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On the optimal a

umulation of renewable energy generating


apa
ity
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University of Hagen, Department of E
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s, 58084 Hagen, Germany
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onomi
s, 57076 Siegen, Germany

Abstra
t

We analyze the optimal a

umulation of renewable energy (ba
kstop) generating 
apa
ity

in a 
apital-energy e
onomy with exhaustible fossil fuels. The analysis rests upon graphi
al

illustrations of optimal 
ontrol 
onsiderations. Due to the exhaustibility of fossil fuels

the relative pro�tability of ba
kstop 
apa
ity vs. 
apital investments in
reases in time.

Furthermore, it turns out that the optimal e
onomi
 evolution and, therefore, the steady-

state levels of 
apital, ba
kstop 
apa
ity, and 
onsumption 
ru
ially depend on the 
apital

endowment. In parti
ular, a su�
iently large endowment gives rise to the a

umulation

of an ex
ess 
apa
ity. Furthermore, a high 
apital endowment allows to use the full

produ
tion potential of the steady-state 
apital sto
k, so that there is no mark-up on

ba
kstop 
osts in the steady-state. In 
ontrast, a low 
apital endowment may render


apa
ity investments non-optimal, so that the e
onomy is in a poverty trap. Both 
ases

are based on an intertemporal 
onsumption trade-o�. The lower the time preferen
e rate

the more bene�
ial the trade-o� and, therefore, the lower the 
riti
al 
apital endowment

values.

Keywords: Fossil Fuel, Renewable Energy, Capa
ity

JEL 
lassi�
ation: Q20, Q32, Q42

1. Introdu
tion

At least sin
e the publi
ation of the report of the Club of Rome - Meadows et al. (1972)

- the sustainability of e
onomi
 development is 
hallenged. One prominent argument is
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the exhaustibility of fossil fuels. This pessimisti
 view has been widely 
riti
ized. Stiglitz

(1974) and Barbier (1999) argue that a fa
tor augmenting te
hnology whi
h improves suf-

�
iently fast 
an ensure sustainability. Other authors, su
h as Chakravorty et al. (2006),

Hoel (2011), Tsur and Zemel (2003), Tsur and Zemel (2005), and Kollenba
h (2015), refer

to renewable energy sour
es (ba
kstop). In parti
ular, solar energy is 
onsidered, as solar

radiation o�ers a pra
ti
ally unlimited energy sour
e. Consequently, a ba
kstop is usually

modeled as an unlimited resour
e �ow. However, the utilization of solar radiation and

other renewable energy sour
es, su
h as water and wind power, require sophisti
ated and


ostly te
hni
al fa
ilities, i.e. a generating 
apa
ity. Obviously, the buildup of su
h a 
a-

pa
ity 
ompetes with 
onsumption and other investments possibilities, e.g. other 
apital

goods, for limited funds.

This issue has been addressed Powell and Oren (1989), Wirl and Withagen (2000),

Fis
her et al. (2004), and Tsur and Zemel (2011). While Powell and Oren (1989) 
on-

sider fossil fuels as exhaustible, they abstain from 
apital, so that there is no trade-o�

between 
apa
ity and 
apital investments. Wirl and Withagen (2000) and Fis
her et al.

(2004) fo
us on pollution and do not in
orporate an exhaustible resour
e. Fossil fuels

are expli
itly mentioned by Tsur and Zemel (2011). However, they assume an unlimited

sto
k. A

ording to the results of Powell and Oren (1989) and Tsur and Zemel (2011),

the 
omplete ba
kstop 
apa
ity is used in the steady-state, while the marginal bene�ts

of ba
kstop use ex
eed the marginal 
osts, i.e. there is a mark-up on marginal ba
kstop


osts.

On the one hand, 
apital is widely regarded as an important produ
tion fa
tor. For ex-

ample, a large part of the endogenous growth literature 
onsiders the synergy of 
apital

and te
hnology as the sour
e of e
onomi
 growth.

1

On the other hand, fossil fuel is ex-

haustible, whi
h is, as mentioned above, the sour
e of an ongoing dis
ussion regarding

the sustainability of e
onomi
 development.

2

Consequently, fossil fuels are supposed to be

limited by many authors, e.g. by Stiglitz (1974), Tsur and Zemel (2005), Barbier (1999),

and Kollenba
h (2015).

We analyze the optimal a

umulation of ba
kstop generating 
apa
ity in a setting with


apital and a limited fossil fuel sto
k. For this purpose we develop a model of a 
apital-

1

Cf. Barro and Sala-i Martin (2003) and Aghion et al. (1998) for 
omprehensive reviews of the

endogenous growth theory.

2

Cf. Meadows et al. (1972). An overview of remaining resour
es is given by Birol et al. (2012).

2



energy e
onomy based on a modi�ed version of the endogenous growth model of Tsur and

Zemel (2005). Energy generation relies on exhaustible fossil fuels and an unlimited �ow

resour
e (ba
kstop, e.g. solar energy). To use the latter, a limited generating 
apa
ity

is needed, whi
h 
an be extended by investing the 
omposite good. Therefore, 
apa
ity

investments are 
ompeting with 
apital investments and 
onsumption.

Similar to Tsur and Zemel (2005, 2011), e
onomi
 evolution, i.e. 
onsumption, 
apital

and ba
kstop 
apa
ity a

umulation, is analyzed by geometri
 
onsiderations. These are

based on three 
hara
teristi
 lines in the two-dimensional 
apa
ity-
apital-spa
e. Depend-

ing on the 
apital endowment seven exemplary evolution paths are des
ribed.

In 
ontrast to Powell and Oren (1989) and Tsur and Zemel (2011), we �nd that a su�-


iently high 
apital endowment gives rise to the a

umulation of an ex
ess 
apa
ity, i.e.

the 
apa
ity is extended above the level used in the steady-state. This ex
ess 
apa
ity is

only used in the mid-term. Thus, the additional mid-term produ
tion must pay o� the


apa
ity investments 
osts in terms of lost early 
onsumption. In other words, there exists

a trade-o� between early and late 
onsumption. The lower the time preferen
e rate the

more bene�
ial the trade-o� and, therefore, the lower the 
riti
al 
apital endowment that

gives rise to the ex
ess 
apa
ity. Furthermore, this 
ase also illustrates that there may be

no mark-up on marginal extra
tion 
osts in the steady-state, as found by Powell and Oren

(1989) and Tsur and Zemel (2011). A

ording to our results, the mark-up only exists, if

the 
apital endowment is low. Moreover, a low 
apital endowment in 
ombination with a

high time preferen
e rate may render 
apa
ity investments non-optimal, as the ne
essary


onsumption trade-o� is not bene�
ial. Tsur and Zemel (2011) found that in this 
ase

the e
onomy relies on fossil fuels. However, we 
onsider an exhaustible sto
k, so that the

option of a fossil-fuel based e
onomy does not exist. Consequently, our results regarding

the welfare of su
h an e
onomy are more pessimisti
.

The outline of the paper is as follows. The model is des
ribed in se
tion 2. Se
tion

3 presents the 
onditions for the so
ial optimum. To illustrate the optimal evolution of

the e
onomy in se
tion 4, we introdu
e the 
hara
teristi
 lines in 4.1 and explain the

me
hanism determining the evolution pro
ess in 4.2. In se
tion 4.3 seven exemplary

evolution paths are presented, while the determinants of steady-state 
onsumption are

dis
ussed in se
tion 4.5. Se
tion 5 
on
ludes.

3



2. Model

We make use of a modi�ed version of Tsur and Zemel's (2005) endogenous growth

model. In 
ontrast to Tsur and Zemel, we abstain from te
hnologi
al progress but 
onsider

a limited green energy generating 
apa
ity. In the following, the assumption are brie�y

dis
ussed.

3

A 
omposite good y is produ
ed by means of the two essential produ
tion

fa
tors 
apital k and energy x. The produ
tion fun
tion F (k, x) is well-behaved and


on
ave, i.e. Fx > 0, Fk > 0, Fxx < 0, Fkk < 0, Fkx = Fxk > 0, J = FxxFkk − F 2

kx > 0,

and F (0, x) = F (k, 0) = 0.

Energy is generated by burning exhaustible fossil fuels b (bla
k energy) or by using a

renewable ba
kstop resour
e g (green energy).

4

The fossil fuel sto
k is denoted with s. It

de
reases in fossil fuel use a

ording to

5

ṡ = −b. (1)

As the initial fossil fuel sto
k s(0) is limited,

∞
∫

0

b(t)dt ≤ s(0). The extra
tion 
osts of fossil

fuels are given by the 
onvexly in
reasing fun
tion M(b), i.e. extra
tion 
osts depend on

the 
urrent fossil fuel �ow, with Mb(b) > 0 and Mbb(b) > 0. As we abstain from �xed


osts, M(0) = 0.

Ba
kstop supply is limited by the 
urrent ba
kstop generating 
apa
ity Q. The limited


apa
ity re�e
ts the high 
apital intensity of renewable energies. In other words, Q denotes

a spe
ialized 
apital sto
k ne
essary for ba
kstop utilization.

6

Consequently, the sto
k 
an

be in
reased by investing 
omposite goods. The 
orresponding investments are labeled q,

so that

Q̇ = q, (2)

with Q(0) > 0 as the positive 
apa
ity endowment. Every 
apa
ity unit allows the

generation of w ba
kstop units per period. Due to appropriate unit 
hoi
e, we set w = 1,

3

For the sake of simpli
ity, the time index t is suppressed as long as it is not ne
essary for understand-

ing.

4

Con
erning the ba
kstop, we refer to the whole set of renewable energies, e.g. biofuel, solar, wind,

and water power. One 
an also 
onsider fusion power, as the required fuel, hydrogen, is abundant.

