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Abstract

In the basic model of the literature on international environmental agreements

(IEAs) (Barrett 1994; Rubio and Ulph 2006) the number of signatories of self-

enforcing IEAs does not exceed three, if non-positive emissions are ruled out. We

extend that model by introducing a composite consumer good and fossil fuel that

are produced and consumed in each country and traded on world markets. When

signatory countries act as Stackelberg leader and emissions are positive, the size of

stable IEAs may be significantly larger in our model with international trade. This

would be good news if larger self-enforcing IEAs would lead to stronger reductions

of total emissions. Unfortunately, the allocation of total emissions in self-enforcing

IEAs turns out to be approximately the same as in the business as usual scenario

independent of the number of its signatories. We also investigate the role of inter-

national trade by comparing our free-trade results with the outcome in the regime

of autarky. Our autarky model turns out to coincide with the basic model of the

literature alluded to above. We contribute to that literature by showing that in

autarky regime the outcome of self-enforcing IEAs is also approximately the same

as in business as usual.
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1 The problem

International environmental agreements (IEAs) are essential for the stabilization of the world

climate at safe levels through the effective reduction of global carbon emissions. The first

legally binding international agreement on climate protection, the Kyoto Protocol, has been

criticized because it includes commitments for a small number of countries only and is

therefore likely to accomplish very little in terms of global emission reduction (Buchner et

al. 2002). It will run out in 2012, and the prospects are bleak for reaching a new IEA which

accomplishes both attracting many signatories and reducing global emissions significantly.

The tedious practical negotiations and the serious global change challenge call for continued

investigations of the theoretical foundations of successful and effective IEAs.

Since the early 1990s an economic literature has developed on self-enforcing IEAs. An

IEA is said to be self-enforcing or stable if no signatory country has an incentive to leave

the IEA and no non-signatory country has an incentive to join the IEA. The seminal papers

on self-enforcing IEAs include Barrett (1992, 1994), Hoel (1992) and Carraro and Siniscalco

(1993). Most papers are quite pessimistic about the stability of large IEAs. Carraro and

Siniscalco (1991), Hoel (1992) and Finus (2001) find that a stable IEA consists of three

countries when the climate damage is linear and of two countries when the climate damage

is quadratic. These papers assume that both signatories and non-signatories behave in a

Cournot-Nash fashion.

Another strand of the IEA literature which we will follow in the present paper makes

use of the Stackelberg assumption portraying the climate coalition1 as Stackelberg leader

and all non-cooperative countries as Stackelberg followers. In that framework Barrett’s

(1994) simulation results suggest the existence of stable coalition sizes between two and the

grand coalition. However, Diamantoudi and Sartzetakis (2006) and Rubio and Ulph (2006)

proved that large stable IEAs imply zero emissions (corner solutions) or negative emissions.

Negative emissions must clearly be ruled out in models without stock pollution because it is

infeasible to abate more emissions than are generated. Therefore, the approach of Rubio and

Ulph (2006) is correct to introduce non-negativity constraints for (net) emissions which then

generates zero-emission corner solutions under certain parameter constellations. As Rubio

and Ulph point out the reason for such corner solutions is the assumption of non-essential

emissions which is standard in the literature on IEAs. Emissions are non-essential when the

marginal benefit from emissions is positive but finite for zero emissions. That assumption

may be plausible for some pollutants, e.g. for CFC emissions in the context of the ozone

1In the present paper we use the terms IEA and (climate) coalition as synonyms because our exclusive

focus is on a single coalition.
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problem, but less so for carbon emissions in the context of climate change which is the focus

of the present paper. Hence the first-best strategy would be assuming emissions (or rather

the consumption of fossil energy) to be essential. However, for reasons of tractability and

comparability with pertaining literature we follow Diamantoudi and Sartzetakis (2006) and

restrict parameter values to ensure that the resultant emissions are always strictly positive.

Under that constraint (along with the assumption of non-essential emissions) Diamantoudi

and Sartzetakis (2006) as well as Rubio and Ulph (2006) find that the number of signatories

of self-enforcing IEAs is not larger than four. Hence large self-enforcing IEAs cannot be

expected under the Stackelberg assumption.

The basic model of an IEA employed by Barrett (1994), Diamantoudi and Sartzetakis

(2006) and Rubio and Ulph (2006) and others is a static model of symmetric countries where

each country’s domestic emissions generate domestic welfare that is decreasing at the margin

and where all countries’ emissions create a welfare loss which is uniform across countries

and increasing at the margin.2 That model does not account for production, consumption,

markets and international trade and thus captures the world economy in a rudimentary

way only. It has been extended in various directions (Finus 2003).3 For example, Hoel

and Schneider (1997) introduce transfer schemes in the coalition formation process, Kolstad

(2007) studies systematic uncertainty and Carbone et al. (2009) use the basic model for an

empirical investigation of how international emission trading impacts on IEAs. However, we

are not aware of studies on the formation of IEAs4 that model in more detail the economies

of individual countries and their economic interdependencies.

The present paper aims to extend the basic model along these lines and then investi-

gates the impact of that extension on the stability of IEAs in the Stackelberg leader-follower

framework. We will add structure to the national economies by introducing a consumer

good and fossil fuel that are produced in each country, consumed by its representative con-

sumer and traded on world markets.5 In this general equilibrium framework we first briefly

2Barrett (1994) formalizes abatement and therefore his approach seems to differ from the basic model,

at first glance. However, as pointed out by Diamantoudi and Sartzetakis (2006, Section 4), Barrett’s model

is equivalent to the basic model as long as abatement does not exceed the flow of emissions.
3Modifying and extending, respectively, the basic model Barrett (1999) and Hannesson (2010) show that

stable coalitions may consist of a large number of countries presupposed the coalition countries behave as a

Nash player.
4There are also studies relaxing the assumption of the basic model that countries are identical (e.g.

Barrett 2001). In the present paper we will stick to that assumption to keep our model tractable.
5Despite the importance of international trade for the formation of IEAs, to our knowledge there is only

one paper dealing with that issue, and that is Barrett (1997) who illustrates in a partial equilibrium model

with abatement how trade policy may help support stable IEAs. Copeland and Taylor (2005) study the role

of international trade in a model of non-cooperative heterogenous countries coping with a global (climate)

externality. They do not address the formation of coalitions, however.
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characterize the business-as-usual scenario where the governments of all countries play Nash

maximizing domestic welfare by choosing their emission caps as best replies to the other

countries’ emission caps. We then turn to our central theme, the characterization of self-

enforcing IEAs in the Stackelberg model.

For the case that signatories act as Stackelberg leader and equilibrium emissions are

positive, we find that - depending on parameter constellations - international trade may

significantly increase the size of stable IEAs. That is, the conditions for successful sub-

global cooperative action appear to be more favorable than suggested by the basic model of

the IEA literature referred to above. Unfortunately, the hope for a more optimistic view on

effective cooperative emission reductions turns out to be unwarranted because our second

main finding is that if an IEA of any size is self-enforcing, the corresponding allocation

of world emissions is approximately the same as in its absence, i.e. in business as usual

(BAU). We hasten to add that these results are obtained in a very simple model making

use of parametric functions and numerical examples. It is inappropriate, therefore, to take

them as reliable indicators for the outcome of the highly complex ongoing international

climate negotiations. Nonetheless, they provide some support for the disturbing view that

any attempt to form a sub-global climate coalition (of whatever size) is futile.

As the introduction of international trade represents a major extension of the IEA

literature it is natural to highlight its impact on results by looking at the outcome of our

model in the absence of international trade (autarky). Somewhat unexpectedly, when all

countries are autarkic, our model turns out to coincide with the basic model of the literature

on IEAs which has established, as reported above, that the number of signatories in self-

enforcing IEAs is very small. We find that allowing for trade leads to larger stable coalitions

than under autarky. Concerning the effectiveness of stable coalitions in the autarky scenario,

the outcome is as in the free-trade scenario: The allocation in an equilibrium with a stable

coalition is almost the same as in BAU.

The paper is organized as follows. Section 2 introduces the model and briefly analyzes

the business-as-usual scenario which serves as a benchmark throughout the paper. Section

3.1 prepares for the analysis of self-enforcing IEAs in Section 3.2 by characterizing the

outcome of the Stackelberg game and, in particular, its dependence on the exogenously

given size of coalitions. Section 4 deals with the role of international trade for the results

by comparing the regimes of free trade and autarky and by linking the case of autarky to

the basic model of the coalition formation literature. Section 5 concludes.
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2 The model

The world economy consists of n identical countries. Each country produces two consumer

goods. The first is a standard composite good, called good X (quantity xi) and the second

is a fossil energy carrier (quantity ei), e.g. oil, gas or coal extracted from domestic fossil

reserves. We refer to that good simply as fuel.6 Each country’s production technology is

represented by the production possibility frontier7

xs
i = T (esi ) i = 1, . . . , n, (1)

where the function T is decreasing and strictly concave in esi . The transformation function

(1) implies that both commodities are produced by means of domestic productive factors

(e.g. labor and capital) whose endowments are given. The utility8

V (edi ) + xd
i −D

(
∑

j

edj

)

(2)

of the representative consumer of country i is additive separable in all arguments and linear

in the consumption xd
i of good X. V is increasing and concave, and D is increasing and

convex in its argument. The consumption of fuel generates the greenhouse gas carbon dioxide

whose emission is proportional to fuel consumption. Emission units are chosen such that edi

denotes both fuel demanded by consumer i and carbon emissions from burning fuel. There

is no abatement technology for emission reduction.9 The function D captures the climate

damage caused by worldwide carbon emissions from burning fuel.

