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Abstract

We analyze the optimal accumulation of renewable energy (backstop) generating capacity
in a capital-energy economy with exhaustible fossil fuels. The analysis rests upon graphical
illustrations of optimal control considerations. Due to the exhaustibility of fossil fuels
the relative profitability of backstop capacity vs. capital investments increases in time.
Furthermore, it turns out that the optimal economic evolution and, therefore, the steady-
state levels of capital, backstop capacity, and consumption crucially depend on the capital
endowment. In particular, a sufficiently large endowment gives rise to the accumulation
of an excess capacity. Furthermore, a high capital endowment allows to use the full
production potential of the steady-state capital stock, so that there is no mark-up on
backstop costs in the steady-state. In contrast, a low capital endowment may render
capacity investments non-optimal, so that the economy is in a poverty trap. Both cases
are based on an intertemporal consumption trade-off. The lower the time preference rate
the more beneficial the trade-off and, therefore, the lower the critical capital endowment

values.

Keywords: Fossil Fuel, Renewable Energy, Capacity

JEL classification: Q20, Q32, Q42

1. Introduction

At least since the publication of the report of the Club of Rome - Meadows et al. (1972)

- the sustainability of economic development is challenged. One prominent argument is
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the exhaustibility of fossil fuels. This pessimistic view has been widely criticized. Stiglitz
(1974) and Barbier (1999) argue that a factor augmenting technology which improves suf-
ficiently fast can ensure sustainability. Other authors, such as Chakravorty et al. (2006),
Hoel (2011), Tsur and Zemel (2003), Tsur and Zemel (2005), and Kollenbach (2015), refer
to renewable energy sources (backstop). In particular, solar energy is considered, as solar
radiation offers a practically unlimited energy source. Consequently, a backstop is usually
modeled as an unlimited resource flow. However, the utilization of solar radiation and
other renewable energy sources, such as water and wind power, require sophisticated and
costly technical facilities, i.e. a generating capacity. Obviously, the buildup of such a ca-
pacity competes with consumption and other investments possibilities, e.g. other capital
goods, for limited funds.

This issue has been addressed Powell and Oren (1989), Wirl and Withagen (2000),
Fischer et al. (2004), and Tsur and Zemel (2011). While Powell and Oren (1989) con-
sider fossil fuels as exhaustible, they abstain from capital, so that there is no trade-off
between capacity and capital investments. Wirl and Withagen (2000) and Fischer et al.
(2004) focus on pollution and do not incorporate an exhaustible resource. Fossil fuels
are explicitly mentioned by Tsur and Zemel (2011). However, they assume an unlimited
stock. According to the results of Powell and Oren (1989) and Tsur and Zemel (2011),
the complete backstop capacity is used in the steady-state, while the marginal benefits
of backstop use exceed the marginal costs, i.e. there is a mark-up on marginal backstop
costs.
On the one hand, capital is widely regarded as an important production factor. For ex-
ample, a large part of the endogenous growth literature considers the synergy of capital
and technology as the source of economic growth.! On the other hand, fossil fuel is ex-
haustible, which is, as mentioned above, the source of an ongoing discussion regarding
the sustainability of economic development.? Consequently, fossil fuels are supposed to be
limited by many authors, e.g. by Stiglitz (1974), Tsur and Zemel (2005), Barbier (1999),
and Kollenbach (2015).

We analyze the optimal accumulation of backstop generating capacity in a setting with

capital and a limited fossil fuel stock. For this purpose we develop a model of a capital-

LCf. Barro and Sala-i Martin (2003) and Aghion et al. (1998) for comprehensive reviews of the
endogenous growth theory.
2Cf. Meadows et al. (1972). An overview of remaining resources is given by Birol et al. (2012).



energy economy based on a modified version of the endogenous growth model of Tsur and
Zemel (2005). Energy generation relies on exhaustible fossil fuels and an unlimited flow
resource (backstop, e.g. solar energy). To use the latter, a limited generating capacity
is needed, which can be extended by investing the composite good. Therefore, capacity
investments are competing with capital investments and consumption.
Similar to Tsur and Zemel (2005, 2011), economic evolution, i.e. consumption, capital
and backstop capacity accumulation, is analyzed by geometric considerations. These are
based on three characteristic lines in the two-dimensional capacity-capital-space. Depend-
ing on the capital endowment seven exemplary evolution paths are described.
In contrast to Powell and Oren (1989) and Tsur and Zemel (2011), we find that a suffi-
ciently high capital endowment gives rise to the accumulation of an excess capacity, i.e.
the capacity is extended above the level used in the steady-state. This excess capacity is
only used in the mid-term. Thus, the additional mid-term production must pay off the
capacity investments costs in terms of lost early consumption. In other words, there exists
a trade-off between early and late consumption. The lower the time preference rate the
more beneficial the trade-off and, therefore, the lower the critical capital endowment that
gives rise to the excess capacity. Furthermore, this case also illustrates that there may be
no mark-up on marginal extraction costs in the steady-state, as found by Powell and Oren
(1989) and Tsur and Zemel (2011). According to our results, the mark-up only exists, if
the capital endowment is low. Moreover, a low capital endowment in combination with a
high time preference rate may render capacity investments non-optimal, as the necessary
consumption trade-off is not beneficial. Tsur and Zemel (2011) found that in this case
the economy relies on fossil fuels. However, we consider an exhaustible stock, so that the
option of a fossil-fuel based economy does not exist. Consequently, our results regarding
the welfare of such an economy are more pessimistic.

The outline of the paper is as follows. The model is described in section 2. Section
3 presents the conditions for the social optimum. To illustrate the optimal evolution of
the economy in section 4, we introduce the characteristic lines in 4.1 and explain the
mechanism determining the evolution process in 4.2. In section 4.3 seven exemplary
evolution paths are presented, while the determinants of steady-state consumption are

discussed in section 4.5. Section 5 concludes.



2. Model

We make use of a modified version of Tsur and Zemel’s (2005) endogenous growth
model. In contrast to Tsur and Zemel, we abstain from technological progress but consider
a limited green energy generating capacity. In the following, the assumption are briefly
discussed.® A composite good y is produced by means of the two essential production
factors capital k and energy x. The production function F'(k,zx) is well-behaved and
concave, i.e. I, >0, [y, >0, F,, <0, Frp <0, Fpp = Fpop, >0, J = Fp Fyp — F,fx > 0,
and F(0,z) = F(k,0) =0.

Energy is generated by burning exhaustible fossil fuels b (black energy) or by using a
renewable backstop resource g (green energy).* The fossil fuel stock is denoted with s. Tt

decreases in fossil fuel use according to®
5= —b. (1)

As the initial fossil fuel stock s(0) is limited, Tb(t)dt < 5(0). The extraction costs of fossil
fuels are given by the convexly increasing fu%ction M (D), i.e. extraction costs depend on
the current fossil fuel flow, with M,(b) > 0 and M,,(b) > 0. As we abstain from fixed
costs, M(0) = 0.

Backstop supply is limited by the current backstop generating capacity (). The limited
capacity reflects the high capital intensity of renewable energies. In other words, () denotes
a specialized capital stock necessary for backstop utilization.® Consequently, the stock can
be increased by investing composite goods. The corresponding investments are labeled ¢,

so that
Q=q, (2)
with @Q(0) > 0 as the positive capacity endowment. Every capacity unit allows the

generation of w backstop units per period. Due to appropriate unit choice, we set w =1,

3For the sake of simplicity, the time index ¢ is suppressed as long as it is not necessary for understand-
ing.

4Concerning the backstop, we refer to the whole set of renewable energies, e.g. biofuel, solar, wind,
and water power. One can also consider fusion power, as the required fuel, hydrogen, is abundant.