5

We use the notation ż to indi
ate the derivation of an arbitrary variable z with respe
t to time t, i.e.

ż = dz
dt
.

6

Thus, we distinguish between spe
ialized 
apital Q ne
essary for ba
kstop generation and non-

spe
ialized 
apital k used for produ
tion. In the following, we refer to the former as 
apa
ity and to

the latter as 
apital.

4



so that

Q ≥ g (3)

holds at every point in time. In 
ontrast to Tsur and Zemel (2011), the supply 
osts of

ba
kstop are not zero. Following Chakravorty et al. (2006) and Hoel (2011), we assume


onstant unit 
osts m, whi
h 
over all 
osts asso
iated with renewable energy generation

with the ex
eption of 
apital investment, e.g. maintenan
e, te
hni
al wear (depre
ations),

the setup of a more sophisti
ated power grid and energy storage fa
ilities, opportunity


osts of land use, et 
etera. We assume that the te
hni
al 
onstraint asso
iated with

a higher ba
kstop 
apa
ity, in parti
ular with respe
t to the power grid, allows only a

limited installation q̄ per period, i.e

q̄ ≥ q ≥ 0. (4)

By following Tsur and Zemel (2011), let q̄ ex
eed net produ
tion yn at every point in

time.

7

The latter is given by

yn := F (k, x)−M(b)−mg, (5)

i.e. by produ
tion net of energy 
osts.

8

As 
onsumption c, 
apa
ity investments q and


apital (dis)investments k̇ rely on the 
omposite good y, the 
apital sto
k evolves a

ording

to

k̇ = F (k, x)−M(b) −mg − q − c = yn − q − c. (6)

Utility depends only on 
onsumption a

ording to the 
on
avely in
reasing utility fun
tion

U(c), with Uc(c) > 0, Ucc(c) < 0, and lim
c→0

Uc(c) = ∞.

3. The so
ial optimum

The so
ial optimum is given by the maximization of welfare subje
t to the 
onstraint

stated above. Thus, the so
ial planner maximizes intertemporal utility

∞
∫

0

U(c(t))e−ρtdt,

with ρ > 0 as the time preferen
e rate, subje
t to (1), (2), (3), (4), (6), st ≥ 0, k(t) ≥ 0,

b ≥ 0, g ≥ 0, and c ≥ 0. Let τ , λ and θ be the 
ostate variables (shadow pri
es) asso
iated

7

It is also possible to let net produ
tion limit 
apa
ity investments. However, the related analysis is

more 
ompli
ated without providing more insight.

8

As we abstain from te
hnologi
al progress and assume a 
on
ave produ
tion fun
tion, the e
onomy


annot grow forever. Rather it 
onverges against a steady-state. Therefore, there is always a q̄ su
h that

(4) holds.

5



with the fossil fuel sto
k, 
apital, and the ba
kstop 
apa
ity. The Lagrange multiplier of

the 
apa
ity 
onstraint (3) is denoted with µ and the multipliers of the non-negativity


onditions are ζb, ζg, ζq, and ζq̄.
9

The 
urrent-value Lagrangian reads

L =U(c) + λ[F (k, x)−M(b) −mg − q − c]− τb+ θq + µ [Q− g]

+ ζbb+ ζgg + ζqq + ζq̄[q̄ − q]. (7)

Under the assumption of an interior optimum with respe
t to ba
kstop use and fossil

fuel extra
tion, the ne
essary 
onditions give

10

Uc(c) = λ, (8)

Fx(k, x) = Mb(b) +
τ

λ
= m+

µ

λ
, (9)

− λ+ θ = ζq̄ − ζq. (10)

The 
ostate variables evolve a

ording to

λ̇ = ρλ− λFk(k, x), (11)

τ̇ = ρτ, (12)

θ̇ = ρθ − µ. (13)

The 
omplement sla
kness 
onditions with respe
t to the ba
kstop 
apa
ity 
onstraint

and the 
apa
ity investments q are

µ ≥ 0, µ[Q− g] = 0, (14)

ζq ≥ 0, ζqq = 0, (15)

ζq̄ ≥ 0, ζq̄[q̄ − q] = 0. (16)

Combining (8) and (11) determines the optimal 
onsumption growth rate

11

ĉ =
Fk − ρ

η
, (17)

with η as the positively de�ned elasti
ity of marginal utility. (17) is the well-known Ram-

sey rule. It states that 
onsumption in
reases (de
reases) as long as the marginal produ
t

9

The non-negativity 
onditions with respe
t to 
onsumption and 
apital are omitted, be
ause (8),

(11) and the assumption lim
c→0

Uc(c) = ∞ ensure c(t) > 0 ∀t. Sin
e c > 0 requires a positive produ
tion

F (k, x) > 0 and F (0, x) = 0, a 
apital sto
k of zero is ruled out, too.

10

The assumption of simultaneous utilization of both energy sour
es has been used by Tsur and Zemel

(2005), Kollenba
h (2014), and Kollenba
h (2015). See also footnote 16.

11

The growth rate of the arbitrary variable z reads ẑ := 1

z
dz
dt
.

6



of 
apital ex
eeds (falls short of) the time preferen
e rate. The absolute value of the 
on-

sumption growth rate is the higher the more inelasti
 marginal utility, i.e. the smaller η.

The Lagrangian is linear in 
apa
ity investments q. Therefore, the optimal 
apa
ity

investment regime is determined by (10), (15), (16), and the maximization of H =

U(c) + λ[F (k, x)−M(b)−mg − q − c]− τb + θq.12 Lemma 1 summarizes the results.

Lemma 1 Capa
ity investments are

• minimal, if the relative pro�tability

θ/λ of 
apa
ity vs. 
apital investments falls short

of one.

• singular, if the relative pro�tability

θ/λ of 
apa
ity vs. 
apital investments equals

one.

• maximal, if the relative pro�tability

θ/λ of 
apa
ity vs. 
apital investments ex
eeds

one.

Proof: Appendix A.1.

A

ording to lemma 1, the relation of the shadows pri
es of 
apa
ity and 
apital deter-

mines the optimal 
apa
ity investment regime. As the shadow pri
es indi
ate the value

the so
ial planner asso
iates with a marginal in
rease of the respe
tive state variable, we

refer to

θ
λ
as the relative pro�tability of 
apa
ity vs. resear
h investments. Consequently,


apa
ity investments are only positive, if they are at least as pro�table as 
apital invest-

ments.

The transversality 
onditions, whi
h belong to the su�
ient 
onditions, read

13

(a) : lim
t→∞

e−ρtλ(t)[k(t)− k∗(t)] ≥ 0, (b) : lim
t→∞

e−ρtτ(t)[s(t)− s∗(t)] ≥ 0,

(c) : lim
t→∞

e−ρtθ(t)[Q(t)−Q∗(t)] ≥ 0.
(18)

Variables marked with an asterisk (∗) denote optimal values, while unmarked variables

refer to any possible path. Using transversality 
ondition (18)(
) and lemma 1 we 
an

prove the following proposition.

Proposition 1 Every evolution path (k(t), s(t), Q(t), c(t), b(t), g(t), q(t)) that exhibits pos-
itive 
apa
ity investments while the ba
kstop 
apa
ity 
onstraint is non-binding (µ = 0) is
not optimal.

Proof: Appendix A.2

The Lagrange multiplier µ is either positive or zero. Therefore, proposition 1 dire
tly

12

Both Fei
htinger and Hartl (1986), Satz 6.2 and Seierstad and Sydsaeter (1987), page 381, theorem

9 require the 
ontrol variables to maximize the Hamiltonian.

13

We write the transversality 
onditions in the form used by Fei
htinger and Hartl (1986), 
hapter

7.2. For further literature regarding dynami
 optimization see Chiang (1992) and Kamien and S
hwartz

(2000).

7




onnotes that positive 
apa
ity investments 
an be optimal, if and only if the 
apa
ity


onstraint is binding.

Energy input and the energy mix are determined by (9). The sum of the marginal


osts of fossil fuel Mb(b) and the relative shadow pri
e of fossil fuel vs. 
apital or relative

s
ar
ity, respe
tively,

v :=
τ

λ
(19)

provides the bla
k energy supply fun
tion.

14

Due to (11) and (12), we get

v̂ = Fk > 0. (20)

Thus, the relative s
ar
ity monotoni
ally in
reases in time. Using Satz 6.2 of Fei
htinger

and Hartl (1986), or theorem 9 of Seierstad and Sydsaeter (1987), page 381, whi
h both

state that the 
ostate variables are only fun
tions of time t, we 
an establish a unique

relationship between the relative s
ar
ity v and time t on every optimal evolution path.

A similar relationship exists between the fossil fuel sto
k s and time, as the former mono-

toni
ally de
reases till its exhaustion at time T . Consequently, for every t ∈ [0, T [ we 
an

mat
h a unique fossil fuel sto
k value to every relative s
ar
ity value, i.e. we 
an write

v = V (s), with dV
ds

< 0 and V max = V (0) as the maximal value of the relative s
ar
ity

rea
hed in the moment of fossil fuel exhaustion. Thus, the fossil fuel supply fun
tion reads

Mb(b) + V (s). (21)

The energy demand fun
tion is given by the marginal produ
t of energy Fx(k, x), while

the green energy supply fun
tion m + ω is linear in energy units. The latter 
onsists of

the marginal 
osts of green energy m and the mark-up

ω :=
µ

λ
, (22)

whi
h is asso
iated with the 
apa
ity 
onstraint Q.

Fig. 1 illustrates the equilibrium of the energy se
tor. Suppose the 
apa
ity 
onstraint

does not bind. A

ording to (14), the multiplier µ is zero, i.e. ω = 0. In this 
ase, total

energy input is determined by the interse
tion of the ba
kstop supply and the energy

demand fun
tion Fx(k, x
◦) = m. Thus, x◦

only depends on the 
apital sto
k k, i.e. x◦(k).

