ, Q)/∂Q < 0, and the second one from g∗ > ḡc and ∂B̃(g,Q)/∂g > 0 for g > ḡc.

If σ < 1, B̃(g∗, Q∗) = g∗ < B̃(g∗, Qc) < B̃(ḡc, Qc) = gc, where the first inequality follows

from ∂B̃(ĝ, Q)/∂Q < 0, and the second one from g∗ > ḡc and ∂B̃(g,Q)/∂g < 0 for g > ḡc.

This proves g∗ > gc in Part (i).

For δ → 1, g∗ > ḡc, see proposition 2, which was already proven irrespective of the value

of δ.

For vanishing a, we have lima→0Q
∗ = 1, so that lima→0 g

∗ = lima→0 g̃(Q∗) = g̃(1) = ḡc.

For infinite a, we apply l’Hopital’s rule to find lima→∞Q
∗. If σ > 1, lima→∞Q

∗ = 0,

and lima→∞ g
∗ = g̃(0) = A, where the last equality follows from substituting Q = 0 into the

implicit function (37). For σ < 1, lima→∞Q
∗ = 0 and lima→∞ g

∗ = g̃(1) = ḡc. QED
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Proof of Proposition 4

The proof replicates the argument in Saint Paul (1992). We show that equilibrium investment

is dynamically effi cient if g∗ < A. Then, the proposition follows from the aggregate resources

constraint: Akt ≥ ct + kt+1 − kt.
Consider an allocation

{
k̃t

}
with k̃s < ks, for some s, with c̃t ≥ ct for t ≥ s. Since

k̃t+1 = (A + 1)k̃t − c̃t and kt+1 = (A + 1)kt − ct, for t ≥ s, it must be that kt+1 − k̃t+1 ≥
(A+ 1)

(
kt − k̃t

)
, for t ≥ s. In turn this implies that ks+T − k̃s+T ≥ (A+ 1)T

(
ks − k̃s

)
,

and thus

k̃s+T ≤ (1 + g∗)T ks − (A+ 1)T
(
ks − k̃s

)
,

for any T ≥ 1. Clearly, if g∗ < A, the right side of the inequality becomes negative for T

suffi ciently large, contradicting the hypothesis that there is a feasible deviation k̃s < ks, for

some s, with c̃t ≥ ct for t ≥ s. This concludes the proof. QED

Proof of Proposition 5

The proposition is a special case of Proposition 6. The proof is found below. QED

Proof of Proposition 6

Current generations are made better off at date t because the date-t allocation does not

change and the new allocation thereafter is their first-best allocation. (i) If β < b, then

ḡc > g∗. Since the difference in wealth between the two allocations grows without bound,

and wealth is strictly higher under the commitment solution after date t, all generations

born after some date T > t must be made better off from the viewpoint of their birthdate.

Every old generation is better off at all dates under the commitment solution, because that

is their first-best allocation.

(ii) If β = b, then ḡc = g∗. Thus, the two aggregate consumption allocations are identical.

For a given path of aggregate consumption, it is easy to verify that the move from allocating

a share τ ∗ of aggregate consumption to the young every period to allocating a share τ c is

profitable for an arbitrary young generation born after date t if and only if δ > δ, for some

δ ∈ (0, 1).

(iii) If β > b, then ḡc < g∗. Since the difference in wealth between the two allocations

grows without bound, and wealth is strictly lower under the commitment solution after date

27



t, all generations born after some date T > t must be made worse off from the viewpoint of

their birthdate as well as old age. This concludes the proof. QED
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