5We use the notation % to indicate the derivation of an arbitrary variable z with respect to time ¢, i.e.
: dz

6Thus, we distinguish between specialized capital @ necessary for backstop generation and non-
specialized capital k used for production. In the following, we refer to the former as capacity and to

the latter as capital.



so that
QR>g (3)

holds at every point in time. In contrast to Tsur and Zemel (2011), the supply costs of
backstop are not zero. Following Chakravorty et al. (2006) and Hoel (2011), we assume
constant unit costs m, which cover all costs associated with renewable energy generation
with the exception of capital investment, e.g. maintenance, technical wear (deprecations),
the setup of a more sophisticated power grid and energy storage facilities, opportunity
costs of land use, et cetera. We assume that the technical constraint associated with
a higher backstop capacity, in particular with respect to the power grid, allows only a

limited installation ¢ per period, i.e
g>q>0. (4)

By following Tsur and Zemel (2011), let ¢ exceed net production y" at every point in
time.” The latter is given by

y" = F(k,z) — M(b) — mg, (5)

i.e. by production net of energy costs.® As consumption ¢, capacity investments ¢ and
capital (dis)investments k rely on the composite good y, the capital stock evolves according

to

k=F(kx)—MOb) —mg—q—c=y"—q—c. (6)

Utility depends only on consumption according to the concavely increasing utility function

U(c), with U(c) > 0, Ue(c) < 0, and lim0 U.(c) = oc.
c—

3. The social optimum

The social optimum is given by the maximization of welfare subject to the constraint

stated above. Thus, the social planner maximizes intertemporal utility [ U(c(t))e 'dt,
0

with p > 0 as the time preference rate, subject to (1), (2), (3), (4), (6), st > 0, k(t) > 0,

b>0,g>0,and ¢ > 0. Let 7, A and 0 be the costate variables (shadow prices) associated

Tt is also possible to let net production limit capacity investments. However, the related analysis is
more complicated without providing more insight.

8As we abstain from technological progress and assume a concave production function, the economy
cannot grow forever. Rather it converges against a steady-state. Therefore, there is always a ¢ such that
(4) holds.



with the fossil fuel stock, capital, and the backstop capacity. The Lagrange multiplier of
the capacity constraint (3) is denoted with p and the multipliers of the non-negativity
conditions are (p, ;, 4, and (;.° The current-value Lagrangian reads
L=U(c)+ ANF(k,z) — M) —mg—q—c] —1b+ 0q+ n[Q — g|
+ Qb+ Cog + G + Gala — gl (7)

Under the assumption of an interior optimum with respect to backstop use and fossil

fuel extraction, the necessary conditions give'”

Ue(c) = A, (8)
Fo(k,x) :Mb(b)+§ :m+§, 9)
—A+0=C -G, (10)

The costate variables evolve according to

A= p\ — \Fi(k, z), (11)
T = pr, (12)
0 = pb — pu. (13)

The complement slackness conditions with respect to the backstop capacity constraint

and the capacity investments ¢ are

p>0, ul@Q@—g] =0, (14)
G =0, Gq=0, (15)
(>0, (lg—q]=0. (16)

Combining (8) and (11) determines the optimal consumption growth rate'!

P ) (17)
n

with 1 as the positively defined elasticity of marginal utility. (17) is the well-known Ram-

sey rule. It states that consumption increases (decreases) as long as the marginal product

9The non-negativity conditions with respect to consumption and capital are omitted, because (8),
(11) and the assumption 111% U.(c) = oo ensure ¢(t) > 0 Vt. Since ¢ > 0 requires a positive production
c—

F(k,z) >0 and F(0,2) = 0, a capital stock of zero is ruled out, too.
10The assumption of simultaneous utilization of both energy sources has been used by Tsur and Zemel
(2005), Kollenbach (2014), and Kollenbach (2015). See also footnote 16.

"1The growth rate of the arbitrary variable z reads 2 := 14,



of capital exceeds (falls short of) the time preference rate. The absolute value of the con-
sumption growth rate is the higher the more inelastic marginal utility, i.e. the smaller 7.
The Lagrangian is linear in capacity investments q. Therefore, the optimal capacity
investment regime is determined by (10), (15), (16), and the maximization of H =
U(e) + A[F(k,z) — M(b) —mg — q — c] — 7b + 0q.'> Lemma 1 summarizes the results.

Lemma 1 Capacity investments are
e minimal, if the relative profitability ¢/x of capacity vs. capital investments falls short

of one.

e singular, if the relative profitability é/x of capacity vs. capital investments equals
one.

e mazimal, if the relative profitability 9/x of capacity vs. capital investments exceeds
one.

Proof: Appendix A.1.

According to lemma 1, the relation of the shadows prices of capacity and capital deter-
mines the optimal capacity investment regime. As the shadow prices indicate the value
the social planner associates with a marginal increase of the respective state variable, we
refer to % as the relative profitability of capacity vs. research investments. Consequently,
capacity investments are only positive, if they are at least as profitable as capital invest-
ments.

The transversality conditions, which belong to the sufficient conditions, read'?

(a) : tlgono e PN)[k(t) — k*(t)] > 0, (D) : tlgglo e Ptr(t)[s(t) — s*(t)] >0, (1)
(© ¢ lim e MOBIQ() — Q*(1)] > 0.

Variables marked with an asterisk (x) denote optimal values, while unmarked variables
refer to any possible path. Using transversality condition (18)(c) and lemma 1 we can
prove the following proposition.

Proposition 1 Fvery evolution path (k(t), s(t), Q(t), c(t),b(t), g(t), q(t)) that exhibits pos-
itive capacity investments while the backstop capacity constraint is non-binding (u = 0) is
not optimal.

Proof: Appendix A.2

The Lagrange multiplier y is either positive or zero. Therefore, proposition 1 directly

12Both Feichtinger and Hartl (1986), Satz 6.2 and Seierstad and Sydsaeter (1987), page 381, theorem
9 require the control variables to maximize the Hamiltonian.

13We write the transversality conditions in the form used by Feichtinger and Hartl (1986), chapter
7.2. For further literature regarding dynamic optimization see Chiang (1992) and Kamien and Schwartz
(2000).



connotes that positive capacity investments can be optimal, if and only if the capacity
constraint is binding.

Energy input and the energy mix are determined by (9). The sum of the marginal
costs of fossil fuel M, (b) and the relative shadow price of fossil fuel vs. capital or relative

scarcity, respectively,

V=< (19)

provides the black energy supply function.!* Due to (11) and (12), we get
o= F,>0. (20)

Thus, the relative scarcity monotonically increases in time. Using Satz 6.2 of Feichtinger
and Hartl (1986), or theorem 9 of Seierstad and Sydsaeter (1987), page 381, which both
state that the costate variables are only functions of time ¢, we can establish a unique
relationship between the relative scarcity v and time ¢ on every optimal evolution path.
A similar relationship exists between the fossil fuel stock s and time, as the former mono-
tonically decreases till its exhaustion at time 7. Consequently, for every ¢ € [0, T we can
match a unique fossil fuel stock value to every relative scarcity value, i.e. we can write
v =V(s), with 4© < 0 and V™ = V(0) as the maximal value of the relative scarcity

reached in the moment of fossil fuel exhaustion. Thus, the fossil fuel supply function reads
My(b) + V (s). (21)

The energy demand function is given by the marginal product of energy F,(k,x), while
the green energy supply function m + w is linear in energy units. The latter consists of

the marginal costs of green energy m and the mark-up
L
= 22
w )\7 ( )

which is associated with the capacity constraint Q).

Fig. 1 illustrates the equilibrium of the energy sector. Suppose the capacity constraint
does not bind. According to (14), the multiplier x is zero, i.e. w = 0. In this case, total
energy input is determined by the intersection of the backstop supply and the energy
demand function F,(k,x°) = m. Thus, z° only depends on the capital stock k, i.e. z°(k).