14

Kollenba
h (2014) 
alls v the relative s
ar
ity index as it sets the shadow pri
e of fossil fuel into

relation to the shadow pri
e of 
apital.

8



PSfrag repla
ements

Tex-Ersetzung

energy pri
e

energy (x)

bla
k supply

green supply

green marginal 
osts

energy demand

ω Q

b◦ b x x◦

g◦

Figure 1: Energy se
tor equilibrium determined by energy demand fun
tion, bla
k energy sup-

ply fun
tion and green energy supply fun
tion with and without a binding 
apa
ity


onstraint

Fossil fuel will be used if and only if its so
ial supply 
osts Mb(b) + V (s) are lower than

that of ba
kstop. Thus, the interse
tion of the two supply fun
tions Mb(b
◦) + V (S) = m

determines the fossil fuel share b◦(s) and, therefore, the energy mix x◦(k) = b◦(s)+g◦(k, s).

The di�erentiation of the e�
ien
y 
onditions in the energy se
tor with respe
t to 
apital

and fossil fuel sto
k give

15

dx◦

dk
> 0,

db◦

ds
> 0,

∂g◦

∂k
> 0,

∂g◦

∂s
< 0 (23)

Be
ause of Fxk > 0, a higher 
apital sto
k boosts energy demand 
eteris paribus. Con-

sequently, both total energy supply and ba
kstop use in
rease with the 
apital sto
k.

Graphi
ally, a higher 
apital sto
k shifts the energy demand fun
tion in Fig. 1 to the

right, so that both xcirc
and g◦ are higher. Due to an in
reasing relative s
ar
ity, fossil fuel

use de
reases with the de
lining fossil fuel sto
k. As fossil fuel is substituted by ba
kstop,

the latter in
reases.

If the 
apa
ity 
onstraints binds, ba
kstop supply equals Q. However, total energy input

and the energy mix have still to ful�ll (9). Thus, total energy input is determined by

Fx(k, x) = m + ω and fossil fuel extra
tion by Mb(b) + V (s) = m + ω. Furthermore,

ω has to be su
h that Q = x − b holds. Consequently, we 
an write ω = ω(k, s, Q),

15

We get

dx
dk

= −Fxk

Fxx
,

db
ds

= − 1

Mbb

dV
ds
,

∂g
∂k

= −Fxk

Fxx
, and

∂g
∂s

= 1

Mbb

dV
ds
.

9



x = x(k, s, Q) and b = b(k, s, Q).16 Di�erentiating Fx(k, x(k, s, Q)) = m + ω(k, s, Q),

Mb(b(k, s, Q) + V (s) = m + ω(k, s, Q), and x(k, s, Q) = b(k, s, Q) + Q with respe
t to


apital, fossil fuel sto
k, and 
apa
ity gives

17

∂x

∂k
> 0,

∂x

∂s
> 0,

∂x

∂Q
> 0, (24)

∂b

∂k
> 0,

∂b

∂s
> 0,

∂b

∂Q
< 0, (25)

∂ω

∂k
> 0,

∂ω

∂s
< 0,

∂ω

∂Q
< 0. (26)

As mentioned above, due to Fxk > 0, the higher the 
apital sto
k the farther to the right

the energy demand fun
tion is lo
ated in Fig. 1. Therefore, total energy input in
reases

with the 
apital sto
k. However, the binding 
apa
ity 
onstraint limits ba
kstop use to

g = Q. Consequently, the mark-up ω has to adjust su
h that (9) and g = Q hold, i.e.

su
h that distan
e between the bla
k energy supply fun
tion and the energy demand

fun
tion in the equilibrium equals Q. In 
ase of an in
reased 
apital sto
k, this requires a

higher mark-up, so that the green energy supply fun
tion is shifted upwards. Therefore,

it interse
ts the bla
k energy supply fun
tion at a higher energy pri
e value, whi
h implies

more fossil fuel extra
tion.

The relative s
ar
ity in
reases as the fossil fuel sto
k de
reases in time. The former is

represented by an upward-shift of the bla
k energy supply fun
tion in Fig. 1. To guarantee

g = Q, the mark-up ω has to in
rease, so that total energy input de
lines 
eteris paribus.

With respe
t to fossil fuel use, the higher relative s
ar
ity 
onnotes less and the higher

mark-up more extra
tion. A

ording to (25), the former e�e
t dominates.

Finally, the higher the ba
kstop 
apa
ity Q the lower the mark-up ω, i.e. the lower the

position of the green energy supply fun
tion in Fig. 1. Consequently, total energy input

in
reases, whereas fossil fuel extra
tion de
reases in Q.

16

Note that ω is a fra
tion of the multiplier µ and the 
ostate variable λ. While the evolution of the

latter is determined by (11), the former 
an attain every positive value, if the ba
kstop 
onstraint binds.

If the ba
kstop unit 
osts are too high, i.e. if they are lo
ated above the interse
tion of the fossil fuel

supply and the energy demand fun
tion, ba
kstop supply would be zero and energy generations only relies

on fossil fuels. However, as the fossil fuel sto
k de
reases in time the fossil fuel supply fun
tion shifts

upwards due to the in
reasing relative s
ar
ity index. Thus, zero ba
kstop supply is only a temporary

phenomenon. Following Tsur and Zemel (2005), Kollenba
h (2014), and Kollenba
h (2015), we assume

su�
iently low ba
kstop unit 
osts, so that g > 0.
17

We get

∂x
∂k

= Fxk

Mbb−Fxx
,

∂x
∂s

= − 1

Mbb−Fxx

dV
ds
,

∂x
∂Q

= Mbb

Mbb−Fxx
,

∂b
∂k

= Fxk

Mbb−Fxx
,

∂b
∂s

= − 1

Mbb−Fxx

dV
ds
,

∂b
∂Q

= Fxx

Mbb−Fxx

,

∂ω
∂k

= MbbFxk

Mbb−Fxx

,

∂ω
∂s

= − Fxx

Mbb−Fxx

dV
ds
, and

∂ω
∂Q

= MbbFxx

Mbb−Fxx

.
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4. Determining optimal evolution

To analyze the optimal evolution of the e
onomy we adapt the method of Tsur and

Zemel (2005) and Tsur and Zemel (2011), whi
h is based on 
hara
teristi
 lines. To un-

derstand the method note that the optimal 
apa
ity investment regime is given by lemma

1, while (9) determines optimal ba
kstop and fossil fuel utilization. Thus, given the op-

timal 
apa
ity investments, the evolution paths of the fossil fuel sto
k s and 
apa
ity Q

are determined, so that only 
apital k remains as an independent state variable. In other

words, the optimization problem of the so
ial planner redu
es to a series of single-state

problems based on the optimal de
ision with respe
t to 
apa
ity investments. It turns out

that both the sele
tion of the optimal investment regime and the evolution of the 
apital

sto
k depend on the relative position of three 
hara
teristi
 manifolds in the (Q, k, s)-

spa
e. Applying the suitable method already used by Tsur and Zemel (2005), Kollenba
h

(2014) and Kollenba
h (2015), we illustrate these manifolds by using their proje
tions on

the (Q, k)-spa
e. As these proje
tions are lines, we refer to them as 
hara
teristi
 lines.

The monotoni
 de
rease of the fossil fuel sto
k in time is represented by a downward shift

of the lines in the (Q, k)-spa
e. As will be shown in 4.2, the 
hara
teristi
 lines divide the

(Q, k)-spa
e in subspa
es with spe
i�
 properties. These properties allow us to illustrate

several evolution path in 4.3. As the paths illustrate the evolution of the e
onomy in the

(Q, k)-spa
e, we refer to them as (Q, k)-pro
esses.

In the following we say that the e
onomy or the (Q, k)-pro
ess, respe
tively, is lo
ated

above (on, below) the 
hara
teristi
 line, if k(t) > α(Q(t))
(

k(t) = α(Q(t)); k(t) <

α(Q(t))
)

, with α(Q) denoting an arbitrary 
hara
teristi
 line in the (Q, k)-spa
e. Due to

proposition 1, 
apa
ity investments are minimal, if the 
onstraint is non-binding. There-

fore, Q(t) remains 
onstant, so that the (Q,K)-pro
ess redu
es to 
hanges of the 
apital

sto
k. However, both 
apital and 
apa
ity 
an 
hange, if the 
onstraint is binding, whi
h

is assumed in the following, if not stated otherwise.

4.1. The 
hara
teristi
 lines

The 
hara
teristi
 manifolds des
ribe points in the (Q, k, s)-spa
e with spe
i�
 
har-

a
teristi
s. The �rst manifold gives all points of the (Q, k, s)-spa
e where the 
apa
ity

is just su�
iently large to allow the mark-up ω to equal zero. With regard to Fig. 1,


apa
ity Q and 
apital sto
k k must be su
h that x = x◦
and g = g◦ = Q. In other words,

on this manifold an e
onomy exhibits neither an over- nor an under-
apa
ity. Therefore,

11



we refer to the proje
tions of the manifold on the (Q, k)-spa
e as the su�
ient 
apa
ity

line (SCL). The manifold is given by

Fx(k, x(k, s, Q)) = m, (27)

whi
h impli
itly de�nes the fun
tion KC(Q, s). In Appendix A.3 it is shown that

∂KC

∂Q
= −

Fxx

Fxk

> 0, (28)

∂KC

∂s
=

Fxx

FxkMbb

dV

ds
> 0. (29)

Thus, the su�
ient 
apa
ity line 
ontinuously in
reases in the (Q, k)-spa
e. Consider

Fig. 1, for an arbitrary fossil fuel sto
k value, i.e. for given fossil fuel extra
tion b◦, a

higher 
apa
ity and Q = g◦ require an upward shift of the demand fun
tion. Thus, the


apital sto
k needs to be higher 
eteris paribus.