For the sake of more specific results, throughout the paper we will specify the functions

T , V and D from (1) and (2) by the following quadratic functional forms:10

T (esi ) = x̄−
α

2
(esi )

2 , V (edi ) = aedi −
b

2
(edi )

2, D

(
∑

j

edj

)

=
1

2

(
∑

j

edj

)2

, (3)

6Households do not consume fuel directly but use fuel as input in a linear household production function

to produce e.g. the commodities heat or transportation services. Throughout the rest of the paper we leave

off the household production technology and interpret fuel as consumer good.
7The superscript s indicates quantities supplied. Upper-case letters are reserved to denote functions.

Subscripts attached to them indicate partial derivatives.
8The superscript d indicates quantities demanded.
9Carbon capture and sequestration is a potential abatement technology which is unlikely to be applied

on a large scale in the near or medium term future.
10In (3) the parametric form of T (esi ) can be ’microfounded’ as follows. Let r̄ be country i’s endowment

of a (composite) production factor and consider the production functions x = αxrx and e = (re/αe)
1/2 with

re + rx = r̄. αe, αx are positive constants. The quadratic transformation function in (3) is straightforward

from these three equations when setting x̄ := αxr̄ and α := αxαe.
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where x̄, a, b and α are positive parameters.

Our stylized model (1) and (2) of the individual country’s economy neglects fuel as an

intermediary input in the production of good X. All fuel goes from production directly to

consumers where ’fuel production’ can be interpreted to include extraction of fossil energy

carriers as well as production of electricity, gasoline, gas or coal for non-business usage.11

Although in practice climate regulation does not only apply to the consumers’ energy de-

mand but also to energy-consuming industries, as e.g. in the EU emission trading scheme,

we maintain that our simplification still captures the central issue of emission regulation.

Whether fuel consumption of industries or of consumers is regulated, in both cases more

stringent emission caps require raising the domestic price for fuel consumption which, in

turn, induces allocative displacement effects via changes in relative prices.

There are perfectly competitive world markets for good X (price px ≡ 1) and for fuel

(producer price p), and the markets are in equilibrium if
∑

j

xs
j =

∑

j

xd
j and

∑

j

esj =
∑

j

edj . (4)

The firms’ supply of fuel is straightforward. Taking prices as given, the (aggregate) producer

i maximizes profits xs
i + pesi subject to (1) which yields the first-order condition

p = −T ′(esi ) for i = 1, . . . , n. (5)

Combined with (1), equation (5) implies a fuel supply function

esi = Es(p) with Es
p > 0 for i = 1, . . . , n. (6)

Each government i regulates domestic carbon emissions by enforcing an emission cap ei. For

the time being we suppose these caps are arbitrarily fixed and tight enough to be binding.

To implement its emission cap, government i issues the amount ei of emission permits and

auctions them at the permit price πi. Consumers in country i need to acquire emission

permits to match their purchase of fuel. The representative consumer i ignores the impact

of her emissions on climate damage and maximizes her (consumption) utility V (edi ) + xd
i

subject to her budget constraint

xd
i + (p+ πi)e

d
i = yi, where yi := xs

i + pesi + πie
d
i (7)

is consumer i’s income (= profit income plus recycled revenues from the permit auction).

From the first-order condition p+ πi = V ′(edi ) follows a fuel demand function

edi = Ed(p+ πi) for i = 1, . . . , n. (8)

11Such simplifications are driven by limits of tractability. We also wish to recall, however, that the model

of the present paper is far more complex than the basic model of IEA (e.g. Finus 2003, Section 2.3) which

does without specifying production, consumptions and markets, as we have pointed out in the introduction.
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The result of auctioning the permits obviously is

edi = ei for i = 1, . . . , n. (9)

Combining the equilibrium condition
∑

j e
s
j =

∑

j e
d
j from (4) with (6) and (9) yields

esi = Es(p) =

∑

j ej

n
for i = 1, . . . , n. (10)

Equation (10) determines the unique equilibrium price of fuel and also establishes that in

equilibrium all firms produce the same amount of fuel,
∑

j ej/n. From (5), (8) and (9) follows

ei = Ed
[

−T ′
(∑

j ej

n

)

+ πi

]

. This equation determines the unique equilibrium permit price.

The equilibrium supplies and demands on the market for good X are

xs
i = T

(∑

j ej

n

)

and xd
i = T

(∑

j ej

n

)

− T ′

(∑

j ej

n

)(∑

j ej

n
− ei

)

, (11)

where the first equation in (11) is implied by (1) and (10) and the second by (1), (7), (9)

and (10). It readily follows from (11) that the market for good X is in equilibrium, if the

fuel market is in equilibrium.

To sum up, in the world economy with non-cooperative emission cap regulation there

is a unique competitive equilibrium for every profile (e1, . . . , en) of binding emission caps.

That is, in equilibrium all demands and supplies, esi , e
d
i , x

s
i , x

d
i , i = 1, . . . , n, and the prices

p and πi, i = 1, . . . , n, are determined by (e1, . . . , en). Combining welfare (2) with (9), (10)

and (11) results in the equilibrium welfare of country i = 1, . . . , n,

W i(e1, . . . , en) := V (ei) + T

(∑

j ej

n

)

−

(∑

j ej

n
− ei

)

T ′

(∑

j ej

n

)

−D

(
∑

j

ej

)

. (12)

So far we have considered governments that fix national emission caps in an arbi-

trary way. From now on their objective function is supposed to be national welfare, (12).

Before addressing the case of cooperation in emission regulation we briefly investigate the

benchmark case of global non-cooperation. In game-theoretic language, the n governments

are the players of a non-cooperative game. Their strategies are national emission caps and

their payoff functions are national welfares W i(e1, . . . , en) from (12). The natural solution

concept is the Nash equilibrium, a state where each government’s emission cap is the best

response to each other government’s emission cap. As usual, we refer to that equilibrium as

business as usual (BAU). In terms of the formal model, government i chooses that cap ei

which maximizes W i(e1, . . . , en) for given caps (e1, . . . , ei−1, ei+1, . . . , en). Differentiation of

(12) with respect to ei yields the first-order condition12

W i
ei
= V ′(ei) + T ′

(∑

j ej

n

)

−
1

n

(∑

j ej

n
− ei

)

T ′′

(∑

j ej

n

)

−D′

(
∑

j

ej

)

= 0 (13)

12Throughout the rest of the paper we restrict our attention to interior solutions.
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for i = 1, . . . , n. Eichner and Pethig (2012) show that (13) is equivalent to a best reply

function R̃ satisfying

ei = R̃

(
∑

j 6=i

ej

)

(14)

whose first derivative is in the interval ] − 1, 0[ under mild restrictions. Hence there exists

a unique symmetric Nash equilibrium satisfying ei = ej for all j 6= i. Another immediate

consequence of symmetry is that international trade does not take place in equilibrium.

When these observations are considered in (13), the uniform Nash equilibrium cap, denoted

eo, is implicitly determined by

V ′(eo) + T ′(eo)−D′(neo) = 0. (15)

Inserting the parametric functions (3) in (15) readily yields eo =
a

α+b+n
. The allocation rule

(15) shows that each country sets its BAU emission cap eo such that its marginal benefit of

consumption, V ′(eo) + T ′(eo), equals its marginal climate damage, D′(neo). If the countries

would disregard their own impact on climate damage (i.e. if we would drop the term D′(neo)

in (15)) national equilibrium emissions would exceed eo. Hence in BAU some emission

reduction is in the countries’ self-interest. It is also clear that total emissions neo in BAU

exceed total emissions in the optimal fully cooperative solution, since all countries disregard

in BAU the positive external effects of their emission reduction on the other countries.

3 Climate coalition as Stackelberg leader

Suppose now that some countries are members in a given cooperative climate coalition,

whereas all other countries continue to act non-cooperatively. For the purpose of the formal

analysis we lump together the first m countries, 2 ≤ m < n, in one group, denoted group

C := {1, 2, . . . , m} with C for coalition, and collect all remaining countries in another

group, denoted group F := {m+1, . . . , n} with F for fringe. Our focus will be on a game of

sequential choice of emission caps in which the coalition is the Stackelberg leader and moves

first and the fringe countries are Stackelberg followers. The coalition formation literature

has made ample use of the Stackelberg assumption (Finus 2001) and we refer the reader to

that literature for information on the discussion about the plausibility and relative merits

of the Nash concept on the one hand and the Stackelberg concept on the other.13 Our aim

is to investigate how the Stackelberg assumption drives the outcome of the game when we

extend the basic model as outlined in Section 2.

13Eichner and Pethig (2012) is a companion paper where we model the climate coalition as a Nash player.

8



3.1 Climate coalitions and coalition sizes

In the present section we aim to characterize the allocation of the Stackelberg equilibrium

(to be specified below) for alternatively given coalition sizes and thus prepare for the analysis

of coalition stability in the next Section 3.2. The objective of the climate coalition C is to

maximize the joint welfare
∑

j∈C W j(e1, . . . , en) of its members taking the behavior of the

fringe countries into account. Since all coalition countries are alike, ei = ej for all i, j ∈ C

is a necessary maximum condition which allows us to set ei = ec for all i ∈ C. Thus the

coalition can be treated as a single player whose strategy will be denoted as sc := mec.

We continue portraying fringe countries as non-cooperative Nash players, and therefore (13)

still applies for each fringe country. As (13) cannot be satisfied for i, j ∈ F, i 6= j, unless

ei = ej, we proceed by setting ei = ef for all i ∈ F . With this notation, each fringe country’s

best-reply function (14) reads ef = R̃[sc + (n −m − 1)ef ], and Eichner and Pethig (2012)

show that this equation implies a function R satisfying (n−m)ef = R(mec, m) or

sf = R(sc, m) with Rsc ∈]− 1, 0[, (16)

where sc := mec and sf := (n−m)ef .

According to (16) the fringe countries can be treated as if they act as a single player

whose strategy is sf . In that sense R is the ’aggregate’ best reply function of ’the fringe’.