H4Kollenbach (2014) calls v the relative scarcity index as it sets the shadow price of fossil fuel into
relation to the shadow price of capital.



energy price
A

black supply

green supply

green marginal costs

energy demand

be b . ° energy ()

Figure 1: Energy sector equilibrium determined by energy demand function, black energy sup-
ply function and green energy supply function with and without a binding capacity
constraint

Fossil fuel will be used if and only if its social supply costs My(b) + V (s) are lower than
that of backstop. Thus, the intersection of the two supply functions M(b°) + V(S) = m
determines the fossil fuel share °(s) and, therefore, the energy mix x°(k) = 0°(s)+¢°(k, s).
The differentiation of the efficiency conditions in the energy sector with respect to capital
and fossil fuel stock give!®

dx® db° dg° ag°
a Y wm oY o B

<0 (23)

Because of F,; > 0, a higher capital stock boosts energy demand ceteris paribus. Con-
sequently, both total energy supply and backstop use increase with the capital stock.
Graphically, a higher capital stock shifts the energy demand function in Fig. 1 to the
right, so that both ¢ and ¢° are higher. Due to an increasing relative scarcity, fossil fuel
use decreases with the declining fossil fuel stock. As fossil fuel is substituted by backstop,
the latter increases.

If the capacity constraints binds, backstop supply equals (). However, total energy input
and the energy mix have still to fulfill (9). Thus, total energy input is determined by
F,(k,z) = m 4+ w and fossil fuel extraction by M,(b) + V(s) = m + w. Furthermore,
w has to be such that @ = x — b holds. Consequently, we can write w = w(k,s, @),

Q

15Wegetg_£:_ka db _ 1 dV 89 _ _Fer onq 9 1 dV
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r = z(k,s,Q) and b = b(k,s,Q)." Differentiating F(k,z(k,s,Q)) = m + w(k,s,Q),
My(b(k,s,Q) + V(s) = m + w(k,s,Q), and z(k,s,Q) = b(k,s,Q) + Q with respect to

capital, fossil fuel stock, and capacity gives!'”

Ox Oz Oz
%>0, $>O, @>O, (24)
0b 0b 0b
%>0, £>0, @<O, (25)
Ow Ow Ow
a—k>0, $<0, @<O (26)

As mentioned above, due to F,; > 0, the higher the capital stock the farther to the right
the energy demand function is located in Fig. 1. Therefore, total energy input increases
with the capital stock. However, the binding capacity constraint limits backstop use to
g = Q. Consequently, the mark-up w has to adjust such that (9) and g = @ hold, i.e.
such that distance between the black energy supply function and the energy demand
function in the equilibrium equals (). In case of an increased capital stock, this requires a
higher mark-up, so that the green energy supply function is shifted upwards. Therefore,
it intersects the black energy supply function at a higher energy price value, which implies
more fossil fuel extraction.

The relative scarcity increases as the fossil fuel stock decreases in time. The former is
represented by an upward-shift of the black energy supply function in Fig. 1. To guarantee
g = @, the mark-up w has to increase, so that total energy input declines ceteris paribus.
With respect to fossil fuel use, the higher relative scarcity connotes less and the higher
mark-up more extraction. According to (25), the former effect dominates.

Finally, the higher the backstop capacity () the lower the mark-up w, i.e. the lower the
position of the green energy supply function in Fig. 1. Consequently, total energy input

increases, whereas fossil fuel extraction decreases in ().

16 Note that w is a fraction of the multiplier 1 and the costate variable A\. While the evolution of the
latter is determined by (11), the former can attain every positive value, if the backstop constraint binds.
If the backstop unit costs are too high, i.e. if they are located above the intersection of the fossil fuel
supply and the energy demand function, backstop supply would be zero and energy generations only relies
on fossil fuels. However, as the fossil fuel stock decreases in time the fossil fuel supply function shifts
upwards due to the increasing relative scarcity index. Thus, zero backstop supply is only a temporary
phenomenon. Following Tsur and Zemel (2005), Kollenbach (2014), and Kollenbach (2015), we assume
sufficiently low backstop unit costs, so that g > 0.

17We get @ — Foi @ _ _ 1 av. @ — My @ — For @ _ 1 av
ok Mpp—Fgze? Os Mpp—Fpe ds? 0Q Mpp—Fro? Ok Mpp—Fpg? Os Mpp—Fpq ds?
ﬂ — Fro 6_‘U _ My Frp 6_‘U — Fro d_V and 6_‘U _ My Fy,
0Q = Myp—Fzz’ Ok = Myp—Fuz’ s =~ Mpp—Fun ds’ 0Q " Myp—Fao”
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4. Determining optimal evolution

To analyze the optimal evolution of the economy we adapt the method of Tsur and
Zemel (2005) and Tsur and Zemel (2011), which is based on characteristic lines. To un-
derstand the method note that the optimal capacity investment regime is given by lemma
1, while (9) determines optimal backstop and fossil fuel utilization. Thus, given the op-
timal capacity investments, the evolution paths of the fossil fuel stock s and capacity @)
are determined, so that only capital k£ remains as an independent state variable. In other
words, the optimization problem of the social planner reduces to a series of single-state
problems based on the optimal decision with respect to capacity investments. It turns out
that both the selection of the optimal investment regime and the evolution of the capital
stock depend on the relative position of three characteristic manifolds in the (Q,k, s)-
space. Applying the suitable method already used by Tsur and Zemel (2005), Kollenbach
(2014) and Kollenbach (2015), we illustrate these manifolds by using their projections on
the (Q, k)-space. As these projections are lines, we refer to them as characteristic lines.
The monotonic decrease of the fossil fuel stock in time is represented by a downward shift
of the lines in the (@, k)-space. As will be shown in 4.2, the characteristic lines divide the
(@, k)-space in subspaces with specific properties. These properties allow us to illustrate
several evolution path in 4.3. As the paths illustrate the evolution of the economy in the
(Q, k)-space, we refer to them as (Q, k)-processes.

In the following we say that the economy or the (Q, k)-process, respectively, is located
above (on, below) the characteristic line, if k(t) > a(Q(¢)) <k(t) = a(Q(t)); k(t) <
a(Q(t))), with a(Q) denoting an arbitrary characteristic line in the (Q, k)-space. Due to
proposition 1, capacity investments are minimal, if the constraint is non-binding. There-
fore, Q(t) remains constant, so that the (Q, K)-process reduces to changes of the capital
stock. However, both capital and capacity can change, if the constraint is binding, which

is assumed in the following, if not stated otherwise.

4.1. The characteristic lines

The characteristic manifolds describe points in the (@, k, s)-space with specific char-
acteristics. The first manifold gives all points of the (@, k, s)-space where the capacity
is just sufficiently large to allow the mark-up w to equal zero. With regard to Fig. 1,
capacity () and capital stock £ must be such that x = 2° and g = ¢° = ). In other words,

on this manifold an economy exhibits neither an over- nor an under-capacity. Therefore,

11



we refer to the projections of the manifold on the (@, k)-space as the sufficient capacity

line (SCL). The manifold is given by
F.(k,z(k,s,Q)) =m, (27)

which implicitly defines the function K¢(Q,s). In Appendix A.3 it is shown that
0K¢ F,.

0Q — Fu
OK¢  F, adv

Js n szMbb E

> 0, (28)

> 0. (29)

Thus, the sufficient capacity line continuously increases in the (@, k)-space. Consider
Fig. 1, for an arbitrary fossil fuel stock value, i.e. for given fossil fuel extraction b°, a
higher capacity and ) = ¢° require an upward shift of the demand function. Thus, the
capital stock needs to be higher ceteris paribus.