Furthermore, (29) states the in�uen
e of the de
reasing fossil fuel sto
k on the position

of the su�
ient 
apa
ity line in the (Q, k)-spa
e. Sin
e ∂KC

∂s
> 0, the lower the fossil fuel

sto
k the lower the position of the line. (25) shows that the lower the fossil fuel sto
k the

lower bla
k energy use 
eteris paribus. For a given 
apa
ity, less bla
k energy use requires

a lower 
apital sto
k to ensure validity of (27). As illustrated in Fig. 2(a), the su�
ient


apa
ity line is shifted downward in time till the fossil fuel sto
k is exhausted at time

T . Its initial position is given by SCL(0) and its long-run position valid for all t ≥ T by

SCL(T).

18
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Figure 2: Su�
ient 
apa
ity line (SCL), 
onstant 
onsumption line (CCL), and singular line

(SiL) for t = 0 and t = T

The se
ond 
hara
teristi
 manifold des
ribes all points in the (Q, k)-spa
e whi
h allow

for 
onstant 
onsumption and a binding 
apa
ity 
onstraint, i.e. for g(t) = Q(t) and

18

Similar to SCL(0) and SCL(T) we refer to the proje
tion of the manifold valid at time 0 < t < T ,

i.e. for the fossil fuel sto
k s(t), as SCL(t).
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ĉ(t) = 0. Therefore, we refer to the proje
tions of the manifold on the (Q, k)-spa
e as

the 
onstant 
onsumption line (CCL). A

ording to the Ramsey-rule (17), the manifold

is given by

Fk(k, x(k, s, Q)) = ρ, (30)

whi
h impli
itly de�nes the fun
tion KN(Q, s). Appendix A.3 proves that

∂KN

∂Q
= −

FkxMbb

FkkMbb − J
> 0, (31)

∂KN

∂s
=

FkxMbb

FkkMbb − J

dV

ds
> 0. (32)

A

ording to (31), the 
onstant 
onsumption line 
ontinuously in
reases in the (Q, k)-

spa
e. It is noteworthy that

∂KN

∂Q
< ∂KC

∂Q
, i.e. the su�
ient 
apa
ity line is lo
ated above

the 
onstant 
onsumption line for large Q. (32) shows that the de
reasing fossil fuel

sto
k shifts the 
onstant 
onsumption line downwards in the (Q, k)-spa
e till it rea
hes

its long-run position at the fossil fuel exhaustion time T . The shift is 
aused by the 
eteris

paribus de
line of total energy input

∂x
∂s

> 0, so that a lower 
apital sto
k is required to

ensure a 
onstant marginal produ
t of 
apital. Fig. 2(b) depi
ts the downward shift of

the 
onstant 
onsumption line with CCL(0) referring to the initial position of the line and

CCL(T) to its long-run position.

Following Tsur and Zemel (2005), we de�ne a steady-state as a situation with 
onstant


onsumption, 
apa
ity and 
apital sto
k. In other words, the e
onomy is in a steady-

state, if ċ = k̇ = Q̇ = 0. Consequently, a (Q, k)-pro
ess needs to be lo
ated on the


onstant 
onsumption line to be in a steady-state. However, as long as the fossil fuel

sto
k is not exhausted the 
onstant 
onsumption line shifts downwards in the (Q, k)-

spa
e. Consequently, to stay on the line a (Q, k)-pro
ess needs to adjust 
apital and/or


apa
ity, whi
h 
ontradi
ts the de�nition of the steady-state. Therefore, a steady-state


an only be lo
ated on the long-run 
onstant 
onsumption line CCL(T). In the following

we refer to this line as the steady-state line (SSL).

Lemma 2 An e
onomy 
an be only in a steady-state if the (Q, k)-pro
ess is lo
ated on

the steady-state line, whi
h is given by the long-run 
onstant 
onsumption line.

The third and last 
hara
teristi
 manifold des
ribes all points of the (Q, k, s)-spa
e

where singular 
apa
ity investments may be optimal. Hen
e, we refer to its proje
tions

on the (Q, k)-spa
e as the singular line (SiL). Due to proposition 1, positive 
apa
ity

investments require a binding 
onstraint. Consequently, the singular line is de�ned for

13



g(t) = Q(t). Furthermore, lemma 1 
onnotes that a singular investment regime requires

θ = λ and θ̇ = λ̇. By substituting (11) and (13) in the latter, we get

Fk(k, x(k, s, Q)) = ω(k, s, Q), (33)

whi
h impli
itly de�nes the fun
tion KS(Q, s). In Appendix A.3 we prove that

∂KS

∂Q
=

Mbb(Fxx − Fkx)

Mbb(Fkk − Fkx)− J
> 0, (34)

∂KS

∂s
=

Fkx − Fxx

Mbb(Fkk − Fkx)− J

dV

ds
> 0. (35)

As the other two lines, the singular line in
reases in the (Q, k)-spa
e. Note that ∂KN

dQ
<

∂KS

dQ
< ∂KC

∂Q
, so that the singular line is lo
ated above the steady-state line but below the


ombined investment line for large Q. The de
reasing fossil fuel sto
k 
auses a downward

shift of the singular line in the (Q, k)-spa
e. On the one hand, the lower the fossil fuel

sto
k the lower total energy input 
eteris paribus, so that the left-hand side of (33) is

smaller. On the other hand, (26) shows that the mark-up ω in
reases with a falling fossil

fuel sto
k, so that the right-hand side of (33) is higher. To ensure equality the 
apital

sto
k value solving the equation de
reases. Both (34) and (35) are illustrated in Fig. 2(
).

4.2. The subspa
es

The 
hara
teristi
 manifolds divide the (Q, k, s)-spa
e into subspa
es with spe
i�


properties. A

ording to the proofs of Appendix A.4 the properties read as follows.

19

Properties:

(a) Above (below) the su�
ient 
apa
ity line the e
onomy is 
hara
terized by an under-

(over-) 
apa
ity, i.e. Fx(k, b+Q) > m above and Fx(k, b+Q) < m below the line.

(b) Consumption in
reases (de
reases) below (above) the 
onstant 
onsumption line.

A

ording to the Ramsey-rule (17), Fk(k, x) > ρ below and Fk(k, x) < ρ above the

line.

(
) Capa
ity investments are minimal below the singular line and either maximal or

temporary minimal above the line. Thus,

θ
λ
< 1 below the singular line and either

θ
λ
> 1 or

θ
λ
< 1 above it.

19

The properties with respe
t to the singular and the steady-state line are similar to the ones found by

Tsur and Zemel (2005). Cf. also Kollenba
h (2014).
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(d) The singular line exerts a bonding for
e on the (Q, k)-pro
ess. In other words, if

the pro
ess has rea
hed the line, it 
annot diverge from it.

If not lo
ated on the steady-state or the singular line, the (Q, k)-pro
ess follows either

a minimal or a maximal 
apa
ity investment regime, as shown by property (
) and the

de�nition of the singular line. Thus, the (Q, k)-pro
ess approa
hes either the steady-state

or the singular line on a most rapid approa
h path (MRAP). Due to proposition 1, 
apa
ity

investments are only possible, if the 
apa
ity 
onstraint binds. Therefore, property (a)

dire
tly gives lemma 3.

Lemma 3 Capa
ity investments below the su�
ient 
apa
ity line are not optimal.

Furthermore, the su�
ient 
apa
ity line is lo
ated above the singular line for large Q, as

dKS

dQ
< dKC

dQ
. A

ording to the de�nition of the singular line and property (d), 
apa
ity

investments are singular on the line, while the singular line binds an (Q, k)-pro
ess. By

taking lemma 3 and the MRAP feature into a

ount we 
an 
on
lude as follows.

Proposition 2 The (Q, k)-pro
ess 
annot evolve along the singular line forever. Conse-

quently, 
apa
ity investments are minimal for late points in time.

The downward shift of both the singular and the su�
ient 
apa
ity line together with

property (a) and (
) and proposition 1 illustrates how the de
reasing fossil fuel sto
k

boosts the relative pro�tability of 
apa
ity investments

θ
λ
. Due to the downward shift the

numbers of points above both lines in
reases. A

ording to property (a), the points above

the su�
ient 
apa
ity line are 
hara
terized by an under-
apa
ity, whi
h is a requirement

for 
apa
ity investments as implied by proposition 1. Furthermore, only above the singular

line 
apa
ity investments may be maximal. In short, the lower the fossil fuel sto
k the

more (Q, k)-
ombinations exist whi
h allow for 
apa
ity investments. As Tsur and Zemel

(2011) abstain from a limited fossil fuel sto
k, they do not optain a 
orresponding e�e
t.

A

ording to proposition 2, the (Q, k)-pro
ess 
annot evolve along the singular line

forever, so that the pro
ess has to 
onverge against a steady-state. Therefore, whether

and where the long-run singular line and the steady-state line interse
t is of some im-

portan
e. Suppose the two lines do not interse
t in the area restri
ted by the long-run

su�
ient 
apa
ity line, as illustrated by Fig. 3(a). Furthermore, 
onsider an (Q, k)-

pro
ess whi
h rea
hes the singular line. Due to property (d), the pro
ess has to evolve

along the line, whi
h 
onnotes singular 
apa
ity investments. However, in the moment

15
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Figure 3: Steady-state line (SSL), singular line (SiL) for t = 0 and t = T of a min-max e
onomy

the pro
ess 
rosses the su�
ient 
apa
ity line, further 
apa
ity investments violate lemma

3. A swit
h into a steady-state is not possible, as the pro
ess is not lo
ated on the steady-

state line and 
annot leave the singular line. A similar argument holds with respe
t to

the 
ase illustrated in Fig. 3(b). As the long-run singular and the steady-state line do

not interse
t, an evolution along the singular line would imply a violation of lemma 3.