However, it is important to emphasize that, by construction, (16) does not imply any coop-

eration among fringe countries. Although the function R is a purely formal transformation

of R̃ from (14), it turns out to be an important analytical tool. In the subsequent analysis

we make use of R and its specific properties summarized in14

Lemma 1. The function R satisfies ŝc := R−1[(sf = 0, m] > 0 for all m ∈]0, n[,

Rm(sc, m) < 0 for all sc < ŝc, all m ∈]0, n[, Rscsc = 0 and Rscm > 0.

Thus, the graph of the best-reply function R is a negatively sloped straight line. Its point

of intersection with the sc axis, ŝc, is independent of m and it rotates around that point

towards [away from] the origin, if m increases [decreases]. Making use of the newly introduced

notation sf := (n−m)ef , we next express total emissions as
∑

ej = sc+ sf and rewrite the

welfare of individual countries, (12), as

W c (sc, sf , m) := V
(sc
m

)

+ T

(
sc + sf

n

)

−

(
sc + sf

n
−

sc
m

)

T ′

(
sc + sf

n

)

−D(sc + sf)(17)

14The proof of Lemma 1 is delegated to the Appendix A.
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for all countries in group C and as

W f (sc, sf , m) := V

(
sf

n−m

)

+ T

(
sc + sf

n

)

−

(
sc + sf

n
−

sf
n−m

)

T ′

(
sc + sf

n

)

−D(sc + sf) (18)

for all countries in group F . For convenience of notation and later reference we refer to

(−D(sc+sf)) as the climate welfare of an individual country and to W j(sc, sf , m)+D(sc+sf)

as the consumption welfare of countries in the coalition (j = c) or the fringe (j = f).

Being the Stackelberg leader the coalition with a given number m ∈ {1, . . . , n} of

member countries accounts for (16) such that its objective function is the aggregate welfare

mW c [sc, R(sc, m), m]. The fringe countries observe the leader’s action sc. Their ’aggregate’

response is sf = R(sc, m) and the resultant welfare is W f(sc, R(sc, m), m) for each individual

fringe country. How W c (·) and W f (·) depend on sc is specified in15

Lemma 2. W c (·) is inverse u-shaped and strictly concave in sc,
(

d2W c

ds2c
< 0
)

, and

W f (·) is strictly decreasing in sc,
(

dW f

dsc
< 0
)

.

dW f/dsc < 0 conforms to intuition because the larger is the coalition’s contribution to cli-

mate damage the greater is the fringe countries’ aggregate effort to reduce their emissions.

To understand the dependence of W c(·) from sc suppose that sc = R(sc, m) is very small ini-

tially. Then the climate welfare of coalition countries is high but their consumption welfare

is low due to their high mitigation efforts. Increasing sc subject to (16) raises the consump-

tion welfare by more than it reduces the climate value. The opposite effects are created, if

sc = R(sc, m) is very large initially and is then successively reduced. Technically, speaking,

the property d2W c/ds2c < 0 secures a unique solution to the coalition’s optimization problem

max
sc∈[0,mT−1(0)]

mW c [sc, R(sc, m), m] . (19)

The Stackelberg equilibrium is the solution of (19), denoted s∗c . It is implicitly defined by

the marginal condition

W c
sc

(
s∗c , s

∗
f , m

)

W c
sf

(
s∗c , s

∗
f , m

) = −Rsc(s
∗
c , m), (20)

where s∗f = R(s∗c , m). The equilibrium condition (20) is the standard representation of a

Stackelberg equilibrium as a point in the strategy space, here (s∗c , s
∗
f), where the best-reply

function R of the fringe and an iso-welfare curve of the coalition are tangent.

In the sequel we will characterize the solution of (19), its relation to the BAU equi-

librium and its dependence on the (exogenous) size of the coalition. We proceed in several

steps beginning with the implications of an arbitrary action sc ∈ [0, mT−1(0)] of the leader.

15Lemma 2 is proven in the Appendix B.
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The coalition’s anticipation of the fringe’s reactions as driving force of outcomes

The best-reply function of the fringe, (16), is of special interest because all feasible outcomes

necessarily satisfy that function. Accounting for R the coalition knows that its own emissions

and those of the fringe are strategic substitutes and so it takes into consideration that if it

chooses the cap sc total emissions will be

sc + sf = sc(1 +Rsc) +R(0). (21)

Note that (1 + Rsc) ∈]0, 1[ because Rsc ∈] − 1, 0[. From equation (21) readily follows

∂(sc + sf )/∂sc = (1 + Rsc) ∈]0, 1[ which means that if the coalition reduces its emissions,

∆sc < 0, [increases its emissions, ∆sc > 0], total emissions will shrink [expand], but by less

than
∣
∣∆sc

∣
∣. In the climate change literature this phenomenon is referred to as carbon leakage

for the case ∆sc < 0. The leakage rate is usually expressed by
∣
∣Rsc

∣
∣. Since

∣
∣Rsc

∣
∣ ∈]0, 1[, a

leakage rate greater than one, the so-called ’green paradox’, does not occur in our model.

Since Rscm > 0 has been established in Lemma 1, the leakage rate is declining in the coalition

size - which conforms to intuition. As an implication of (21) we get16

ec R eo ⇐⇒ sc + sf R neo, (22)

because the frince countries’ response ∆ef > 0[∆ef < 0] to the coalition countries’ action

∆ec < 0[∆ec > 0] does not fully compensate the action ∆ec. Moreover, from Rsc < 0 and

xs
i = T

(
sc+sf

n

)

for i = 1, . . . , n, follows

ec R eo ⇐⇒ coalition







imports

doesn’t trade

exports







fuel. (23)

If ec − eo > 0, the fringe countries’ response is ef < ec. Hence ef < (sc + sf)/n < ec. As the

supply of fuel, (sc + sf)/n, is the same across all countries, the coalition imports fuel. An

analogous argument applies for ec − eo < 0 which explains (23). The total differential17 of

(21) reads

d(sc + sf) =




(1 +Rsc)ec + scRscm
︸ ︷︷ ︸

(+)




 · dm+m(1 +Rsc)

︸ ︷︷ ︸

(+)

·dec. (24)

(24) shows that if ec is kept constant, total emission are rising in m because the fringe’s

responding emission reduction falls short of the coalition’s emission increase, ecdm. While

16More precisely, (21) implies sc+sf−neo = sc(1+Rsc)+R(0)−meo(1+Rsc)−R(0) = m(1+Rsc)(ec−eo)

and hence (22).
17It is analytically convenient to treat m as a real number in [1, n] although we will keep in mind that

m ∈ {1, . . . , n} for real-world coalitions.
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∂(sc + sf)/∂ec > 0 is a generalized statement of (22), the obvious observation is that the

magnitude of ∂(sc + sf)/∂ec depends on the coalition size m:

∂2(sc + sf )

∂ec∂m
= (1 +Rsc) +mRscm =

{[1− (n−m− 1)Rsc ]
2 −mRsc}(1 +Rsc)

[1− (n−m− 1)Rsc ]
2

> 0. (25)

According to (25) the impact of variations in ec on total emissions sc + sf is increasing in

m, ∂(sc + sf)/(∂ec∂m) > 0. That is, if the coalition tightens [relaxes] the cap ec for all

members by one unit, the reduction [increase] in total emissions is the larger, the larger

is the coalition. Large coalitions are more effective in curbing total emissions because the

leakage rate is declining in the coalition size.

Allocation resulting from the coalition’s (not necessarily optimal) choice ec 6= eo

The case ec > eo is illustrated in Figure 1 that contains the production possibility curve

AB and several consumption welfare indifference curves denoted by u. All these curves are

the same for all countries. The point Po on the transformation curve is assumed to be the

BAU equilibrium point characterizing all countries’ production and consumption in BAU

(xs
co = xs

fo = xd
co = xd

fo = xo and esco = esfo = eco = efo = eo).
18 As ec > eo implies

sc+sf
n

> eo according to (22) and esc = esf =
sc+sf

n
, we find that T

(
sc+sf

n

)

< T (eo) = xo.

Hence the production point lies on the curve AB to the right of point Po, marked as point

P in Figure 1. The straight line EF in Figure 1 is tangent to the transformation curve in

point P and therefore represents the terms of trade, tanα = p. The consumption points of

all coalition and fringe countries must lie on EF . According to (22) ec > eo implies that the

coalition countries import fuel and export good X. Therefore the coalition countries’ [fringe

countries’] consumption point Kc[Kf ] is located to the right [left] of the production point

P . The coalition countries’ total welfare is

W c(sc, sf ,m) = V (eo) + T (eo)−D(eo)+
︸ ︷︷ ︸

Equilibrium welfare in BAU

+

Gain in consumption welfare
︷ ︸︸ ︷

V (ec)− V (eo)
︸ ︷︷ ︸

(+)

+T

(
sc + sf

n

)

− T (eo)

︸ ︷︷ ︸

(−)

+

(

ec −
sc + sf

n

)

T ′

(
sc + sf

n

)

︸ ︷︷ ︸

(−)

+

Loss in climate welfare
︷ ︸︸ ︷

[D(eo)−D(sc + sf )]
︸ ︷︷ ︸

(−)

.

This decomposition of welfare effects demonstrates that Figure 1 is inconclusive regarding

the coalition countries’ change in total welfare compared to BAU. As drawn in Figure 1, the

fringe countries suffer a loss in consumption welfare (uf < uo), and a loss in climate welfare,

the same as suffered by the coalition countries, such that the fringe countries lose on both

accounts compared with BAU.