Furthermore, (29) states the influence of the decreasing fossil fuel stock on the position
of the sufficient capacity line in the (@, k)-space. Since ag—: > 0, the lower the fossil fuel
stock the lower the position of the line. (25) shows that the lower the fossil fuel stock the
lower black energy use ceteris paribus. For a given capacity, less black energy use requires
a lower capital stock to ensure validity of (27). As illustrated in Fig. 2(a), the sufficient
capacity line is shifted downward in time till the fossil fuel stock is exhausted at time

T. Tts initial position is given by SCL(0) and its long-run position valid for all ¢ > T by

SCL(T). !
§ SCL(0) SCL(T)  * Lo y SiL(0)
/ ‘ SIL(T)
/}L(T)
|
Q) ° Q0 ° Q0 ¢
(a) SCL (b) CCL (c) SiL

Figure 2: Sufficient capacity line (SCL), constant consumption line (CCL), and singular line
(SiL) fort =0and t =T

The second characteristic manifold describes all points in the (Q, k)-space which allow

for constant consumption and a binding capacity constraint, i.e. for g(t) = Q(t) and

18Gimilar to SCL(0) and SCL(T) we refer to the projection of the manifold valid at time 0 < t < T,
i.e. for the fossil fuel stock s(t), as SCL(t).

12



¢(t) = 0. Therefore, we refer to the projections of the manifold on the (@, k)-space as
the constant consumption line (CCL). According to the Ramsey-rule (17), the manifold

is given by
Fk(l{?,ﬂf(k,S,Q)) =P (30)
which implicitly defines the function K¥(Q, s). Appendix A.3 proves that
OKN Fy. M,
ke 7S, (31)

0Q — Fuly —J
OKN  FuMy dV
88 a Fkkab —J ds

> 0. (32)

According to (31), the constant consumption line continuously increases in the (Q,k)-

space. It is noteworthy that —%%N < %,

the constant consumption line for large (). (32) shows that the decreasing fossil fuel

i.e. the sufficient capacity line is located above

stock shifts the constant consumption line downwards in the (Q, k)-space till it reaches
its long-run position at the fossil fuel exhaustion time 7. The shift is caused by the ceteris
paribus decline of total energy input % > 0, so that a lower capital stock is required to
ensure a constant marginal product of capital. Fig. 2(b) depicts the downward shift of
the constant consumption line with CCL(0) referring to the initial position of the line and
CCL(T) to its long-run position.

Following Tsur and Zemel (2005), we define a steady-state as a situation with constant
consumption, capacity and capital stock. In other words, the economy is in a steady-
state, if ¢ = k = Q = 0. Consequently, a (@, k)-process needs to be located on the
constant consumption line to be in a steady-state. However, as long as the fossil fuel
stock is not exhausted the constant consumption line shifts downwards in the (Q,k)-
space. Consequently, to stay on the line a (@, k)-process needs to adjust capital and/or
capacity, which contradicts the definition of the steady-state. Therefore, a steady-state
can only be located on the long-run constant consumption line CCL(T). In the following
we refer to this line as the steady-state line (SSL).

Lemma 2 An economy can be only in a steady-state if the (Q, k)-process is located on
the steady-state line, which is given by the long-run constant consumption line.

The third and last characteristic manifold describes all points of the (@, k, s)-space
where singular capacity investments may be optimal. Hence, we refer to its projections
on the (@, k)-space as the singular line (SiL). Due to proposition 1, positive capacity

investments require a binding constraint. Consequently, the singular line is defined for

13



g(t) = Q(t). Furthermore, lemma 1 connotes that a singular investment regime requires

0 = X and § = \. By substituting (11) and (13) in the latter, we get

Fr(k,z(k,s,Q)) = w(k, s, Q), (33)

which implicitly defines the function K°(Q, s). In Appendix A.3 we prove that

OK®  My(Foy — Fiy)
0Q  My(Fx — Fio) — J

OK* B Fi,. — F,, dV
0s B Mbb(Fkk - F]m) - JE ~

> 0, (34)

0. (35)

N
oK <

aQ
% < %, so that the singular line is located above the steady-state line but below the

As the other two lines, the singular line increases in the (@, k)-space. Note that

combined investment line for large (). The decreasing fossil fuel stock causes a downward
shift of the singular line in the (@, k)-space. On the one hand, the lower the fossil fuel
stock the lower total energy input ceteris paribus, so that the left-hand side of (33) is
smaller. On the other hand, (26) shows that the mark-up w increases with a falling fossil
fuel stock, so that the right-hand side of (33) is higher. To ensure equality the capital
stock value solving the equation decreases. Both (34) and (35) are illustrated in Fig. 2(c).

4.2. The subspaces

The characteristic manifolds divide the (Q, k, s)-space into subspaces with specific
properties. According to the proofs of Appendix A.4 the properties read as follows.!?

Properties:

(a) Above (below) the sufficient capacity line the economy is characterized by an under-

(over-) capacity, i.e. F,(k,b+ Q) > m above and F,(k,b+ Q) < m below the line.

(b) Consumption increases (decreases) below (above) the constant consumption line.
According to the Ramsey-rule (17), Fy(k,x) > p below and Fi(k,z) < p above the

line.

(c) Capacity investments are minimal below the singular line and either maximal or
temporary minimal above the line. Thus, % < 1 below the singular line and either

§>1or§<1aboveit.

19The properties with respect to the singular and the steady-state line are similar to the ones found by
Tsur and Zemel (2005). Cf. also Kollenbach (2014).

14



(d) The singular line exerts a bonding force on the (Q, k)-process. In other words, if

the process has reached the line, it cannot diverge from it.

If not located on the steady-state or the singular line, the (@, k)-process follows either
a minimal or a maximal capacity investment regime, as shown by property (c) and the
definition of the singular line. Thus, the (Q, k)-process approaches either the steady-state
or the singular line on a most rapid approach path (MRAP). Due to proposition 1, capacity
investments are only possible, if the capacity constraint binds. Therefore, property (a)

directly gives lemma 3.

Lemma 3 Capacity investments below the sufficient capacity line are not optimal.

Furthermore, the sufficient capacity line is located above the singular line for large @, as

dK* dK°
o < a0

investments are singular on the line, while the singular line binds an (Q, k)-process. By

According to the definition of the singular line and property (d), capacity

taking lemma 3 and the MRAP feature into account we can conclude as follows.

Proposition 2 The (Q, k)-process cannot evolve along the singular line forever. Conse-
quently, capacity investments are minimal for late points in time.

The downward shift of both the singular and the sufficient capacity line together with
property (a) and (c) and proposition 1 illustrates how the decreasing fossil fuel stock
boosts the relative profitability of capacity investments %. Due to the downward shift the
numbers of points above both lines increases. According to property (a), the points above
the sufficient capacity line are characterized by an under-capacity, which is a requirement
for capacity investments as implied by proposition 1. Furthermore, only above the singular
line capacity investments may be maximal. In short, the lower the fossil fuel stock the
more (@, k)-combinations exist which allow for capacity investments. As Tsur and Zemel
(2011) abstain from a limited fossil fuel stock, they do not optain a corresponding effect.

According to proposition 2, the (@, k)-process cannot evolve along the singular line
forever, so that the process has to converge against a steady-state. Therefore, whether
and where the long-run singular line and the steady-state line intersect is of some im-
portance. Suppose the two lines do not intersect in the area restricted by the long-run
sufficient capacity line, as illustrated by Fig. 3(a). Furthermore, consider an (Q,k)-
process which reaches the singular line. Due to property (d), the process has to evolve

along the line, which connotes singular capacity investments. However, in the moment
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~SiL(0)
SCL(T)

~SiI(T)

(a) invalid intersection (b) no intersection

Figure 3: Steady-state line (SSL), singular line (SiL) for ¢t = 0 and ¢t = T of a min-max economy

the process crosses the sufficient capacity line, further capacity investments violate lemma,
3. A switch into a steady-state is not possible, as the process is not located on the steady-
state line and cannot leave the singular line. A similar argument holds with respect to
the case illustrated in Fig. 3(b). As the long-run singular and the steady-state line do
not intersect, an evolution along the singular line would imply a violation of lemma 3.
Thus, in both settings singular capacity investments cannot be part of a feasible solution.
Rather, capacity investments are either minimal or maximal. Therefore, we sum up both
constellations under the term min-maz case. However, if there is an intersection of the
long-run singular line and the steady-state line above the long-run sufficient capacity line,
a (Q, k)-process that evolves along the singular line can switch into a steady-state at the
intersection, so that singular capacity investments can be possible. Consequently, we refer

to this setting as the singular case.