Thus, in both settings singular 
apa
ity investments 
annot be part of a feasible solution.

Rather, 
apa
ity investments are either minimal or maximal. Therefore, we sum up both


onstellations under the term min-max 
ase. However, if there is an interse
tion of the

long-run singular line and the steady-state line above the long-run su�
ient 
apa
ity line,

a (Q, k)-pro
ess that evolves along the singular line 
an swit
h into a steady-state at the

interse
tion, so that singular 
apa
ity investments 
an be possible. Consequently, we refer

to this setting as the singular 
ase.

4.3. E
onomi
 evolution

Following Kollenba
h (2014) and Kollenba
h (2015) we analyze the evolution of the

e
onomy by illustrating 7 exemplary (Q, k)-pro
esses in the �gures 4 and 5. These pro-


esses represent possibilities for the optimal evolution path of e
onomy, as they are in line

with the properties (a) - (d) and the MRAP feature. We distinguish between the paths by

identifying them with their 
apital endowment ki
. The (Q, k)-pro
esses in
rease the 
om-

plexity of the �gures 4 and 5 
onsiderably. To keep the illustrations as simple as possible,

we omit the arrows indi
ating the shift dire
tion of the 
hara
teristi
 lines and the initial


onstant 
onsumption line. Furthermore, the initial su�
ient 
apa
ity and singular line
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are only adumbrated. Finally, it is unrewarding to illustrate every 
hara
teristi
 line, i.e.

the proje
tion of the 
orresponding manifold valid for the 
urrent fossil fuel sto
k value,

that is rea
hed or 
rossed by the (Q, k)-pro
esses.

4.3.1. The singular 
ase

At �rst we turn to the singular 
ase, whi
h was de�ned by an interse
tion of the long-

run singular and the steady-state line above the su�
ient 
apa
ity line. Fig. 4 illustrates

the singular and the su�
ient 
apa
ity line for t = 0 and t = T , the steady-state line (SSL)

and 4 exemplary (Q, k)-pro
esses ki, i = 1, ..., 5. A

ording to property (b), 
onsumption

in
reases (de
reases) on all depi
ted paths, as long as the evolution path is lo
ated below

(above) the 
onstant 
onsumption line.
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esses of a singular type

e
onomy

Consider an e
onomy with the 
apital endowment k1
, whi
h is lo
ated below the sin-

gular line initially. A

ording to property (
), 
apa
ity investments are minimal, so that

the (Q, k)-pro
ess approa
hes the singular line from below by means of 
apital a

umu-

lation. In the moment the singular line is rea
hed, the investment regime swit
hes to
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singular 
apa
ity investments. In the illustrated 
ase, the swit
h o

urs above the long-

run singular line. As the singular investment regime allows for both 
apa
ity and 
apital

investments, the (Q, k)-pro
ess in
reases in the (Q, k)-spa
e. The pro
ess evolves along

the singular line till it rea
hes the interse
tion with the steady-state, i.e. the point PA
.

Due to proposition 2, it is not optimal to evolve along the singular line forever, so that the

(Q, k)-pro
ess swit
hes into a steady-state at the point PA
. As PA

is lo
ated above the

long-run su�
ient 
apa
ity line SCL(T), the steady-state is 
hara
terized by an under-


apa
ity, so that the mark-up ω is positive.

The k2
-path illustrates a similar long-run evolution pattern. However, the 
apital en-

dowment k2
is ex
eeds the singular and the su�
ient 
apa
ity line initially, so that, in

line with the properties (a) and (
) 
apa
ity investments are maximal. A

ording to the

assumption q̄ > yn, the maximal investment regime 
onnotes a de
reasing 
apital sto
k.

Consequently, the (Q, k)-pro
ess approa
hes the singular line from above to evolve along

it to the steady-state PA
.

Consider the evolution of the k2
-path at early points in time in more detail. Due to

the maximal investment regime, net produ
tion is 
ompletely spent for 
apa
ity invest-

ments. Consequently, it 
an not be used for 
onsumption. However, at later points in

time a higher 
apa
ity gives rise to more energy input and, therefore, to more net pro-

du
tion. Thus, there is a 
onsumption trade-o�. The so
ial planner is willing to trade-o�

more 
urrent for future 
onsumption the lower the time preferen
e rate. In terms of the

evolution path, the lower the time preferen
e rate the �atter the de
reasing part of the

(Q, k)-pro
ess.

For a given time preferen
e rate we an mark a threshold ks1. The (Q, k)-pro
ess approa
hes

the steady-state PA
, only if the 
apital endowment does not ex
eed this threshold. Oth-

erwise, as illustrated by the k3
-path, the e
onomy a

umulates more 
apa
ity than is used

in PA
. However, the (Q, k)-pro
ess 
annot approa
h the singular line, as this would imply

an evolution along the line above the steady-state and below the su�
ient 
apa
ity line.

A

ording to property (b) and proposition 2, both are not optimal. Thus, at some point in

time 
hara
terized by a 
apa
ity Q(t) ex
eeding the level of PA
, the maximal investment

regime is abandoned above the singular line in favor of minimal 
apa
ity investments.

Hen
eforth, the (Q, k)-pro
ess approa
hes the steady-state line by means of 
apital sto
k

adjustments. As long as the steady-state is lo
ated between PA
and PB

- the interse
tion
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of the steady-state and the long-run su�
ient 
apa
ity line - it is 
hara
terized by an

under-
apa
ity, i.e. a positive mark-up ω.

Using a similar argument as with respe
t to ks1, we 
an mark a se
ond threshold ks2. If the


apital endowment equals ks2, the swit
h from maximal to minimal 
apa
ity investments

o

urs at the moment the 
apa
ity Q(t) equals QB
, so that the pro
ess 
onverges against

PB
. Consequently, the mark-up in the steady-state is zero. However, if the 
apital en-

dowment ex
eeds the se
ond threshold, as does k4
, the swit
h o

urs at a higher 
apa
ity

level. In other words, more 
apa
ity is a

umulated than utilized in PB
. Given a 
om-

pletely used 
apa
ity Q4
the steady-state would be lo
ated below the long-run su�
ient


apa
ity line, whi
h is not feasible. Consequently, the steady-state of a k4
-type e
onomy

is 
hara
terized by an over-
apa
ity. To determine the steady-state, re
all that, given an

over-
apa
ity, (9) requires Fx(k, x) = m to hold while the long-run su�
ient 
apa
ity line

is de�ned by Fx(k,Q) = m and x = Q. Thus, the steady-state needs to be lo
ated on the

long-run su�
ient 
apa
ity line. In other words, the interse
tion of the steady-state and

the long-run su�
ient 
apa
ity line PB
determines steady-state 
apital sto
k and energy

input xB = QB < Q4
. The e
onomy approa
hes this steady-state by evolving along the

su�
ient 
apa
ity line with g(t) < Q4
.

Proposition 3 If the 
apital endowment k(0) of a singular type e
onomy ex
eeds the

threshold ks2, steady-state ba
kstop use falls short of the a

umulated ba
kstop 
apa
ity,

i.e. the e
onomy is 
hara
terized by an over-
apa
ity in the steady-state.

To rationalize the k4
-path, noti
e that the 
apa
ity 
onstraint is binding on the se
tion of

the verti
ally falling part of the evolution path that is lo
ated above the su�
ient 
apa
ity

line. On this se
tion both energy input and the 
apital sto
k ex
eed their steady-state

values, while 
apa
ity investments are zero. Therefore, 
onsumption is higher than in the

steady-state. If this mid-term ex
ess 
onsumption is su�
iently high and the time pref-

eren
e rate low, it outweighs the negative e�e
t of 
apa
ity investments on 
onsumption

at earlier points of time.

The lo
ation of the thresholds ks1 and ks2 
ru
ially depends on the time preferen
e rate.

As stated above, the higher the preferen
e rate the less bene�
ial the trade-o� of 
urrent

for future 
onsumption. During a maximal 
apa
ity investment regime, q = q̄ > yn, so

that net produ
tion is 
ompletely used for investments. As 
onsumption must be positive,

(6) 
onnotes a de
lining 
apital sto
k. Thus, the higher the time preferen
e rate the higher

the 
onsumption in early periods. Consequently, the de
reasing part of the evolution path
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are the steeper and the thresholds higher.

With the k4
-path and the threshold ks2 we extend the results of Powell and Oren

(1989) and Tsur and Zemel (2011). A

ording to the former, the steady-state bene�t of

ba
kstop always ex
eeds marginal ba
kstop 
osts in absen
e of 
apital, i.e. there is always

a positive mark-up. Consequently, less ba
kstop is used than without a ba
kstop 
apa
ity


onstraint. The threshold ks2 and the k4
-path show that also the opposite 
an be true,

if the 
apital endowment is su�
iently large. If the 
apital endowment equals ks2 the

(Q, k)-pro
ess approa
hes the steady-state PB
, so that the mark-up is zero. In 
ase of

the k4
-path, an over-
apa
ity exists in the steady-state, whi
h also implies a non-existing

mark-up. In other words, a high 
apital endowment guarantees the utilization of the full

produ
tion potential of the steady-state 
apital sto
k. Furthermore, the possibility of a


apital-driven ex
ess 
apa
ity is neither obtained by Powell and Oren (1989) nor by Tsur

and Zemel (2011). A

ording to Fis
her et al. (2004), a high initial pollution may also


ause an ex
ess 
apa
ity. However, Fis
her et al. (2004) do not 
onsider 
apital. Finally,

Tsur and Zemel (2011) also do not dis
uss the possibility of maximal 
apa
ity investments,

whi
h we show to be optimal in 
ase of a su�
iently large 
apital endowment.