18Recall from Section 2 that the superscript s stands for commodities supplied not to be confounded with

the strategies sc := mec and sf := (n−m)ef .
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Figure 1: Allocative impact of the coalition’s strategy sc = mec > meo

Next consider the coalition’s action ec < eo illustrated in Figure 2. Since the arguments

are analogous to those in the preceding paragraph, it suffices to summarize the results. In

case of ec < eo the production point P corresponding to [mec, R(mec)] lies on the transfor-

mation curve to the right of the BAU point Po and the coalition countries export fuel. Hence

these countries suffer a consumption welfare loss (uc < uo) while in the fringe countries enjoy

an increase in their consumption welfare (uf > uo). For the coalition countries the total

welfare change of moving from eo to ec < eo is the result of two opposite partial welfare

effects, as in the case ec > eo dealt with above.

Coalition size, equilibrium emissions and welfares, and their relation to BAU

The preceding discussion of the Figures 1 and 2 served to illustrate the consequences of the

choice of some sc 6= meo on the part of the coalition. However, these figures provide no

information about whether the scenarios they illustrate can be the result of the coalition’s

optimal choice s∗c and if so, under which conditions. We now address that issue focussing on

the coalition size as a determinant of the coalition’s optimal choice strategy. It is clear from

our previous analysis that e∗c and with it the entire Stackelberg equilibrium allocation are

uniquely determined by - and vary with - the coalition size. To formalize that observation

13
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Figure 2: Allocative impact of the coalition’s strategy sc = mec < meo

it is convenient to introduce the notation

e∗c = E c(m), e∗f = Ef(m),

Wc(m) := W c[mE c(m), (n−m)Ef(m), m] and

Wf (m) := W f [mE c(m), (n−m)Ef(m), m].

A first but important step toward answering the questions raised above takes19

Proposition 1 . For analytical convenience consider the interval [1, n] to be the do-

main of coalition sizes. The Stackelberg equilibrium associated with the coalition of size

m̃ ∈ [1, n] coincides with the non-cooperative BAU equilibrium, if and only if

m̃ :=
(α + b+ n)n2

α(2n− 1) + n2(b+ 1)
> 1. (26)

Proposition 1 specifies the link between Stackelberg equilibria and the non-cooperative BAU

equilibrium. For the coalition it is optimal to choose the BAU emissions e∗c = eo (leading to

e∗f = eo), if and only if it has m̃ members. E c(m) 6= eo and Wc(m) ≥ Wc(m̃) for all m 6= m̃

follows immediately from the observations that the benchmark coalition size m̃ is unique

and that for any given m the coalition can always choose the emission cap ec = eo which

then leads to the BAU equilibrium. According to (26) m̃ varies with the model parameters

and that feature will turn out to be of special interest below.

19The proof of Proposition 1 can be found in the Appendix C.
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Taking into account that in the real world the number of coalition members m must

be an integer in {1, . . . , n} the real message of Proposition 1 is that BAU and Stackelberg

equilibria do not coincide unless m̃ happens to be an integer. If it is not, define m̃(−)[m̃(+)] as

the largest [smallest] integer smaller than [larger than] m̃ and observe that the Stackelberg

equilibria attained by coalitions of size m̃(−) and m̃(+), respectively, come closer to the BAU

equilibrium than any Stackelberg equilibrium of coalitions with m < m̃(−) or m > m̃(+)

members. In that sense we say that in coalitions of size m̃(−) or m̃(+) the Stackelberg

equilibrium is approximately equal to the BAU outcome.

With the coalition size m̃ as a benchmark we are able to shed more light on the links

between coalition size and deviations from BAU of emissions and welfare levels in Stackelberg

equilibria. Suppose, the coalition of size m ∈ [1, n[ chooses the strategy sc = meo and thus

implements the BAU equilibrium. For all coalitions of size m 6= m̃ the strategy sc = meo is

clearly feasible but sub-optimal. Hence MWCo(m) 6= 0 for all m 6= m̃, where MWCo(m) is

a shorthand for the "Marginal (aggregate) Welfare of a Coalition of size m 6= m̃ evaluated

at the ’BAU equilibrium strategy’ sc = meo ". We prove in the Appendix C that20

MWCo(m) R 0 ⇐⇒ m ⋚ m̃. (27)

For the interpretation of (27) we invoke our result from the proof of (27) in the Appendix

that the coalition’s marginal consumption welfare in BAU is independent of the coalition

size, so that variations in total marginal welfare result exclusively from variations in the

coalition’s marginal climate welfare. Hence, total BAU emissions neo are considered as too

large by large coalitions (m > m̃) and as too small by small coalitions (m < m̃).21 Thus

combining the information of (27) with the properties of W c[mec, R(mec, m), m] in Lemma

2 we get

E c(m) R eo ⇐⇒ m ⋚ m̃. (28)

In view of (28) the scenario depicted in Figure 1 [Figure 2] can be taken as an illustration

of the Stackelberg equilibrium with coalition size m < m̃ [m > m̃]. The rationale of (28) is

straightforward from (25). In case of m < m̃ the leakage rate is high so that the coalition

would achieve only a small reduction in total emissions, if it reduces ec by some increment,

say ∆ec > 0, to ec − ∆ec. Reducing total emissions would be very expensive. If, instead,

the coalition adds rather than subtracts ∆ec to the cap ec, the resulting increase in total

emissions is small because of the high leakage rate, but the gain in consumption welfare is

relatively large. Mirror symmetric arguments apply to the case m > m̃. Since according to

20Throughout the paper the subscript "o" refers to the BAU equilibrium.
21The reason for that differential effect is (25) according to which the effectiveness of curbing total emis-

sions is increasing in the coalition size because the leakage rate declines with increasing coalition size.
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(21) and (22) leakage rates are always less than unity,

[mE c(m) + (n−m)Ef(m)] R neo ⇐⇒ m ⋚ m̃ (29)

follows from (28). These equivalences can also be traced in Figures 1 and 2. For the case

m < m̃ (29) says that small coalitions do not mitigate but rather aggravate climate damage:

D[mE c(m) + (n−m)Ef(m)] > D(neo), if m < m̃. In the scenario of global non-cooperation

(BAU) the world suffers from less climate damage than after a small coalition has formed.

It would be more appropriate to call such a coalition an ’anti-climate coalition’ rather than

a ’climate coalition’.

Turning to the coalition country’s welfare (27) implies that Wc(m) is strictly greater

than Wc(m̃) for all m 6= m̃. Hence the function W c attains its absolute minimum at m = m̃

(but other ’local’ minima cannot be excluded here). Moreover, we verify







Wc(m) > Wo > Wf (m)

Wc(m) = Wo = Wf (m)

Wf (m) > Wc(m) > Wo







⇐⇒ m







<

=

>







m̃ (30)

with Wo := Wc(m̃) = Wf (m̃) as follows. If m < m̃, (28) implies mE c(m) > meo and

therefore Wf (m) < Wo because dW f

dsc
< 0 due to Lemma 2. If m > m̃, (28) implies mE c(m) <

meo and therefore Wf (m) > Wo because dW f

dsc
< 0 due to Lemma 2. Analogously, Wf (m) >

Wc(m) for m > m̃ follows from mE(m) < meo and Lemma 2 and is also conclusive from

Figure 2.

In case of m < m̃ the coalition finds it beneficial to expand own emissions above

BAU level which induces the fringe countries to implement more stringent emission caps.

The opportunity costs of that climate damage mitigation policy on the part of the fringe

countries is consumption foregone. That loss of consumption welfare together with the

reduction in climate welfare pushes the fringe countries’ total welfare below BAU level. In

a sense, the coalition free rides on the fringe countries’ mitigation efforts. In case of m > m̃

the roles of both groups are reversed. Now the fringe countries free ride on the coalition’s

mitigation policy - which is the case that is usually in the focus. As Figure 2 shows, the

fringe countries benefit on two margins: Their consumption welfare rises compared to BAU

as well as their climate welfare. A general principle appears to be that countries with laxer

emission regulation have higher welfare levels. So far, we summarize our results in

Proposition 2 . Consider the transition from BAU to the Stackelberg equilibrium.

The shift of

(i) the coalition country’s emissions is characterized in (28);

16



(ii) total emissions is characterized in (29);

(iii) the coalition country’s and fringe country’s welfare is characterized in (30).

The results of Proposition 2 provide interesting information about the relations between the

coalition size, the BAU equilibrium and the Stackelberg equilibrium. However, the functions

Eh and Wh for h = c, f depend on m in a very complex way such that their curvature

cannot be specified analytically. To make progress we resort to a numerical example with

the parameter values a = 1000, b = 20, x̄ = 12, α = 1000 and n = 10 which we refer

to as Example 1.22 The Figures 3 and 4 display the pertaining graphs of the functions

Eh and Wh for h = c, f and the curves of aggregate emissions and welfares, respectively.

First observe that (28), (29) and (30) are satisfied in these figures. It is also worth noting

that for Example 1 the benchmark coalition size is m̃ = 4.88 such that almost 50 % of

all countries are members in the coalition whose Stackelberg equilibrium coincides with the

BAU equilibrium.23 The new information conveyed by Example 1 is that the function E c[Ef ]

is strictly decreasing [increasing] and that mE c + (n − m)Ef is strictly decreasing in m.24

The latter observation is in line with (29) and supplements those equivalences through






E c(m) > eo > Ef(m)

E c(m) = eo = Ef(m)

Ef(m) > eo > E c(m)







⇐⇒ m







<

=

>







m̃. (31)

According to the left panel of Figure 4, the (total) welfare of coalition countries is

u-shaped with its unique minimum at m = m̃, whereas Wf is strictly increasing in m.

The surprising feature of the right panel of Figure 4 is not that the world welfare rises in

m but that for all m < m̃ the world welfare falls short of its level in the BAU scenario.

The coalition of size m < m̃ clearly manages to raise its welfare above the BAU level by

increasing the climate damage at the expense of the fringe countries. As the latter engage

in costly mitigation to keep the increase in total emissions small, they suffer a welfare loss

compared to BAU (left panel of Figure 4) which is even larger than the coalition’s welfare

gain.