4.3. Economic evolution

Following Kollenbach (2014) and Kollenbach (2015) we analyze the evolution of the
economy by illustrating 7 exemplary (@, k)-processes in the figures 4 and 5. These pro-
cesses represent possibilities for the optimal evolution path of economy, as they are in line
with the properties (a) - (d) and the MRAP feature. We distinguish between the paths by
identifying them with their capital endowment k. The (Q, k)-processes increase the com-
plexity of the figures 4 and 5 considerably. To keep the illustrations as simple as possible,
we omit the arrows indicating the shift direction of the characteristic lines and the initial

constant consumption line. Furthermore, the initial sufficient capacity and singular line
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are only adumbrated. Finally, it is unrewarding to illustrate every characteristic line, i.e.
the projection of the corresponding manifold valid for the current fossil fuel stock value,

that is reached or crossed by the (Q, k)-processes.

4.3.1. The singular case

At first we turn to the singular case, which was defined by an intersection of the long-
run singular and the steady-state line above the sufficient capacity line. Fig. 4 illustrates
the singular and the sufficient capacity line for ¢ = 0 and ¢t = T', the steady-state line (SSL)
and 4 exemplary (Q, k)-processes k', i = 1,...,5. According to property (b), consumption
increases (decreases) on all depicted paths, as long as the evolution path is located below

(above) the constant consumption line.

SCL(T) SLO)

Q" Q* - ¢
Figure 4: Steady-state line (SSL), singular line (SiL) for ¢ = 0 and ¢ = T, sufficient capacity

line (SCL) for t = 0 and ¢t = T', and 4 exemplary (Q, k)-processes of a singular type
economy

Consider an economy with the capital endowment k!, which is located below the sin-
gular line initially. According to property (c), capacity investments are minimal, so that
the (Q, k)-process approaches the singular line from below by means of capital accumu-

lation. In the moment the singular line is reached, the investment regime switches to
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singular capacity investments. In the illustrated case, the switch occurs above the long-
run singular line. As the singular investment regime allows for both capacity and capital
investments, the (Q, k)-process increases in the (@, k)-space. The process evolves along
the singular line till it reaches the intersection with the steady-state, i.e. the point P.
Due to proposition 2, it is not optimal to evolve along the singular line forever, so that the
(Q, k)-process switches into a steady-state at the point P4. As P4 is located above the
long-run sufficient capacity line SCL(T), the steady-state is characterized by an under-
capacity, so that the mark-up w is positive.

The k2-path illustrates a similar long-run evolution pattern. However, the capital en-
dowment k? is exceeds the singular and the sufficient capacity line initially, so that, in
line with the properties (a) and (c) capacity investments are maximal. According to the
assumption ¢ > y", the maximal investment regime connotes a decreasing capital stock.
Consequently, the (@, k)-process approaches the singular line from above to evolve along
it to the steady-state P4.

Consider the evolution of the k?-path at early points in time in more detail. Due to
the maximal investment regime, net production is completely spent for capacity invest-
ments. Consequently, it can not be used for consumption. However, at later points in
time a higher capacity gives rise to more energy input and, therefore, to more net pro-
duction. Thus, there is a consumption trade-off. The social planner is willing to trade-off
more current for future consumption the lower the time preference rate. In terms of the
evolution path, the lower the time preference rate the flatter the decreasing part of the
(Q, k)-process.

For a given time preference rate we an mark a threshold ky;. The (@), k)-process approaches
the steady-state P4, only if the capital endowment does not. exceed this threshold. Oth-
erwise, as illustrated by the k3-path, the economy accumulates more capacity than is used
in PA. However, the (Q, k)-process cannot approach the singular line, as this would imply
an evolution along the line above the steady-state and below the sufficient capacity line.
According to property (b) and proposition 2, both are not optimal. Thus, at some point in
time characterized by a capacity Q(t) exceeding the level of P4, the maximal investment
regime is abandoned above the singular line in favor of minimal capacity investments.
Henceforth, the (Q, k)-process approaches the steady-state line by means of capital stock

adjustments. As long as the steady-state is located between P4 and PP - the intersection
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of the steady-state and the long-run sufficient capacity line - it is characterized by an
under-capacity, i.e. a positive mark-up w.

Using a similar argument as with respect to ks, we can mark a second threshold kg. If the
capital endowment equals kg, the switch from maximal to minimal capacity investments
occurs at the moment the capacity Q(t) equals Q7, so that the process converges against
PB. Consequently, the mark-up in the steady-state is zero. However, if the capital en-
dowment exceeds the second threshold, as does k*, the switch occurs at a higher capacity
level. In other words, more capacity is accumulated than utilized in PZ. Given a com-
pletely used capacity @Q* the steady-state would be located below the long-run sufficient
capacity line, which is not feasible. Consequently, the steady-state of a k*-type economy
is characterized by an over-capacity. To determine the steady-state, recall that, given an
over-capacity, (9) requires Fy(k,z) = m to hold while the long-run sufficient capacity line
is defined by F,.(k,Q) = m and x = Q). Thus, the steady-state needs to be located on the
long-run sufficient capacity line. In other words, the intersection of the steady-state and
the long-run sufficient capacity line PP determines steady-state capital stock and energy
input 2% = QP < @Q*. The economy approaches this steady-state by evolving along the
sufficient capacity line with g(t) < Q*.

Proposition 3 If the capital endowment k(0) of a singular type economy exceeds the
threshold kg, steady-state backstop use falls short of the accumulated backstop capacity,
i.e. the economy is characterized by an over-capacity in the steady-state.

To rationalize the k*-path, notice that the capacity constraint is binding on the section of
the vertically falling part of the evolution path that is located above the sufficient capacity
line. On this section both energy input and the capital stock exceed their steady-state
values, while capacity investments are zero. Therefore, consumption is higher than in the
steady-state. If this mid-term excess consumption is sufficiently high and the time pref-
erence rate low, it outweighs the negative effect of capacity investments on consumption
at earlier points of time.

The location of the thresholds k,; and kg crucially depends on the time preference rate.
As stated above, the higher the preference rate the less beneficial the trade-off of current
for future consumption. During a maximal capacity investment regime, ¢ = ¢ > y", so
that net production is completely used for investments. As consumption must be positive,
(6) connotes a declining capital stock. Thus, the higher the time preference rate the higher

the consumption in early periods. Consequently, the decreasing part of the evolution path
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are the steeper and the thresholds higher.

With the k*path and the threshold k., we extend the results of Powell and Oren
(1989) and Tsur and Zemel (2011). According to the former, the steady-state benefit of
backstop always exceeds marginal backstop costs in absence of capital, i.e. there is always
a positive mark-up. Consequently, less backstop is used than without a backstop capacity
constraint. The threshold ks and the k*-path show that also the opposite can be true,
if the capital endowment is sufficiently large. If the capital endowment equals kg the
(Q, k)-process approaches the steady-state PP, so that the mark-up is zero. In case of
the k-path, an over-capacity exists in the steady-state, which also implies a non-existing
mark-up. In other words, a high capital endowment guarantees the utilization of the full
production potential of the steady-state capital stock. Furthermore, the possibility of a
capital-driven excess capacity is neither obtained by Powell and Oren (1989) nor by Tsur
and Zemel (2011). According to Fischer et al. (2004), a high initial pollution may also
cause an excess capacity. However, Fischer et al. (2004) do not consider capital. Finally,
Tsur and Zemel (2011) also do not discuss the possibility of maximal capacity investments,

which we show to be optimal in case of a sufficiently large capital endowment.