4.4. The min-max 
ase

After having dis
ussed the singular 
ase, we turn to the min-max 
ase, whi
h is 
har-

a
terized by the non-existen
e of an interse
tion between the long-run singular SiL(T)

and the steady-state line SSL above the long-run su�
ient 
apa
ity line SCL(T). As illus-

trated in �gures 3 and 5, either the singular line interse
ts the steady-state line below the

su�
ient 
apa
ity line or it is lo
ated above the steady-state line for all Q. Re
all that in

both 
ases the (Q, k)-pro
ess 
annot evolve along the singular line. Due to property (d),

this rules out every (Q, k)-pro
ess whi
h approa
hes the singular line.

Consider at �rst the 
ase of Fig. 5(a). The singular line is lo
ated above the steady-

state line in the area of the (Q, k)-spa
e restri
ted by the long-run su�
ient 
apa
ity

line. A

ording to property (
), minimal 
apa
ity investments above the singular line are

only a temporary option. However, re
all that the singular line is de�ned for a binding


apa
ity 
onstraint. Consequently, it does not exist at the point PB
, whi
h is the only

possible steady-state the (Q, k)-pro
ess 
an 
onverge to. If the 
apital endowment is

su�
iently large, the (Q, k)-pro
ess is similar to the k3
- or k4

-path. In the illustrated 
ase

of the k5
-path, the 
apital endowment falls short of the singular line at early points in

20



PSfrag repla
ements

Tex-Ersetzung

Q
QB

k

k5

kB
PB SSL

SiL(T)

SCL(T)

SCL(0)

SiL(0)

(a) invalid interse
tion

PSfrag repla
ements

Tex-Ersetzung

Q
Q(0)

k

km
k7

k6
SSL

SiL(T)

SiL(0)

SCL(T)

SCL(0)

PB

(b) no interse
tion

Figure 5: Steady-state line (SSL), singular line (SiL) for t = 0 and t = T , su�
ient 
apa
ity line

for t = 0 and t = T , and 3 exemplary (Q, k)-pro
esses of a min-max type e
onomy

time, so that 
apa
ity investments are minimal. Consequently, 
apital is a

umulated. As

singular 
apa
ity investments are not optimal, there is no swit
h from minimal to singular

investments at the moment the evolution path rea
hes the singular line. Rather, 
apa
ity

investments remain minimal while the 
apital sto
k is in
reased. Due to this investment

regime and the s
ar
ity driven downward shift of the singular line, the (Q, k)-pro
ess

surpasses the singular line. Above the singular line maximal 
apa
ity investments are

optimal. Consequently, the (Q, k)-pro
ess 
onverges against the steady-state PB
. Sin
e

this steady-state is the only feasible one in the illustrated setting, 
apital investments

need to be su�
iently high at early points in time. Otherwise, the (Q, k)-pro
ess would

surpass the singular line below kB
, so that the steady-state PB


annot be rea
hed.

In the 
ase illustrated by Fig. 5(b), the singular line is always lo
ated above the

steady-state line. Thus, every point on the steady-state line is a feasible steady-state.

If the 
apital endowment is su�
iently large, the (Q, k)-pro
ess is similar to the k3
- or

the k4
-path. In 
ase of a small 
apital endowment, su
h as k6

, the (Q, k)-pro
ess evolves

as the k5
-path at early points in time, i.e. it surpasses the singular line due to 
apital

a

umulation to swit
h to maximal 
apa
ity investments above the singular line. As the

steady-state line is lo
ated below the singular line for allQ, there needs to be a swit
h from

maximal 
apa
ity investments to minimal one as long as the (Q, k)-pro
ess is lo
ated above

the singular line. In the illustrated 
ase the a

umulated 
apital sto
k is not high enough

to rea
h the steady-state PB
. Instead, maximal 
apa
ity investments are abandoned at a

smaller level. Afterwards, the (Q, k)-pro
ess 
onverges against a steady-state by means of
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apital adjustments. Obviously, the higher the 
apital sto
k at the moment of the swit
h

to maximal 
apa
ity investments the higher the rea
hable steady-state values of 
apital

and 
apa
ity and, therefore, of 
onsumption. However, high early 
apital investments

require a small time preferen
e rate, so that the trade-o� of early for later 
onsumption

is bene�
ial. Thus, the lower the rate the higher steady-state 
onsumption.

If the 
apital endowment is too low given the time preferen
e rate, the trade-o� is generally

not bene�
ial. In other words, we 
an mark a threshold km. Only if the 
apital at

least equals this threshold, 
apital and 
apa
ity investments are possible. Otherwise, as

illustrated by the k7
-path, the (Q, k)-pro
ess approa
hes the steady-state line at Q(0)

by means of 
apital sto
k redu
tion. Thus, the k7
-path illustrates a poverty trap in the

sense of Tsur and Zemel (2005), Kollenba
h (2014), and Kollenba
h (2015). However, our

result is not driven by a la
k of resear
h expenditures, but by a la
k of ba
kstop 
apa
ity

investments. The lo
ation of the threshold km 
ru
ially depends on the time preferen
e

rate. The lower (higher) the rate the higher (lower) the value of long-run 
onsumption

and, therefore, the lower (higher) the threshold.

Proposition 4 If the 
apital endowment k(0) of a min-max type e
onomy falls short of

the threshold km, ba
kstop investments are minimal for all points in time.

Similar to the k1
- and k2

-paths, the whole min-max 
ase augments the results of

Powell and Oren (1989) and Tsur and Zemel (2011). In parti
ular, the non-optimality

of singular 
apa
ity investments and, therefore, the dependen
e on maximal ones for the

realization of an improved steady-state 
ontrasts with Tsur and Zemel (2011), who fo
us

on singular investments. Nonetheless, the k7
-path bears a resemblan
e to the fossil fuel

based e
onomy of Tsur and Zemel (2011). With an unlimited fossil fuel sto
k, energy

demand 
an be satis�ed by fossil fuels. Consequently, Tsur and Zemel (2011) do not

identify the 
orresponding evolution path as a poverty trap. However, with a limited

sto
k, this possibility of a fossil fuel based e
onomy does not exist. Consequently, the

e
onomy relies on the more expensive ba
kstop, so that the welfare prospe
ts are less

bright than in the setting of Tsur and Zemel (2011).

4.5. Determinants of steady-state 
onsumption

As shown in the previous two se
tions the steady-state depends not only on 
apital

endowment and time preferen
e rate, but also on the long-run position of the 
hara
teristi


lines. Steady-state 
onsumption is the higher the larger the steady-state 
apital sto
k and
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apa
ity, i.e. the further in the north-east of the (Q, k)-spa
e the steady is lo
ated. In

terms of the 
hara
teristi
 lines this requires a high position of the steady-state line and

a low position of both the su�
ient 
apa
ity line and the singular line. Furthermore, the

latter two should be rather �at, so that the number of (Q, k)-
ombinations allowing for

and requiring 
apa
ity investments, respe
tively, is high.

Inspe
ting (27) shows that, 
eteris paribus, the marginal produ
t of energy is the smaller

the smaller the 
apital sto
k. Thus, low ba
kstop unit 
osts give rise to a low position of

the su�
ient 
apa
ity line. Fig. 1 illustrates how lower ba
kstop unit 
osts in
rease the

advantageousness of 
apa
ity investments. On the one hand, lower ba
kstop unit 
osts

in
rease the amount of ba
kstop that would be used given a su�
iently large 
apa
ity

(g◦). On the other hand, the possible maximal energy input (x◦
) is boosted, whi
h would

in
rease produ
tion.

Using a similar formal argument with respe
t to (30) shows that the position of the steady-

state line is the higher the smaller the time preferen
e rate. The e
onomi
 intuition is the

same as mentioned with regard to the thresholds. The lower the time preferen
e rate the

more bene�
ial the trade-o� of early for later 
onsumption.

Finally, (28) and (34) show that the su�
ient 
apa
ity and the singular line are the �atter

the lower |Fxx|, whi
h 
onnotes a �at energy demand fun
tion in Fig. 1 and, therefore,

a high elasti
ity of the marginal produ
t of energy ǫFx,x = Fxx
x
Fx
. The e�e
ts of a �at

energy demand fun
tion are similar to the ones of low ba
kstop unit 
osts. That is, both

the potential ba
kstop input g◦ and the maximal possible energy input x◦
are the higher

the lower |Fxx| 
eteris paribus.

A high elasti
ity of marginal extra
tion 
osts ǫMb,b = Mbb
b

Mb

has no e�e
t on the

slope of the su�
ient 
apa
ity line in the (Q, k)-spa
e. However, the higher Mbb the


loser the right-hand side of both (31) and (34) to unity. In other words,

∂KN

∂Q
and

∂KS

∂Q

resemble parallels for elasti
 marginal extra
tion 
osts, whi
h implies an interse
tion of

the steady-state line and the long-run singular line in the far north-east of the (Q, k)-

spa
e. Furthermore, (29) shows that the impa
t of the de
reasing fossil fuel sto
k on the

position of the su�
ient 
apa
ity line is weak if Mbb is high. Thus, the initial position

of the line is 
lose to the long-run position. To explain these e�e
ts we refer again to

Fig. 1. A high Mbb implies a steep fossil fuel supply fun
tion. Consequently, the e
onomy

relies heavily on ba
kstop from the very beginning. Furthermore, the s
ar
ity indu
ed
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redu
tion of fossil fuel use is small in absolute terms. On the one hand, the high relian
e

on ba
kstop gives rise to a high relative pro�tability of 
apa
ity investments

θ
λ
. On the

other hand, the relative pro�tability does not in
rease mu
h in time, due to the small


apa
ity indu
ed redu
tion of fossil fuel use. The results are summarized in proposition 5.