22We cannot generalize our findings from Example 1 by induction, of course. Yet we have run several

other examples, e.g. Example 2 with the parameters a = 1000, b = 2000, x̄ = 12, α = 50, 000, and n = 100

(to be considered in the next section). The graphs corresponding to all examples under scrutiny turned

out to be qualitatively the same as those in the Figures 3, 4 and 5 which is why we restrict the graphical

presentation to Example 1.
23In Example 2 specified in the previous footnote we have calculated the rather large values m̃ = 42.01

and (m̃/n) = 0.4201. However, the Tables 1 and 2 below also contain examples in which m̃ as well as m̃/n

are relatively small.
24We consider as negligible that the functions Ef ,Wf ,mWc + (n − m)Wf and mEc + (n − m)Ef are

slightly non-monotone for m < 2.
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Figure 3: Emissions caps and total emissions in Example 1
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Figure 4: Welfare and aggregate welfare in Example 1
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Figure 5: Consumption welfare [K(m)] and climate welfare [−D(m)] of the coalition in

Example 1

Figure 5 decomposes the (total) welfare of a coalition country into its consumption

welfare (curve Kc(m)) and climate welfare (curve −Dc(m)). Figure 5 illustrates that owing

to the high leakage rate in case of m < m̃, it is advantageous for the coalition to sacrifice,

compared to BAU, some climate welfare for additional consumption welfare. Conversely,

if m > m̃, the coalition is more effective in reducing total emissions and therefore benefits

from shifting away from consumption welfare toward higher climate welfare.
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3.2 Self-enforcing IEAs

In the preceding Section 3.1 we have presupposed the presence of a climate coalition and

the focus has been on characterizing the Stackelberg equilibrium and its dependence on

the exogenous coalition size m. Now we turn to the issue of coalition stability. Since

supranational authorities for the effective enforcement of agreements are not available, IEAs

will not prevail unless they are self-enforcing in the sense that no signatory has an incentive

to withdraw (internal stability) and no non-signatory has an incentive to sign the agreement

(external stability).25 In formal language, an IEA with m ∈ {1, . . . , n} signatories is said to

be self-enforcing or stable if it satisfies the internal stability condition

Wc(m) ≥ Wf (m− 1) (32)

and the external stability condition

Wf (m) ≥ Wc(m+ 1). (33)

Since the definition of stability requires treating the coalition membership m as an integer,

we now have to distinguish between the membership m ∈ {1, . . . , n} of real-world IEAs and

the real-number approximation m ∈ [1, n] which we have applied before for mathematical

convenience. With that distinction in mind we obtain

Lemma 3. If a self-enforcing IEA with m∗ ∈ {1, . . . , n} signatories exists then m∗ >

m̃.

To verify Lemma 3 observe that Wc(m) > Wo > Wf (m) for all m < m̃ from (30) implies

Wf (m) < Wc(m + 1) and hence the external stability condition is violated for all m ∈

{1, . . . , n} with m < m̃. If m̃ happens to be an integer, the coalition of size m̃ is not

stable either because fringe countries have still an incentive to join the coalition (W f(m̃) <

W c(m̃+ 1)).

The important message of Lemma 3 is that all (’anti-climate’) coalitions pushing up

total emissions above BAU level fail to be stable. The downside is that Lemma 3 leaves open

whether m∗ exists and if so how large the positive difference (m∗− m̃) is. Unfortunately, we

have not succeeded in resolving these issues analytically. We therefore resort to examining

the stability conditions (32) and (33) for the numerical Examples 1 and 2 introduced in the

previous Section 3.1. The Figures 6 and 7 present the graphs of the functions Wc(m) −

Wf (m−1) and Wf (m)−Wc(m+1) for the Examples 1 and 2 and their right panels exhibit

25This notion of self-enforcement or stability was originally introduced by D’Asprement et al. (1983) in

the context of cartel formation.
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an enlarged detail of the relevant domain. In both cases there is one and only one interval of

coalition sizes in which both functions take on non-negative values (thus satisfying (32) and

(33)), and this interval contains one and only one integer, m∗ = 5 in Example 1 and m∗ = 43

in Example 2. Moreover, in both cases the stable coalition size m∗ is the smallest integer

greater than m̃ such that between 40% and 50% of all countries are members of the stable

coalition. That contrasts sharply with the result of Rubio and Ulph (2006) and Diamantoudi

and Sartzetakis (2006) according to whom the number of signatories in self-enforcing IEAs

is small in the parameter sub-space securing positive equilibrium emissions.26
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Figure 6: Stability in Example 1 (m̃ = 4.881, m∗ = 5)
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Figure 7: Stability in Example 2 (m̃ = 42.013, m∗ = 43)

We carried out a number of numerical calculations in addition to the Examples 1 and

2 and their modifications in the Tables 1 and 2 below and reached the unequivocal result

that for every parameter constellation securing positive equilibrium emissions there exists a

unique self-enforcing IEA whose coalition size m∗ is the smallest integer larger than m̃ from

(26). Thus it is clear from our comments on Proposition 1 that the Stackelberg equilibrium

allocation associated to those self-enforcing IEAs is approximately the same as in BAU; the

26It is straightforward from the left panels of Figures 6 and 7 that the equilibrium emissions Ef (m∗) and

Ec(m∗) are strictly positive.
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climate damage is only slightly lower and the coalition countries’ welfare is only slightly

higher than in BAU while the welfare gain of the free riding fringe countries is greater than

that of the coalition countries. The divergence between the Stackelberg equilibrium for m∗

and the BAU equilibrium declines in relative terms with an increasing total number, n, of

countries, and an increasing level of m̃, because the relative impact of changing the coalition

size by a fraction of one is declining in n and m̃.

Since (m∗−m̃) ≤ 1, we can assess the determinants of the size of m∗ by investigating the

determinants of m̃. Recall that according to (26), m̃ depends on the size of the parameters

α, b and n. To examine how m̃ varies with α we differentiate (26) with respect to α and

obtain

dm̃

dα
=

n2(n− 1)[b(n− 1)− n]

[α(2n− 1) + n2(b+ 1)]2
R 0 ⇐⇒ b R

n

n− 1
. (34)

For α converging to infinity we find limα→∞ m̃ = n2

2n−1
.

α 1 10 50 100 500 1000 ∞

m̃ 1.46 1.75 2.62 3.25 4.57 4.88 5.26

m∗ 2 2 3 4 5 5 6

Table 1: Variations of α in Example 1 (n = 10)

α 1 103 104 105 5 · 105 106 107 ∞

m̃ 1.05 1.53 5.50 25.58 42.01 45.75 49.76 50.25

m∗ 2 2 6 26 43 46 50 51

Table 2: Variations of α in Example 2 (n = 100)

According to (34) the comparative static effect of α depends on the size of b. The

values of b and n chosen in the Examples 1 and 2 satisfy b > n/(n − 1) such that m̃ is

increasing in α and converges toward n2/(2n − 1) from below. This is confirmed by the

numerical examples listed in the Tables 1 and 2. Suppose next that b < n/(n − 1). In

that case m̃ is decreasing in α and converges toward n2/(2n− 1) from above. That is, for

b < n/(2n− 1) and α sufficiently small, equation (26) allows for very high levels of m̃, even

for m̃ = n (grand coalition). However, the non-negativity constraint for emissions turns out

to be violated for low values of α (and b < n/(n− 1)). We have not succeeded to generate

numerical examples of Stackelberg equilibria exhibiting both non-negative emissions and

stable coalition sizes larger than n2

2n−1
. Hence under the condition of positive equilibrium

emissions the maximum share of countries joining a stable coalition, 100m∗/n, appears to

be slightly higher than 50%. We also need to emphasize, however, that there are various

examples in the Tables 1 and 2 in which the share 100m∗/n is much smaller than 50%.
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The role α plays for the formation of self-enforcing IEAs calls for an economic inter-

pretation. To keep focussed we restrict our attention to the set of parameters satisfying

b > n/(n− 1) and define the fuel extraction costs, expressed in units of good X, as

C(esi ) := T (0)− T (esi ) =
α

2
(esi )

2 (35)

Those extraction costs are obviously progressively increasing such that increasing α corre-

sponds to rising marginal extraction costs. We conclude that an increase in α means that

the extraction of fuel becomes more expensive, which increases the size of stable coalitions

in turn. The lower and the less progressive the extraction costs are, the smaller is the size

of the stable coalition. We summarize our results in

Proposition 3 . Under the conditon of positive equilibrium emissions there exist self-

enforcing IEAs that are characterized as follows:

(i) If b > n/(n − 1), then the stable coalition size m∗ increases in the parameter α such

that as many as (slightly more than) 50% of all countries can be members of a stable

coalition.

(ii) The number of countries in the self-enforcing IEAs is the smallest integer m∗ larger than

m̃ from (26) implying that the corresponding Stackelberg equilibrium allocation differs

only slightly from the allocation in the scenario of global non-cooperation (BAU).

We are aware of the limited scope of Proposition 3 because that proposition is based on

numerical examples. Nonetheless, the unequivocal result of the calculations we conducted

suggests that the messages of Proposition 3 are more general. Proposition 3(i) gives support

to the expectation that international trade may lead to rather large stable coalitions. That

appears to be good news for proponents of strong climate damage mitigation action if large

stable coalitions promise to bring about reductions of global emissions that are larger by

an order of magnitude than in BAU and hopefully not too far away from the socially opti-

mal allocation. Unfortunately, Proposition 3(ii) shatters that expectation. Our numerical

calculations rather suggest that all stable coalitions reduce world emissions only insignif-

icantly compared to BAU emissions. If that result is general - which we are not able to

prove analytically - the highly inconvenient implication would be that any attempt to reach

a self-enforcing IEA is futile even if the difficult negotiation process would be costless.