4.4. The min-maz case

After having discussed the singular case, we turn to the min-max case, which is char-
acterized by the non-existence of an intersection between the long-run singular Sil.(T)
and the steady-state line SSL above the long-run sufficient capacity line SCL(T). As illus-
trated in figures 3 and 5, either the singular line intersects the steady-state line below the
sufficient capacity line or it is located above the steady-state line for all (). Recall that in
both cases the (Q, k)-process cannot evolve along the singular line. Due to property (d),
this rules out every (Q, k)-process which approaches the singular line.

Consider at first the case of Fig. 5(a). The singular line is located above the steady-
state line in the area of the (@, k)-space restricted by the long-run sufficient capacity
line. According to property (c¢), minimal capacity investments above the singular line are
only a temporary option. However, recall that the singular line is defined for a binding
capacity constraint. Consequently, it does not exist at the point PZ, which is the only
possible steady-state the (Q,k)-process can converge to. If the capital endowment is
sufficiently large, the (Q, k)-process is similar to the k3- or k*-path. In the illustrated case

of the k°-path, the capital endowment falls short of the singular line at early points in
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Figure 5: Steady-state line (SSL), singular line (SiL) for t = 0 and ¢t = T, sufficient capacity line
for t =0 and t =T, and 3 exemplary (Q, k)-processes of a min-max type economy

time, so that capacity investments are minimal. Consequently, capital is accumulated. As
singular capacity investments are not optimal, there is no switch from minimal to singular
investments at the moment the evolution path reaches the singular line. Rather, capacity
investments remain minimal while the capital stock is increased. Due to this investment
regime and the scarcity driven downward shift of the singular line, the (Q, k)-process
surpasses the singular line. Above the singular line maximal capacity investments are
optimal. Consequently, the (Q, k)-process converges against the steady-state PZ. Since
this steady-state is the only feasible one in the illustrated setting, capital investments
need to be sufficiently high at early points in time. Otherwise, the (@, k)-process would
surpass the singular line below k?, so that the steady-state P? cannot be reached.

In the case illustrated by Fig. 5(b), the singular line is always located above the
steady-state line. Thus, every point on the steady-state line is a feasible steady-state.
If the capital endowment is sufficiently large, the (Q, k)-process is similar to the k3- or
the k%-path. In case of a small capital endowment, such as k®, the (Q, k)-process evolves
as the kS-path at early points in time, i.e. it surpasses the singular line due to capital
accumulation to switch to maximal capacity investments above the singular line. As the
steady-state line is located below the singular line for all (), there needs to be a switch from
maximal capacity investments to minimal one as long as the (@, k)-process is located above
the singular line. In the illustrated case the accumulated capital stock is not high enough
to reach the steady-state PP. Instead, maximal capacity investments are abandoned at a

smaller level. Afterwards, the (Q, k)-process converges against a steady-state by means of
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capital adjustments. Obviously, the higher the capital stock at the moment of the switch
to maximal capacity investments the higher the reachable steady-state values of capital
and capacity and, therefore, of consumption. However, high early capital investments
require a small time preference rate, so that the trade-off of early for later consumption
is beneficial. Thus, the lower the rate the higher steady-state consumption.

If the capital endowment is too low given the time preference rate, the trade-off is generally
not beneficial. In other words, we can mark a threshold k,,. Only if the capital at
least equals this threshold, capital and capacity investments are possible. Otherwise, as
illustrated by the k"-path, the (Q,k)-process approaches the steady-state line at Q(0)
by means of capital stock reduction. Thus, the k"-path illustrates a poverty trap in the
sense of Tsur and Zemel (2005), Kollenbach (2014), and Kollenbach (2015). However, our
result is not driven by a lack of research expenditures, but by a lack of backstop capacity
investments. The location of the threshold k,, crucially depends on the time preference
rate. The lower (higher) the rate the higher (lower) the value of long-run consumption

and, therefore, the lower (higher) the threshold.

Proposition 4 If the capital endowment k(0) of a min-mazx type economy falls short of
the threshold k,,, backstop investments are minimal for all points in time.

Similar to the k- and k2-paths, the whole min-max case augments the results of
Powell and Oren (1989) and Tsur and Zemel (2011). In particular, the non-optimality
of singular capacity investments and, therefore, the dependence on maximal ones for the
realization of an improved steady-state contrasts with Tsur and Zemel (2011), who focus
on singular investments. Nonetheless, the k7-path bears a resemblance to the fossil fuel
based economy of Tsur and Zemel (2011). With an unlimited fossil fuel stock, energy
demand can be satisfied by fossil fuels. Consequently, Tsur and Zemel (2011) do not
identify the corresponding evolution path as a poverty trap. However, with a limited
stock, this possibility of a fossil fuel based economy does not exist. Consequently, the
economy relies on the more expensive backstop, so that the welfare prospects are less

bright than in the setting of Tsur and Zemel (2011).

4.5. Determinants of steady-state consumption

As shown in the previous two sections the steady-state depends not only on capital
endowment and time preference rate, but also on the long-run position of the characteristic

lines. Steady-state consumption is the higher the larger the steady-state capital stock and
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capacity, i.e. the further in the north-east of the (Q, k)-space the steady is located. In
terms of the characteristic lines this requires a high position of the steady-state line and
a low position of both the sufficient capacity line and the singular line. Furthermore, the
latter two should be rather flat, so that the number of (@, k)-combinations allowing for
and requiring capacity investments, respectively, is high.

Inspecting (27) shows that, ceteris paribus, the marginal product of energy is the smaller
the smaller the capital stock. Thus, low backstop unit costs give rise to a low position of
the sufficient capacity line. Fig. 1 illustrates how lower backstop unit costs increase the
advantageousness of capacity investments. On the one hand, lower backstop unit costs
increase the amount of backstop that would be used given a sufficiently large capacity
(¢°). On the other hand, the possible maximal energy input (z°) is boosted, which would
increase production.

Using a similar formal argument with respect to (30) shows that the position of the steady-
state line is the higher the smaller the time preference rate. The economic intuition is the
same as mentioned with regard to the thresholds. The lower the time preference rate the
more beneficial the trade-off of early for later consumption.

Finally, (28) and (34) show that the sufficient capacity and the singular line are the flatter
the lower |F,,|, which connotes a flat energy demand function in Fig. 1 and, therefore,

a high elasticity of the marginal product of energy ep, , = F, The effects of a flat

S
T,
energy demand function are similar to the ones of low backstop unit costs. That is, both
the potential backstop input ¢° and the maximal possible energy input x° are the higher

the lower |F,,| ceteris paribus.

b

7 has no effect on the
b

A high elasticity of marginal extraction costs ey, = My
slope of the sufficient capacity line in the (Q,k)-space. However, the higher M,, the
closer the right-hand side of both (31) and (34) to unity. In other words, % and %
resemble parallels for elastic marginal extraction costs, which implies an intersection of
the steady-state line and the long-run singular line in the far north-east of the (Q,k)-
space. Furthermore, (29) shows that the impact of the decreasing fossil fuel stock on the
position of the sufficient capacity line is weak if My, is high. Thus, the initial position
of the line is close to the long-run position. To explain these effects we refer again to

Fig. 1. A high M, implies a steep fossil fuel supply function. Consequently, the economy

relies heavily on backstop from the very beginning. Furthermore, the scarcity induced
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reduction of fossil fuel use is small in absolute terms. On the one hand, the high reliance
on backstop gives rise to a high relative profitability of capacity investments g. On the
other hand, the relative profitability does not increase much in time, due to the small

capacity induced reduction of fossil fuel use. The results are summarized in proposition 5.