Proposition 5 Ceteris paribus, steady-state 
onsumption is the higher the lower the time

preferen
e rate, the lower the unit 
osts of ba
kstop, and the higher the elasti
ities of

marginal extra
tion 
osts ǫMb,b and of the marginal produ
t of energy with respe
t to energy

ǫFx,x.

Tsur and Zemel (2011) 
onsider 
onstant unit 
osts of fossil fuel extra
tion and no

marginal ba
kstop 
osts, while Powell and Oren (1989) abstains from 
apital and fossil

fuel extra
tion 
osts. Therefore, the 
orresponding results of proposition 5 
annot be

obtained in their models.

5. Con
lusion

We analyze how a 
apital-energy e
onomy should invest in ba
kstop 
apa
ity and how

the limited but extendable 
apa
ity a�e
ts the evolution of the e
onomy. For this purpose

we determine the so
ial optimum of the e
onomy given a limited fossil fuel sto
k and

a limited 
apa
ity ne
essary for the utilization of a renewable ba
kstop energy sour
e.

The 
apa
ity 
an be extended by investing the 
omposite good. Therefore, 
apa
ity

investments 
ompete with 
apital investments and 
onsumption for limited funds. Similar

to Tsur and Zemel (2005, 2011), our analysis of the optimal evolution path is based on

the relative position of three 
hara
teristi
 lines in the 
apa
ity-
apital spa
e.

A

ording to our results, the steady-state 
ru
ially depends on the 
apital endowment

and the type of the e
onomy. If singular 
apa
ity investments are possible (singular type

e
onomy) and the 
apital endowment is lo
ated between two 
riti
al values, the steady-

state levels of ba
kstop 
apa
ity, 
apital and, therefore, 
onsumption are the higher the

higher the 
apital endowment. However, if the 
apital endowment falls short of the lower


riti
al value or ex
eeds the upper one, the 
apital endowment dependen
e of the steady-

state vanishes. In the 
ase that the 
apital endowment falls short of the upper 
riti
al

value, the steady-state is 
hara
terized by an under-
apa
ity, i.e. there is a positive mark-

up on ba
kstop 
osts. In 
ontrast, if the 
apital endowment ex
eeds the upper 
riti
al

value, the e
onomy a

umulates more ba
kstop 
apa
ity than is used in the steady-state.

In other words, a su�
iently high 
apital endowment gives rise to the a

umulation of an
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ex
ess ba
kstop 
apa
ity. Consequently, the full produ
tion potential of the steady-state


apital sto
k is used. Thus, the marginal produ
t of ba
kstop equals marginal ba
kstop


osts, so that there is no mark-up on ba
kstop 
osts. The ex
ess 
apa
ity is only used in

the mid-term but not in the steady-state. Therefore, the negative 
onsumption e�e
t of


apa
ity investments in early periods is outweighed by in
reased mid-term 
onsumption.

In other words, there is a trade-o� between early and late 
onsumption. Obviously, the

lower the time preferen
e rate the more bene�
ial the trade-o� and, 
onsequently, the

lower the 
riti
al values.

If the e
onomy type does not allow for singular 
apa
ity investments (min-max type

e
onomy) and the 
apital endowment falls short of a 
riti
al value, there are no 
apa
ity

investments. In this 
ase, the 
onsumption trade-o� is not bene�
ial and the e
onomy is

in a poverty trap.

20

With 
apital, exhaustible fossil fuels and positive ba
kstop unit 
osts, we integrate

several aspe
ts, whi
h are not all 
onsidered by Powell and Oren (1989), Fis
her et al.

(2004), Wirl and Withagen (2000), and Tsur and Zemel (2011).

21

In parti
ular the 
apital

endowment 
an a�e
t the results 
onsiderably. The possibility of a 
apital-driven ex
ess


apa
ity is not obtained by Powell and Oren (1989) and Tsur and Zemel (2011). Fur-

thermore, Powell and Oren (1989) and Tsur and Zemel (2011) postulate a mark-up on

marginal ba
kstop 
osts in the steady-state, so that not the full potential of the 
apital

sto
k is used. A

ording to our results, su
h a mark-up only exists if the 
apital endow-

ment is low. Thus, our analysis provides a more optimisti
 view 
on
erning the evolution

prospe
ts of e
onomies with a high 
apital endowment.

The exhaustible fossil fuel sto
k gives rise to two important results. Firstly, the de
rease

of the sto
k in time boosts the relative pro�tability of 
apa
ity investments. Moreover,

in 
ombination with a low 
apital endowment it gives rise to the poverty trap. While an

e
onomy without 
apa
ity investments is also obtained by Tsur and Zemel (2011), they

do not �nd the e
onomy to be in a poverty trap. Due to their assumption of an unlimited

fossil fuel sto
k, energy generation 
an heavily rely on fossil fuel for all time. In our setting

of a limited fossil fuel sto
k, this possibility of a fossil fuel based e
onomy does not exist.

Thus, our analysis suggests a more pessimisti
 view 
on
erning the welfare of su
h an

20

A poverty trap is also found by Tsur and Zemel (2005), Kollenba
h (2014), and Kollenba
h (2015).

However, the 
ause of our poverty trap is not a la
k of resear
h expenditures but of 
apa
ity investments.

21

Re
all that Fis
her et al. (2004) and Wirl and Withagen (2000) fo
us on the e�e
ts of pollution.
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e
onomy.

Our present model makes use of several simplifying assumptions. In parti
ular, we

abstain from a sto
k dependen
e of fossil fuel extra
tion 
osts. As shown by Kollenba
h

(2015), a sto
k dependen
e may 
ause the e
onomi
ally but not physi
ally exhaustion of

fossil fuels. In this 
ase, the sto
k left in situ depends on the availability of ba
kstop,

i.e. the speed of 
apa
ity a

umulation. Our results may also be a�e
ted by endogenous

te
hnologi
al progress and pollution, whi
h both may boost potential ba
kstop utilization

and, therefore, the relative pro�tability of 
apa
ity investments. In parti
ular, te
hnology

progress may give rise to everlasting growth.

A. Appendix

A.1. Proof of Lemma 1

The maximization of the Hamiltonian gives

q = 0, if − λ+ θ < 0,

0 ≤ q ≤ q̄, if − λ+ θ = 0, (A.1)

q = q̄, if − λ+ θ > 0.

If θ < λ, 
apa
ity investments are zero. As ζq̄ = 0, (10) 
onnotes ζq = λ− θ > 0, whi
h is

in line with (15). In 
ase of singular investments, θ−λ = ζq = ζq̄ = 0, and ζq̄ = θ−λ > 0,

ζq = 0, if 
apa
ity investments are maximal.

A.2. Proof of Proposition 1

The 
apa
ity 
onstraint 
an be non-binding either for a limited time interval [t1, t2],

with 0 ≤ t1 < t2 < ∞, or an unlimited time interval [t3,∞[, with 0 ≤ t3 < ∞. At �rst,


onsider the 
ase of the limited time interval. Suppose two investment plans. The �rst

one stipulates positive 
apa
ity investments at some point in time t1 ≤ t < t2. The se
ond

one resembles the �rst one but reallo
ates one marginal investment unit from 
apa
ity to


apital investments at time t. At time t2 this marginal 
apital unit is disinvested and used

for a 
apa
ity investment, so that 
apa
ity at time t2 is identi
al under both investment

plans. The reallo
ation at time t has no e�e
t on energy input, as the 
onstraint is non-

binding during t1 ≤ t < t2. However, the reallo
ation in
reases the 
apital sto
k, so that

produ
tion is higher during the time interval [t, t2[. This additional produ
tion 
an be

used either for 
onsumption or 
apital a

umulation. In both 
ases, the se
ond investment
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plan is superior to the �rst one. This argumentation 
an be repeated until there are no


apa
ity investments at time t.

Consider now the unlimited time interval [t3,∞[. As the 
apa
ity 
onstraint is non-

binding, µ(t) = 0 for all t ∈ [t3,∞[. Suppose that q(t) > 0 at the same point in time

t3 ≤ t < ∞. A

ording to lemma 1, θ(t) ≥ λ(t) is required. Sin
e the shadow pri
e of

the 
apital sto
k λ is positive for all points in time, q(t) > 0 implies θ(t) > 0. However,

due to (13) and µ = 0 we 
an write θ(t̃) = θte
ρt̃
, with θt > 0 and t̃ ≥ t. Substituting into

(18)(
) gives lim
t̃→∞

θt[Q(t̃) − Q∗(t̃)] ≥ 0. Due to the 
apa
ity investments at time t there

exists at least one feasible evolution path with lim
t̃→∞

[Q(t̃)−Q∗(t̃)] < 0. Thus, the 
apa
ity

investments q(t) > 0 violate the transversality 
ondition. This violation together with the

upper paragraph prove proposition 1.

A.3. Slope of the 
hara
teristi
 manifolds

To determine the slope of the su�
ient 
apa
ity line we substitute KC(Q, s) in (27)

and di�erentiate with respe
t to Q and s, whi
h yields

[

Fxk + Fxx

∂x

∂k

]

∂KC

∂Q
+ Fxx

∂x

∂Q
= 0

⇔
∂KC

∂Q
= −

Fxx

Fxk

> 0. (A.2)

[

Fxk + Fxx

∂x

∂k

]

∂KC

∂s
+ Fxx

∂x

∂s
= 0

⇔
∂KC

∂s
=

Fxx

FxkMbb

dV

ds
> 0. (A.3)

Analogously, the slope of the 
onstant 
onsumption line is determined by substituting

KN(Q, s) in (30) and di�erentiate with respe
t to Q and s. We get

[

Fkk + Fkx

∂x

∂k

]

∂KN

∂Q
+ Fkx

∂x

∂Q
= 0

⇔
∂KN

∂Q
= −

FkxMbb

FkkMbb − J
> 0. (A.4)

[

Fkk + Fkx

∂x

∂k

]

∂KN

∂s
+ Fkx

∂x

∂s
= 0

⇔
∂KN

∂s
=

Fkx

FkkMbb − J

dV

ds
> 0. (A.5)
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The slope of the singular line is determined by substituting KS(Q, s) in (33) and di�er-

entiating with respe
t to Q and s.