Proposition 3(ii) calls for an explanation and the economic intuition. It is clear from

the definition of external and internal stability that the number of stable coalitions and their

membership depend on the properties the functions Wc and Wf . We know from our above
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analysis of the parametric model and the numerical calculations that

Wf (m̃) = Wc(m̃) = Wo and Wf (m) > Wc(m) > Wo, m > m̃ (equivalence (33)),

Wf
m(m̃) > 0,Wc

m(m̃) = 0 and Wh
m(m) > 0, h = c, f,m > m̃ (Figure 4),

Wf
m(m)−Wc

m(m) > 0 for m > m̃ and increasing in m (Figure 10, Appendix D),







(36)

This is important information but unfortunately in the model with the parametric functions

(3) the complexity of Wc and Wf does not to allow for an analytical characterization of the

outcome of stable coalitions. To get an idea, nonetheless, of the relation between Wc, Wf

and m∗, define the functions Ωh : [m̃, n] −→ R+, h = c, f , by

Ωc(m) = ωo +
ω1

2
(m− m̃)2 and Ωf (m) = ωo + ω2(m− m̃) +

(ω1 + ω3)

2
(m− m̃)2, (37)

where the parameters ωo, ω1, ω2 and ω3 are assumed to satisfy ωo = Wf (m̃) = Wc(m̃),

ω1 > 0, ω2 = Wf
m(m̃) > 0 and ω3 > 0. By construction, the functions Ωc and Ωf satisfy

(36) and therefore approximate the functions Wc and Wf on the sub-domain [m̃, n]. Taking

advantage of that approximation we establish (and prove in the Appendix E)

Proposition 4 . Replace the functions Wc and Wf on the sub-domain [m̃, n] by the

functions Ωc and Ωf defined in (37).

(i) There exists a stable coalition of size m∗ > m̃ and m∗ is unique, in general.27

(ii) The stable coalition size m∗ is increasing in ω1 and declining in ω2 and ω3.

(iii) If the stable coalition size m∗ is the smallest integer greater than m̃, the parameters

ω1, ω2 and ω3 satisfy 3ω1 < 2ω2 + ω3.

Proposition 4(i) is in line with our numerical results and supports the view that uniqueness

is a rather general result. For an interpretation of Proposition 4(ii), consider the term

Ωf
m − Ωc

m

Ωc
m

=
ω2 + ω3m

ω1m
(38)

which represents the (remaining) fringe countries’ relative free-rider benefit from a marginal

increase in the coalition size. This benefit is decreasing in ω1 and increasing in ω2 and ω3.

Combining that observation with Proposition 4(ii) we find that the stable coalition size m∗

is the smaller, the larger is the fringe countries’ relative free-rider benefit (38). In other

words, the larger is that free-rider benefit, the greater is the coalition countries’ incentive to

leave the coalition. Proposition 4(iii) confirms that result. We consider 3ω1 < 2ω2 + ω3 in

(38) and conclude that if the stable coalition size m∗ is the smallest integer greater than m̃,

then the relative free-rider benefit (38) must exceed the level 3ω2+3ω3m
(2ω2+ω3)m

.

27We show in the proof (Appendix E) that in exceptional cases there are two stable coalitions.
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4 On the role of international trade

Up to now we have dealt with a world economy characterized by the four parameters

(a, α, b, n) ∈ R
4
++ in the regime of free trade. The straightforward way of improving our

understanding of the role of international trade for the formation of self-enforcing IEAs is

to compare the results we have derived in the free-trade model with those of the autarky

scenario in the otherwise unchanged model. The only substantive modification of the model

(1) - (9) is to replace (4) by

xs
i = xd

i and esi = edi i = 1, . . . , n, (39)

which simply turns the world markets for good X and fossil fuel into domestic markets.

Good X can still be taken as numéraire (pxi = 1 for i = 1, . . . , n) but (5) is now replaced

by pei = −T ′(ei) for i = 1, . . . , n. With these changes the welfare of country i is given by

W i (e1, . . . , en) = V (ei) + T (ei)−D

(
∑

j

ej

)

(40)

for the general functions (1) and (2) and by

W i (e1, . . . , en) = aei −
b̌

2
e2i + x̄−

1

2

(
∑

j

ej

)2

(41)

with b̌ := b+ α for the parametric functions (3).

The comparison of (12) and (40) subject to (3) shows that the switch from free trade

to autarky turns the economy (a, α, b, n) ∈ R
4
++ into the economy (a, α̌ = 0, b̌ = b + α, n).

The latter obviously has the structure of the basic model of the coalition formation literature

in which production and international trade is not modeled.28 Thus our free-trade versus

autarky comparison is also a comparison between the basic model and our trade model. In

the following we carry out that comparison in several steps.

To begin with, the BAU equilibria of the economy (a, α, b, n) with and without trade

are determined by (15) and hence coincide, because comparative advantage is absent when

identical countries are treated equally. Moreover, along the lines of the proof of m̃ in (26)

one can show that the coalition size29

m̃a :=
b̌+ n

b̌+ 1
(42)

28See e.g. Finus (2001, equation (3.1)). Diamantoudi and Sartzetakis (2006, equation (1)) as well as Rubio

and Ulph (2006, equation (1)) restrict their analysis to the parametric version (41) of the basic model.
29In the sequel the autarky regime is indicated by the super- or subscript a.
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for which the Stackelberg equilibrium (in case of real-number coalitions) is equal to the

BAU equilibrium in the economy (a, α, b, n). The comparison of (42) with (26) readily

yields m̃a < m̃.

In order to understand why m̃a is smaller than m̃, consider the economy (a, α̂, b̌ =

b+α, n) with α̂ > 0 in the regime of free trade and denote - in order to avoid confusion - by

µ the coalition size for which the Stackelberg equilibrium (in case of real-number coalitions)

equals the BAU equilibrium in that economy. Under the reasonable condition b̌ > n/(n−1)

discussed above the coalition size µ declines according to (34), if α is successively reduced.30

For α̂ = 0, µ takes on its minimum µ = m̃a because the economy (a, α, b, n) in autarky

coincides with the economy (a, α̂ = 0, b̌ = b+ α, n). In case of α̂ > 0 the economy (a, α̂, b̌ =

b + α, n) is a free-trade world economy with production and with fuel extraction costs

C(esi ) := (α̂/2)(esi )
2 according to (35). Successive reductions of α̂ lower these costs and

their progressivity until the extraction becomes costless at α̂ = 0. When fuel is a free good,

there is no need and no role for international trade anymore such that the outcomes are

the same under open and closed borders. Thus we have demonstrated that we can interpret

the economy (a, α, b, n) ∈ R
4
++ in the regime of autarky - as well as the basic model of the

literature - as the ’polar case’ of a free-trade economy with zero fuel extraction costs (α̂ = 0).

In that perspective the absence of extraction costs is the reason for m̃a < m̃.

In the economy (a, α, b, n) ∈ R
4
++ in autarky the fringe countries’ best-reply function

is characterized by the first-order condition V ′(ef )+T ′(ef )−D′[mec+(n−m)ef ] = 0 which

implicitly determines the aggregate best-reply function of the fringe, denoted sf = Ra(sc, m).

It is straightforward to show that the function Ra exhibits the same qualitative properties

as the function R from (16) such that Lemma 1, Lemma 2, (21) - (25) and (27) carry over to

the autarky regime. Likewise, Proposition 1 and Lemma 3 still hold when we replace m̃ by

m̃a. An important quantitative difference between both regimes proved in the Appendix F

is
∣
∣Rsc

∣
∣ >

∣
∣Ra

sc

∣
∣, that is, the leakage rate is larger in the free-trade regime than in autarky.31

As an immediate consequence of (41) the marginal (aggregate) welfare of coalition countries

evaluated at BAU (defined in Appendix C) is lower under free trade than under autarky,

formally MWCo(m) < MWCa
o (m). Since m̃ and m̃a are determined by MWCo(m̃) = 0 and

MWCa
o (m̃a) = 0, respectively, we infer from (27) and its analogue for autarky that m̃ > m̃a.

Thus we identify
∣
∣Rsc

∣
∣ >

∣
∣Ra

sc

∣
∣ as a driver for m̃ > m̃a.

30The examples of the Tables 1 and 2 show that µ may even drop below µ = 2 for small but still positive

α̂.
31Emissions of the fringe and of the coalition are strategic substitutes under both free trade and autarky,

but they are stronger strategic substitutes with trade than without. Copeland and Taylor (2005) reach the

opposite conclusion in a model that differs substantially from ours - and even find conditions under which

emissions of different countries turn into strategic complements when the borders are opened.
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To further characterize the differences between autarky and free trade we consider

Example 1 for autarky. The ’autarky functions’ E ca, Efa,Wca and Wfa turn out to exhibit

the same qualitative properties (sign of slope, curvature) as the functions E c, Ef ,Wc and

Wf in Example 1 with free trade. More specifically, the equivalences (28) - (31) (and hence

Proposition 2 and Lemma 3) carry over to the autarky scenario when the superscript a is

attached to E c, Ef ,Wc and Wf and m̃ is replaced by m̃a. In Example 1 the benchmark

coalition size in autarky, m̃a = 1.009, is significantly smaller than its free-trade counterpart

m̃ = 4.881 confirming our above result on the sign of the difference m̃− m̃a. The graphical

presentation of these results is delegated to the Appendix G because careful scaling and the

plot of enlarged details of the curves are necessary to demonstrate that the analogue of (28)

and (30) holds in the case of autarky. In the Figures 8 and 9 below we rather use Example

1 for illustrating what the differences in outcome for the coalition countries are under free

trade and autarky and how these differences depend on the coalition size.

4 6 8 10

0.095

0.100

0.105

mm̃a m̃

eo

Ec(m)

Eca(m)

4 6 8 10

9.5

10.0

mm̃a m̃

Ko

K(m)

Ka(m)

Figure 8: Autarky vs. free trade. Emissions and consumption welfare of coalition countries

in Example 1.
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Figure 9: Autarky vs. free trade. Climate damage and total welfare of coalition countries

in Example 1.