Proposition 5 Ceteris paribus, steady-state consumption is the higher the lower the time
preference rate, the lower the unit costs of backstop, and the higher the elasticities of
marginal extraction costs ey, , and of the marginal product of energy with respect to energy

EFz,z-

Tsur and Zemel (2011) consider constant unit costs of fossil fuel extraction and no
marginal backstop costs, while Powell and Oren (1989) abstains from capital and fossil
fuel extraction costs. Therefore, the corresponding results of proposition 5 cannot be

obtained in their models.

5. Conclusion

We analyze how a capital-energy economy should invest in backstop capacity and how
the limited but extendable capacity affects the evolution of the economy. For this purpose
we determine the social optimum of the economy given a limited fossil fuel stock and
a limited capacity necessary for the utilization of a renewable backstop energy source.
The capacity can be extended by investing the composite good. Therefore, capacity
investments compete with capital investments and consumption for limited funds. Similar
to Tsur and Zemel (2005, 2011), our analysis of the optimal evolution path is based on
the relative position of three characteristic lines in the capacity-capital space.

According to our results, the steady-state crucially depends on the capital endowment
and the type of the economy. If singular capacity investments are possible (singular type
economy) and the capital endowment is located between two critical values, the steady-
state levels of backstop capacity, capital and, therefore, consumption are the higher the
higher the capital endowment. However, if the capital endowment falls short of the lower
critical value or exceeds the upper one, the capital endowment dependence of the steady-
state vanishes. In the case that the capital endowment falls short of the upper critical
value, the steady-state is characterized by an under-capacity, i.e. there is a positive mark-
up on backstop costs. In contrast, if the capital endowment exceeds the upper critical
value, the economy accumulates more backstop capacity than is used in the steady-state.

In other words, a sufficiently high capital endowment gives rise to the accumulation of an
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excess backstop capacity. Consequently, the full production potential of the steady-state
capital stock is used. Thus, the marginal product of backstop equals marginal backstop
costs, so that there is no mark-up on backstop costs. The excess capacity is only used in
the mid-term but not in the steady-state. Therefore, the negative consumption effect of
capacity investments in early periods is outweighed by increased mid-term consumption.
In other words, there is a trade-off between early and late consumption. Obviously, the
lower the time preference rate the more beneficial the trade-off and, consequently, the
lower the critical values.

If the economy type does not allow for singular capacity investments (min-max type
economy) and the capital endowment falls short of a critical value, there are no capacity
investments. In this case, the consumption trade-off is not beneficial and the economy is
in a poverty trap.2’

With capital, exhaustible fossil fuels and positive backstop unit costs, we integrate
several aspects, which are not all considered by Powell and Oren (1989), Fischer et al.
(2004), Wirl and Withagen (2000), and Tsur and Zemel (2011).?" In particular the capital
endowment can affect the results considerably. The possibility of a capital-driven excess
capacity is not obtained by Powell and Oren (1989) and Tsur and Zemel (2011). Fur-
thermore, Powell and Oren (1989) and Tsur and Zemel (2011) postulate a mark-up on
marginal backstop costs in the steady-state, so that not the full potential of the capital
stock is used. According to our results, such a mark-up only exists if the capital endow-
ment is low. Thus, our analysis provides a more optimistic view concerning the evolution
prospects of economies with a high capital endowment.

The exhaustible fossil fuel stock gives rise to two important results. Firstly, the decrease
of the stock in time boosts the relative profitability of capacity investments. Moreover,
in combination with a low capital endowment it gives rise to the poverty trap. While an
economy without capacity investments is also obtained by Tsur and Zemel (2011), they
do not find the economy to be in a poverty trap. Due to their assumption of an unlimited
fossil fuel stock, energy generation can heavily rely on fossil fuel for all time. In our setting
of a limited fossil fuel stock, this possibility of a fossil fuel based economy does not exist.

Thus, our analysis suggests a more pessimistic view concerning the welfare of such an

20A poverty trap is also found by Tsur and Zemel (2005), Kollenbach (2014), and Kollenbach (2015).
However, the cause of our poverty trap is not a lack of research expenditures but of capacity investments.
21Recall that Fischer et al. (2004) and Wirl and Withagen (2000) focus on the effects of pollution.
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economy.

Our present model makes use of several simplifying assumptions. In particular, we
abstain from a stock dependence of fossil fuel extraction costs. As shown by Kollenbach
(2015), a stock dependence may cause the economically but not physically exhaustion of
fossil fuels. In this case, the stock left in situ depends on the availability of backstop,
i.e. the speed of capacity accumulation. Our results may also be affected by endogenous
technological progress and pollution, which both may boost potential backstop utilization
and, therefore, the relative profitability of capacity investments. In particular, technology

progress may give rise to everlasting growth.

A. Appendix
A.1. Proof of Lemma 1

The maximization of the Hamiltonian gives

g=0,if —\+6<0,
0<q<qif —A+0=0, (A.1)

qg=q,if —X+60>0.

If < A, capacity investments are zero. As (; = 0, (10) connotes ¢, = A — 6 > 0, which is
in line with (15). In case of singular investments, § —\ = (, = (; =0, and (7 =0—\ > 0,

¢, = 0, if capacity investments are maximal.

A.2. Proof of Proposition 1

The capacity constraint can be non-binding either for a limited time interval [¢y,t5],
with 0 < ¢; < t3 < 00, or an unlimited time interval [t3, co[, with 0 < ¢35 < co. At first,
consider the case of the limited time interval. Suppose two investment plans. The first
one stipulates positive capacity investments at some point in time t; <t < t5. The second
one resembles the first one but reallocates one marginal investment unit from capacity to
capital investments at time ¢. At time ¢, this marginal capital unit is disinvested and used
for a capacity investment, so that capacity at time ¢ is identical under both investment
plans. The reallocation at time ¢ has no effect on energy input, as the constraint is non-
binding during ¢; <t < t5. However, the reallocation increases the capital stock, so that
production is higher during the time interval [t,¢s[. This additional production can be

used either for consumption or capital accumulation. In both cases, the second investment
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plan is superior to the first one. This argumentation can be repeated until there are no
capacity investments at time ¢.

Consider now the unlimited time interval [t3,00[. As the capacity constraint is non-
binding, u(t) = 0 for all ¢ € [t3,00[. Suppose that ¢(f) > 0 at the same point in time
ts3 <t < oco. According to lemma 1, 0(t) > A(t) is required. Since the shadow price of
the capital stock A is positive for all points in time, ¢(¢) > 0 implies 0(¢) > 0. However,
due to (13) and p = 0 we can write 0() = 6,e”, with 6, > 0 and £ > ¢. Substituting into
(18)(c) gives lim 6,[Q(#) — Q*(#)] > 0. Due to the capacity investments at time ¢ there
exists at leasttgliz feasible evolution path with lim [Q(f) — Q*(#)] < 0. Thus, the capacity
investments ¢(t) > 0 violate the transversality g;noaition. This violation together with the

upper paragraph prove proposition 1.
A.3. Slope of the characteristic manifolds

To determine the slope of the sufficient capacity line we substitute K¢(Q, s) in (27)
and differentiate with respect to () and s, which yields

[ka + Fm%] % + Fmg—g =0
«:)aa[g = —]};: > 0. (A.2)
[ka + Fm%} 8220 + Fm% =0
C
@agi = szl\isz,% > 0. (A.3)

Analogously, the slope of the constant consumption line is determined by substituting

KN (Q,s) in (30) and differentiate with respect to @ and s. We get

[Fkk + ka%] % + Fkxg—g =0
N
@8@% = —% > 0. (A.4)
[Fkk + ka%] aaisN + Fkx% =0
N
@ags = FkkJ\IZZ—JCfl—Z > 0. (A.5)
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The slope of the singular line is determined by substituting K°(Q), s) in (33) and differ-

entiating with respect to ) and s.

|:Fkk+Fk 8.T:| a_[(S+Fk @:8_w+8_w8_f(s
Tok| 0Q 0Q  0Q Ok 0Q
LOKS _ My(Fuy — Fiu)
aQ Mbb<Fkk — F) —J
or| 0K*° 0r OwdK® Ow
|:Fkk +Fkxak] D5 +Fkx% =% o5 o5
JOKS _ Fu-Fy AV
0s My (Fyy — Frp) — J ds

>0, (A.6)

> 0. (A.7)

A.J. Properties of subspaces

In the following we prove the properties of the subspaces, determined by the charac-
teristic manifolds. As we adapt Tsur & Zemel’s (2005) model, the proofs follow or modify
the proofs of Tsur & Zemel’s appendix.