[

Fkk + Fkx

∂x

∂k

]

∂KS

∂Q
+ Fkx

∂x

∂Q
=

∂ω

∂Q
+

∂ω

∂k

∂KS

∂Q

⇔
∂KS

∂Q
=

Mbb(Fxx − Fkx)

Mbb(Fkk − Fkx)− J
> 0, (A.6)

[

Fkk + Fkx

∂x

∂k

]

∂KS

∂s
+ Fkx

∂x

∂s
=

∂ω

∂k

∂KS

∂s
+

∂ω

∂s

⇔
∂KS

∂s
=

Fkx − Fxx

Mbb(Fkk − Fkx)− J

dV

ds
> 0. (A.7)

A.4. Properties of subspa
es

In the following we prove the properties of the subspa
es, determined by the 
hara
-

teristi
 manifolds. As we adapt Tsur & Zemel's (2005) model, the proofs follow or modify

the proofs of Tsur & Zemel's appendix.

SCL

De�ne ΛC as

ΛC(k, s, Q) := Fx(k, x(k, s, Q))−m. (A.8)

A

ording to the de�nition of the su�
ient 
apa
ity line, ΛC(K
C(Q, s), s, Q) = 0. Di�er-

entiating ΛC with respe
t to 
apital gives

∂ΛC

∂k
= MbbFxk

Mbb−Fxx
> 0. Thus, Fx(k, x(k, s, Q)) > m

above and Fx(k, x(k, s, Q)) < m below the su�
ient investment line. In the former 
ase,

(9) implies a positive mark-up ω. In other words, the e
onomy exhibits an under-
apa
ity.

The 
ase of Fx < m is ruled out by (9). Hen
e, the assumption of a binding 
onstraint

(g = Q) does not hold below the su�
ient 
apa
ity line. Rather, g < Q is ne
essary to

guarantee a su�
ient low energy input whi
h is in line with (9). In other words, below

the su�
ient 
apa
ity line the e
onomy is 
hara
terized by an over-
apa
ity.

Lemma 4 Below (on, above) the su�
ient 
apa
ity line the e
onomy is 
hara
terized by

an over- (under, just su�
ient) 
apa
ity.

CCL

De�ne ΛN as

ΛN(k, s, Q) := Fk(k, x(k, s, Q))− ρ. (A.9)

A

ording to the de�nition of the 
onstant 
onsumption line, ΛN(K
N (Q, s), s, Q) = 0.

Di�erentiating ΛN with respe
t to 
apital gives

∂ΛN

∂k
= 1

Mbb−Fxx
[MbbFkk − J ] < 0, so that
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Fk(k, x(k, s, Q)) > ρ below and Fk(k, x(k, s, Q)) < ρ above the line. Due to the Ramsey-

rule (17), the former 
onnotes 
onsumption growth below and the latter 
onsumption

de
line above the 
onstant 
onsumption line.

Lemma 5 Consumption in
reases below and de
reases above the 
onstant 
onsumption

line.

SiL

De�ne ΛS and ς as

ΛS(k, s, Q) := Fk(k, x(k, s, Q))− ω(k, s, Q), (A.10)

ς := λ− θ. (A.11)

A

ording to the de�nition of the singular line, ΛS(K
S(Q, s), s, Q) = 0. Di�erentiating

ΛS with respe
t to 
apital gives

∂ΛS

∂k
= 1

Mbb−Fxx
[Mbb(Fkk − Fxk)− J ] < 0. Thus, ΛS < 0

above and ΛS > 0 below the singular line.

Due to the de�nition of ς and (A.1), 
apa
ity investments q are minimal if ς > 0, singular

if ς = 0, and maximal if ς < 0. (11) and (13) determine the evolution of ς as

ς̇ = ρς − λΛS. (A.12)

Consider an (Q, k)-pro
ess exhibiting maximal 
apa
ity investments below the long-run

singular line, so that ΛS > 0 and ς < 0. A

ording to (A.12), ς̇ < ρς. If the investment

regime lasts forever, lim
t→∞

e−ρtθ(t) = ∞. However, this 
ontradi
ts transversality 
ondition

(18)(
). As the maximal 
apa
ity investment regime 
onnotes a de
reasing 
apital sto
k

and the singular line in
reases in the (Q, k)-spa
e, no (Q, k) exhibiting maximal 
apa
ity

investments below the long-run singular line 
an rea
h the line. Consequently, these

(Q, k)-pro
esses are not optimal.

Lemma 6 Maximal 
apa
ity investments below the long-run singular line are not optimal.

If the 
apa
ity 
onstraint is binding, net produ
tion Y n

an be written as

Y n(k, s, Q) = F (k, x(k, s, Q))−M(b(k, s, Q))−mQ. (A.13)

Di�erentiating with respe
t to 
apital and 
apa
ity gives Y n
k = Fk+v ∂b

∂k
and Y n

Q = ω+v ∂b
∂Q

so that

∂Y n

∂k
−

∂Y n

∂Q
= ΛS(k, s, Q) + v

(

∂b

∂k
−

∂b

∂Q

)

. (A.14)
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The term in bra
kets is positive if fossil fuel is not exhausted, while ΛS > 0 below and

ΛS < 0 above the singular line. Thus, below the singular line Y n
k − Y n

Q > 0, i.e. 
apital

investments in
rease net produ
tion to a higher degree than 
apa
ity investments. For

an exhausted fossil fuel sto
k Y n
k − Y n

Q > 0 below and Y n
k − Y n

Q < 0 above the long-run

singular line.

Consider a (Q, k)-pro
ess whi
h exhibits 
apa
ity investments between the 
urrent and

the long-run singular line. As the singular line shifts downwards in the (Q, k)-spa
e the

(Q, k)-pro
ess may rea
h the line, so that transversality 
ondition (18)(
) is not violated.

However, a

ording to (A.14), the reallo
ation of a marginal investment unit from 
apa
ity

to 
apital for one moment in time in
reases net produ
tion. As the additional produ
tion


an be used for 
onsumption, 
apital or 
apa
ity a

umulation, the original investment

plan is not optimal. The argument 
an be repeated till there are no 
apa
ity investment

below the singular line.

Lemma 7 Capa
ity investments below the singular line are not optimal.

Consider a (Q, k)-pro
ess with minimal 
apa
ity investments above the singular line,

so that ς > 0, ΛS < 0, and, a

ording to (A.12), ς̇ = ρς − λΛS > ρς. If the minimal 
a-

pa
ity investment regime last forever, lim
t→∞

e−ρtλ(t) = ∞, whi
h 
ontradi
ts transversality


ondition (18)(a). As a steady state requires q = 0, we 
an 
on
lude as follows.

Lemma 8 A steady state above the long-run singular line is not optimal.

A

ording to lemma 8, a (Q, k)-pro
ess with minimal 
apa
ity investments 
annot

evolve above the singular line forever. Consequently, the 
apital sto
k de
reases until

a steady state on the long-run 
onstant 
onsumption line, whi
h needs to be lo
ated

below the long-run singular line, is rea
hed. A swit
h to singular 
apa
ity investments

on the singular line is not possible. If it were possible, the (Q, k)-pro
ess would rea
h an

arbitrary point on the long-run singular line. However, the same point 
ould be rea
hed

by maximal 
apa
ity investments above the singular line. If the latter is not optimal, the

former 
annot be optimal.

Lemma 9 If minimal 
apa
ity investments are optimal above the singular line, the (Q, k)-
pro
ess 
onverges against the steady-state line by means of 
apital sto
k adjustments.

As

dKC

dQ
> dKS

dQ
> dKN

dQ
, the su�
ient 
apa
ity line is lo
ated above the singular line

for large 
apa
ity values, and the singular line is lo
ated above the 
onstant 
onsumption

30



line. Suppose a (Q, k)-pro
ess that evolves along the singular line in the long-run, so

that 
apa
ity investments are positive. Due to the lower position of the singular line,

the (Q, k)-pro
ess evolves below the su�
ient 
apa
ity line. A

ording to lemma 4 and

proposition 1, this 
onnotes an over-
apa
ity and therefore the non-optimality of 
apa
ity

investments. Consequently, a long-run evolution of the (Q, k)-pro
ess along the singular

line 
annot be optimal. The argument holds in a similar way for a (Q, k)-pro
ess with

maximal 
apa
ity investments.

Lemma 10 Positive long-run 
apa
ity investments are not optimal.

Suppose the (Q, k)-pro
ess is lo
ated on the singular line, so that ΛS = 0 and ς = 0. If

the (Q, k)-pro
ess diverges from the singular line upwards, ΛS < 0. A

ording to (A.12),

ς > 0, i.e. minimal 
apa
ity investments are optimal above the singular line. However,

lemma 9 implies that the previous 
apa
ity investments were not optimal. Thus, an

upward deviation of the (Q, k)-pro
ess from the singular line is not optimal.

If the (Q, k)-pro
ess diverges downwards, ΛS > 0, so that ς < 0. In other words, 
apa
ity

investments are maximal below the singular line. However, the 
orresponding investment

plan 
ontradi
ts lemma 7. Consequently, a downward divergen
e is not possible

Lemma 11 The singular line exerts a bounding for
e on the (Q, k)-pro
ess.

Lemma 4 proves property (a) and lemma 5 property (b). Property (
) follows from

the de�nition of the singular line, lemma 7, and lemma 9. Property (d) is given by lemma

11.
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