We restrict our focus on m ≥ m̃a which is the relevant sub-domain because if a stable

coalition exists in autarky, its size is larger than m̃a according to the suitably adjusted

Lemma 3. The left panel of Figure 8 shows that in both regimes the emissions of coalition
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countries are falling, that they are lower in autarky than in the trade regime, and that this

difference tends to zero with m approaching n. The positive difference E c(m) − E ca(m) is

clearly due to
∣
∣Rsc

∣
∣ >

∣
∣Ra

sc

∣
∣. Moreover, in autarky all countries necessarily consume what

they produce, i.e. they choose their consumption as a point on the transformation curve such

that xd
i = xs

i = T [E ca(m)]. Taking the BAU consumption [T (eo), eo] and the corresponding

consumption welfare, Ko, as a benchmark yields: T [E ca(m)] R T (eo) ⇐⇒ Ka(m) ⋚ Ko,

where Ka(m) denotes the level of the coalition countries’ equilibrium consumption welfare.

The right panel of Figure 8 illustrates that relationship, and it also depicts the coalition

countries’ equilibrium consumption welfare, K(m), in the free-trade regime. The latter is

larger than Ka(m), because the fuel consumption E c(m) is larger than E ca(m) and because

the coalition countries benefit from the possibility to decouple consumption from production.

The consequence of the more stringent emission reduction in autarky is that the climate

welfare of all countries is higher in autarky than in free trade - as illustrated in the left panel

of Figure 9.

To sum up, for every m ∈ [m̃a, n] the coalition countries’ consumption welfare is

lower and their climate welfare is higher in autarky than in free trade implying that their

net welfare change is ambiguous. More specific information on the comparison of total

welfare Wca(m) and Wc(m) provides the right panel of Figure 9. Since the graphs of

Wca and Wc attain their minimum at m = m̃a and m = m̃, respectively, there must

be m̄ ∈]m̃a, m̃[, defined by Wca(m̄) = Wc(m̄), such that Wca(m) < Wc(m) for m < m̄

and Wca(m) > Wc(m) for all m in some interval ]m̄, m̊[ with32 m̊ > m̃. In other words,

when moving from autarky to free trade, the coalition countries’ climate welfare gain is

overcompensated by their consumption welfare loss and the opposite holds for relatively

large coalition sizes m ∈]m̄, m̊[.

As shown above, in the regime of autarky the model of the present paper coincides

with the basic model of the coalition formation literature. As a consequence, we can invoke

the results of Diamantoudi and Sartzetakis (2006) and Rubio and Ulph (2006) who show

that ". . . restricting parameter values to guarantee interior solutions is a sufficient condition

to get stable IEAs with a small number of signatories . . ." (Rubio and Ulph, 2006, p. 236).

Diamantoudi and Sartzetakis focus exclusively, as we do, on subsets of parameters leading

to positive equilibrium emissions and find that stable IEAs have at most four signatories

even if the total number of countries is large. Rubio and Ulph (2006) consider a larger

parameter space and introduce, in contrast to Barrett (1994), non-negativity constraints on

emissions. For a subset of parameter values which guarantee interior solutions they find that

the maximum stable coalition size is three.

32In the right panel of Figure 9 we find m̊ = n, but it is not clear whether that is a general feature.
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Barrett (1994) shows that there are parameter constellations for which the self-enforcing

IEA may attain any size from very small to the grand coalition. That finding seems to be

at variance with the results reported in the last paragraph, but they are not inconsistent

for the following reasons. Barrett takes abatement efforts as the governments’ choice vari-

able rather than emission caps and does not rule out negative emissions. Diamantoudi and

Sartzetakis (2006) convert Barrett’s approach into the basic model of type (41) and show

that in Barrett’s framework self-enforcing IEAs consist of no more than four countries on

the set of parameters guaranteeing positive equilibrium emissions.

We conclude that as long as solutions with non-positive emissions are ruled out we

get stable IEAs with a small number of signatories in the autarky scenario (= basic model)

irrespective of the total number of countries. That result clearly is in stark contrast to our

finding in the free-trade model of Section 3 where we have identified stable coalitions much

larger than in the autarky model.

Regarding the comparison of free trade and autarky we also want to know how effective

the stable coalition is in reducing world emissions below BAU emissions. Rubio and Ulph

(2006) do not address that issue. Diamontoudi and Sartzetakis (2006) find that the welfare

of the signatories is very close to its lowest value when the IEA is stable but they do not

link that observation to the BAU scenario. We will establish that link in several steps.

Proposition 1 and Lemma 3 applied to autarky now reads: If a self-enforcing IEA with

m∗
a ∈ {1, . . . , n} exists then m∗

a ≥ m̃a. We restrict our subsequent analysis to the parameters

space Λ := {(b̌, n) | b̌ > n(n− 4)/4, n > 4} and invoke the results of Rubio and Ulph (2006)

that for all (b̌, n) ∈ Λ the equilibrium emissions are positive (ibidem, footnote 16) and

m∗
a ≤ 3 (ibidem, Corollary 2).

In order to obtain further information about the size of the positive difference m∗
a−m̃a,

we insert b̌ = n(n− 4)/4 in (42) and make use of dm̃a

db
< 0 to obtain33

m̃a ∈]1, M̄
a(n)[ where M̄a(n) :=

n2

n2 − 4(n− 1)
. (43)

Closer inspection of (43) reveals that M̄a(5) = 2.77 and that dM̄a(n)
dn

< 0 for n > 4. Hence

we get

m̃a ∈]1, 2.77[ for all (b̌, n) ∈ Λ. (44)

In view of (42) and (44) and m∗
a ≤ 3 we conclude that m∗

a − m̃a ≤ 2 for all n > 4. Our

numerical simulations show (as in case of international trade) that in autarky models with

parameters satisfying (b̌, n) ∈ Λ the size m∗
a of self-enforcing IEAs is the smallest integer

33It follows directly from (42) that 1 is a lower bound for m̃a.

28



larger than m̃a which reconfirms Corollary 2 of Rubio and Ulph (2006). We summarize these

findings in

Proposition 5 . Consider the world economy without international trade for the pa-

rameter space Λ := {(b̌, n)
∣
∣b̌ > n(n−4)

4
, n > 4}.

(i) Then our model coincides with the models of Diamantoudi and Sartzetakis (2006) and

Rubio and Ulph (2006).

(ii) Then the size m∗
a of self-enforcing IEAs is the smallest integer larger than m̃a from

(42), and at most equal to 3.

(iii) The emission caps implemented by the self-enforcing IEA are only slightly tighter than

the emission cap in the BAU equilibrium under autarky.

5 Concluding remarks

The present paper reexamines the issue of self-enforcing international environmental agree-

ments (IEAs) extending the basic model of the IEA literature introduced by Barrett (1994)

and others to a general equilibrium framework with production, consumption and interna-

tional trade. In models yielding positive equilibrium emissions and with an IEA acting as

Stackelberg leader we show

(a) that in stark contrast to the outcome of the basic model large stable IEAs may form,

(b) and that in all Stackelberg equilibria with a stable IEA the ’gains of cooperation’ are

negligible: Compared to the case of global non-cooperation the coalition countries’

welfare gain as well as the climate damage reduction are very small.

While result (a) raises hopes for successful and effective cooperation in fighting climate

change, result (b) thwarts these hopes because efforts of achieving effective mitigation

through forming a self-enforcing IEA are futile irrespective of how large these IEAs are.

The only major implication specific to modeling international trade turns out to be the

finding that under certain conditions stable IEAs with a large number of signatories emerge.

But that distinctive feature is inconsequential because neither small nor large self-enforcing

IEAs bring about substantial gains of cooperation (result (b)). An interesting side result

is that in the absence of international trade our model of autarkic countries coincides with

the basic model of the extant IEA literature. That is, the basic model can be interpreted

as a model of autarkic countries. We infer from the extant literature that in this autarky

scenario the number of signatories of the self-enforcing IEA is very small, and we show that
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the allocation in the corresponding Stackelberg equilibrium does not differ much from the

business-as-usual allocation. As in the case of international trade, the coalition countries’

welfare rises and the climate damage declines by a very small amount only.

Although our model has more ’economic’ structure than the basic model we have

kept it simple enough for the benefit of comparing it with the basic model and for the

benefit of deriving informative results. As pointed out in the introduction the assumption

of emissions being non-essential is not fully satisfactory for carbon emissions in the context

of climate change mitigation. It is necessary and desirable to examine the outcome for the

case of essential emissions even if analytical results then cannot be obtained anymore. More

generally, one would want to check the robustness of results when economies are modeled

in a more complex way, e.g. when fossil fuel is not only a final consumption good but also

an intermediary industrial input. It is almost needless to say that while the assumption of

symmetric countries is crucial for deriving meaningful (analytical) results, it abstracts from

many real-world complexities which are severe barriers to reaching self-enforcing IEAs, and

it therefore massively underestimates the difficulties of forming such agreements.
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Appendix

Appendix A: Proof of Lemma 1

(i) Inserting the parametric functions (3) in (13) yields, after rearrangement of terms

ei =
an2

α(2n− 1) + (1 + b)n2

︸ ︷︷ ︸

=:G

−
α(n− 1) + n2

α(2n− 1) + (1 + b)n2

︸ ︷︷ ︸

:=H

∑

j 6=i

ej for i = 1, . . . , n. (A1)

From (A1) we get

ei = G−H

(
∑

j∈C

ej +
∑

j∈F,j 6=i

ej

)

= G−HmeC −H
∑

j∈F,j 6=i

ej for all i ∈ F. (A2)