SCL
Define Aq as

Ac(k,s,Q) = Fe(k, x(k,s,Q)) — (A-8)

According to the definition of the sufficient capacity line, A¢(K¢(Q, s), s,Q) = 0. Differ-
entiating Ac with respect to capital gives ag‘kc = ]\%Zbszx > 0. Thus, F,(k,z(k,s,Q)) >m
above and F,(k,z(k,s,Q)) < m below the sufficient investment line. In the former case,
(9) implies a positive mark-up w. In other words, the economy exhibits an under-capacity.
The case of F, < m is ruled out by (9). Hence, the assumption of a binding constraint
(9 = Q) does not hold below the sufficient capacity line. Rather, g < @ is necessary to

guarantee a sufficient low energy input which is in line with (9). In other words, below

the sufficient capacity line the economy is characterized by an over-capacity.

Lemma 4 Below (on, above) the sufficient capacity line the economy is characterized by
an over- (under, just sufficient) capacity.

CCL
Define Ay as

An(k,s,Q) = Fyp(k,z(k,s,Q)) — p. (A.9)

According to the definition of the constant consumption line, Ax(K™N(Q, s),s,Q) = 0.

Differentiating Ay with respect to capital gives agév = Mbb [Mbkak — J] <0, so that
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Fr(k,z(k,s,Q)) > p below and Fy(k,z(k,s,Q)) < p above the line. Due to the Ramsey-
rule (17), the former connotes consumption growth below and the latter consumption

decline above the constant consumption line.

Lemma 5 Consumption increases below and decreases above the constant consumption
line.

SiL

Define Ag and ¢ as

As(k,s,Q) = Fp(k,z(k,s,Q)) —w(k,s,Q), (A.10)
c:=A—0. (A.11)

According to the definition of the singular line, Ag(K°(Q,s),s,Q) = 0. Differentiating
Ag with respect to capital gives %\—ks = m [Myp(Fyp — Fr,) — J] < 0. Thus, Ag <0
above and Ag > 0 below the singular line.

Due to the definition of ¢ and (A.1), capacity investments ¢ are minimal if ¢ > 0, singular

if ¢ = 0, and maximal if ¢ < 0. (11) and (13) determine the evolution of ¢ as
¢ =ps — A\g. (A.12)

Consider an (@, k)-process exhibiting maximal capacity investments below the long-run
singular line, so that Ag > 0 and ¢ < 0. According to (A.12), ¢ < ps. If the investment
regime lasts forever, tlgélo e P'f(t) = co. However, this contradicts transversality condition
(18)(c). As the maximal capacity investment regime connotes a decreasing capital stock
and the singular line increases in the (Q, k)-space, no (@, k) exhibiting maximal capacity
investments below the long-run singular line can reach the line. Consequently, these

(Q, k)-processes are not, optimal.

Lemma 6 Maximal capacity investments below the long-run singular line are not optimal.

If the capacity constraint is binding, net production Y” can be written as

Yn(k7 S5 Q) = F<k7 .CL’(/{?, S Q)) o M(Z)(kv S, Q)) o mQ (A13)
Differentiating with respect to capital and capacity gives Y," = Fj, +v% and Y}y = w+v§—é’2
so that
aym™  oy" ob  0b
— = As(k — —— . A.14
e~ g = dsths Q) +o (5 - 55 (A14)
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The term in brackets is positive if fossil fuel is not exhausted, while Ag > 0 below and
As < 0 above the singular line. Thus, below the singular line V" — Y4 > 0, i.e. capital
investments increase net production to a higher degree than capacity investments. For
an exhausted fossil fuel stock V" — Y5 > 0 below and Y} — Y < 0 above the long-run
singular line.

Consider a (Q, k)-process which exhibits capacity investments between the current and
the long-run singular line. As the singular line shifts downwards in the (Q, k)-space the
(@, k)-process may reach the line, so that transversality condition (18)(c) is not violated.
However, according to (A.14), the reallocation of a marginal investment unit from capacity
to capital for one moment in time increases net production. As the additional production
can be used for consumption, capital or capacity accumulation, the original investment
plan is not optimal. The argument can be repeated till there are no capacity investment

below the singular line.

Lemma 7 Capacity investments below the singular line are not optimal.

Consider a (@, k)-process with minimal capacity investments above the singular line,
so that ¢ > 0, Ag < 0, and, according to (A.12), ¢ = pc — Mg > pc. If the minimal ca-
pacity investment regime last forever, tlim e P'\(t) = oo, which contradicts transversality

— 00

condition (18)(a). As a steady state requires ¢ = 0, we can conclude as follows.

Lemma 8 A steady state above the long-run singular line is not optimal.

According to lemma 8, a (Q, k)-process with minimal capacity investments cannot
evolve above the singular line forever. Consequently, the capital stock decreases until
a steady state on the long-run constant consumption line, which needs to be located
below the long-run singular line, is reached. A switch to singular capacity investments
on the singular line is not possible. If it were possible, the (Q, k)-process would reach an
arbitrary point on the long-run singular line. However, the same point could be reached
by maximal capacity investments above the singular line. If the latter is not optimal, the

former cannot be optimal.

Lemma 9 If minimal capacity investments are optimal above the singular line, the (Q, k)-
process converges against the steady-state line by means of capital stock adjustments.
As dK° dKs diN

a0 - 40~ dg

for large capacity values, and the singular line is located above the constant consumption

the sufficient capacity line is located above the singular line
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line. Suppose a (Q, k)-process that evolves along the singular line in the long-run, so
that capacity investments are positive. Due to the lower position of the singular line,
the (@, k)-process evolves below the sufficient capacity line. According to lemma 4 and
proposition 1, this connotes an over-capacity and therefore the non-optimality of capacity
investments. Consequently, a long-run evolution of the (Q, k)-process along the singular
line cannot be optimal. The argument holds in a similar way for a (Q, k)-process with
maximal capacity investments.

Lemma 10 Positive long-run capacity tnvestments are not optimal.

Suppose the (Q, k)-process is located on the singular line, so that Ag = 0 and ¢ = 0. If
the (Q, k)-process diverges from the singular line upwards, Ag < 0. According to (A.12),
¢ > 0, i.e. minimal capacity investments are optimal above the singular line. However,
lemma 9 implies that the previous capacity investments were not optimal. Thus, an
upward deviation of the (Q, k)-process from the singular line is not optimal.

If the (Q, k)-process diverges downwards, Ag > 0, so that ¢ < 0. In other words, capacity
investments are maximal below the singular line. However, the corresponding investment

plan contradicts lemma 7. Consequently, a downward divergence is not possible

Lemma 11 The singular line exerts a bounding force on the (Q, k)-process.

Lemma 4 proves property (a) and lemma 5 property (b). Property (c) follows from
the definition of the singular line, lemma 7, and lemma 9. Property (d) is given by lemma

11.
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