Summing over i ∈ F yields
∑

i∈F

ei = (n−m)ef = (n−m)G− (n−m)Hmec − (n−m− 1)H(n−m)ef (A3)

which can be rearranged to

(n−m)ef =
(n−m)G

1 + (n−m− 1)H
−

(n−m)H

1 + (n−m− 1)H
mec. (A4)

or equivalently to

sf = R(sc, m) =
(n−m)G

1 + (n−m− 1)H
−

(n−m)H

1 + (n−m− 1)H
sc. (A5)

Next, verify that ŝc := R−1 (sf = 0, m) = G
H

is independent of m. Finally, differentiation of

(A5) yields

Rm = −
(1−H)G

[1 + (n−m− 1)H ]2
+

(1−H)H

[1 + (n−m− 1)H ]2
sc = −

(1−H)R(sc, m)

(n−m) [1 + (n−m− 1)H ]
,

Rsc = −
(n−m)H

1 + (n−m− 1)H
< 0, Rscsc = 0, Rscm =

H(1−H)

[1 + (n−m− 1)H ]2
> 0 (A6)

due to G > 0 and H ∈ [0, 1]. �

Appendix B: Proof of Lemma 2

Since the coalition size m is constant throughout this proof we omit for convenience m

as argument of the welfare functions. We first show the strict concavity of the coalition

country’s welfare function. Total differentiation of W c(sc, R(sc)
︸ ︷︷ ︸

=sf

) from (17) yields

dW c

dsc
= W c

sc
+W c

sf
Rsc , (B1)

d2W c

ds2c
= W c

scsc
+W c

scsf
Rsc

︸ ︷︷ ︸

≡
dWc

sc
dsc

+
[

W c
sf sc

+W c
sfsf

Rsc

]

︸ ︷︷ ︸

≡
dWc

sf
dsc

Rsc +W s
sf
Rscsc
︸ ︷︷ ︸

=0

. (B2)
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Partial differentiation of

W c
sc
(sc, sf) =

V ′
(
sc
m

)

m
+

T ′
(

sc+sf
n

)

m
−

[msf − (n−m)sc]T
′′
(

sc+sf
n

)

n2m
−D′ (sc + sf) (B3)

yields

W c
scsc

=
V ′′

m2
+

(2n−m)T ′′

n2m
−

[msf − (n−m)sc]T
′′′

n3m
−D′′

= −
b

m2
−

α(2n−m)

n2m
− δ, (B4)

W c
scsf

=
(n−m)T ′′

n2m
−

[msf − (n−m)sc]T
′′′

n3m
−D′′ = −

α(n−m)

n2m
− δ. (B5)

Making use (B4), (B5) and Rsc = − (n−m)H

(1 −H) + (n−m)H
︸ ︷︷ ︸

=:H̃

(which follows from differentiation

of (A5)) we get

dW c
sc

dsc
= −

b

m2
−

α(2n−m)

n2m
− δ +

[
α(n−m)

n2m
+ δ

]

H̃. (B6)

Partial differentiation of

W c
sf
(sc, sf) = −

[msf − (n−m)sc]T
′′
(

sc+sf
n

)

n2m
−D′(sc + sf). (B7)

yields

W c
sfsc

=
(n−m)T ′′

n2m
−

[msf − (n−m)sc]T
′′′

n3m
−D′′ = −

(n−m)α

n2m
− δ, (B8)

W c
sf sf

= −
T ′′

n2
−

[msf − (n−m)sc]T
′′′

n3m
−D′′ =

α

n2
− δ. (B9)

Making use of (B8), (B9) and Rsc = −H̃ we obtain

dW c
sf

dsc
= −

(n−m)α

n2m
− δ −

( α

n2
− δ
)

H̃. (B10)

Finally, inserting (B6) and (B10) in (B2) establishes

d2W c

ds2c
= −

b

m2
−

α(2n−m)

n2m
− δ +

[
α(n−m)

n2m
+ δ

]

2H̃ +
( α

n2
− δ
)

H̃2

= −
b

m2
−

α(1− H̃)[2n− (1− H̃)m]

n2m
− δ(1− H̃)2 (B11)

which is negative due to H̃ ∈]0, 1[.

Next, we prove the monotonicity property of the fringe country’s welfare function.

Differentiation of W f(sc, R(sc)
︸ ︷︷ ︸

=sf

) from (18) yields

dW f

dsc
= W f

sc
+W f

sf
Rsc , (B12)
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where

W f
sc

=
[msf − (n−m)sc]T

′′

n2(n−m)
−D′ (B13)

W f
sf

=
V ′

n−m
+

T ′

n−m
+

[msf − (n−m)sc]T
′′

n2(n−m)
−D′. (B14)

Taking advantage of the fringe countries first-order condition (13) which is equivalent to

V ′ + T ′ +
[msf − (n−m)sc]T

′′

n2(n−m)
−D′ = 0 (B15)

in (B13) and (B14) we obtain

W f
sc

= −(V ′ + T ′), (B16)

W f
sf

= −
n−m− 1

n−m
(V ′ + T ′). (B17)

Inserting (B16) and (B17) in (B12) we get

dW f

dsc
= −(V ′ + T ′)

[

1 +
n−m− 1

n−m
Rsc

]

. (B18)

Since the terms in rectangular brackets are positive, it holds dW f

dsc
< 0 if and only if V ′+T ′ >

0. From (5) and V ′(ef ) = p+ πf (which follows from the fringe countries’ consumers utility

maximization) we have V ′+T ′ = πf . From (13) we infer that V ′+T ′ > 0 if ef > ec. Finally,

it can be shown that πf remains positive when the coalition relaxes its emission cap and the

fringe countries tighten their emission caps. �

Appendix C: Proof of Proposition 1

Account for
d(sc+sf )

dsc
= 1+Rsc , and determine the first-order condition for an interior solution

to (19),

d(mW c)

dsc
= W c

sc
+W c

sf
Rsc

= V ′ + T ′ −

(
sc + sf

n
−

sc
m

)
m(1 +Rsc)T

′′

n
−m(1 +Rsc)D

′ = 0. (C1)

If the coalition of any size m ∈ [1, n[ chooses the strategy sc = meo, the fringe’s best reply

is sf = R(meo, m) = (n −m)eo and the BAU equilibrium results. At that equilibrium, i.e.

evaluated at sc = meo, the coalition’s marginal welfare is

MWCo(m) :=
d(mW c)

dsc

∣
∣
∣
sc=meo

=

= V ′(eo) + T ′(eo)
︸ ︷︷ ︸

marginal consumption welfare, same for all coaltion sizes

+ {−D′(neo) + [1−m(1 +Rsc ]D
′(neo)}

︸ ︷︷ ︸

marginal climate welfare for m ∈]1, n[

. (C2)
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According to (C2) the coalition’s marginal consumption welfare is independent of m, while its

marginal climate welfare is not. Since by definition of m̃ the condition m̃[1+Rsc(m̃eo, m̃)] = 1

is satisfied, the equations (C1) and (C2) yield for a coalition of size

MWCo(m̃) = V ′(eo) + T ′(eo)
︸ ︷︷ ︸

marginal consumption welfare

+ [−D′(neo)]
︸ ︷︷ ︸

marginal climate welfare for m = m̃

= 0. (C3)

(C3) is identical to (15), the first-order condition of all n countries in the non-cooperative

BAU scenario of Section 2. We invoke (C3) to rewrite (C2) as

MWCo(m) = V ′(eo) + T ′(eo)−D′(neo)
︸ ︷︷ ︸

=0

+[1−m(1 +Rsc)]D
′(neo)

= [1−m(1 +Rsc)]D
′(neo). (C4)

(C4) holds for any given m ∈ [1, n[. Since d[m(1+Rsc )]
dm

= (1 + Rsc) + mRscm > 0, the

equivalence
{
[1−m(1 +Rsc)] R 0 ⇐⇒ m ⋚ m̃

}
holds. Finally, differentiation of (A5)

with respect to sc yields Rsc = − (n−m)H
1+(n−m−1)H

. Inserting this term in [1 − m̃(1 + Rsc)] = 0

we get m̃ = 1 + (n − 1)H . Making use of the definition of H from (A1) establishes after

rearrangement of terms (26). �

Appendix D: Wf
m −Wc

m in Example 1
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Figure 10: Wf
m −Wc

m in Example 1

Appendix E: Proof of Proposition 4

Ad (i): Define the function H :]m̃, n[−→ R+ by [h = H(m) ⇐⇒ Wf (m) = Wc(m + h)].34

From Wf (m̃) = Wc(m̃) and Wf (m) > Wc(m) for all m > m̃ follows H(m̃) = 0 and

H(m) > 0 for all m > m̃, and hence Hm(m̃) > 0. Let m̃(+) be the smallest integer greater

than m̃ and take advantage of the function H to characterize a stable coalition as follows:

34Graphically speaking, if m is plotted on the horizontal axis, H(m) is the horizontal distance between

the Wf curve and the Wc curve at the level Wf (m) above the m-axis.
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The coalition of size m∗ ∈ {m̃(+) . . . , n} is stable, if and only if there is m̂ ∈]m̃, n[ such that

m̂ ≤ m∗, m̂+1 ≥ m∗, H(m̂) = 1, B(m∗) ≥ 1 and H(m̌) ≤ 1, where the number m̌ is defined

by the equation Wf (m̌) = Wc(m∗).

If m̂ happens to be an integer, then the coalitions of size m̂ and m̂ + 1 are both stable.

Otherwise m∗ ∈]m̂, m̂+1[. Since we cannot determine the shape of the function H based on

the parametric functions (3), we approximate it by construction the function H associated

with the functions Ωc and Ωf from (36). We do so by solving the equation Ωf (m) = Ωc(m+b)

and obtain

h = H(m,ω1, ω2, ω3) = −(m− m̃) +

√

2ω2(m− m̃) + (ω1 + ω3)(m− m̃)2

ω1
. (E1)

From (E1) we get H(m) = 0 for m = m̃ and H(m) > 0 for m > m̃. For all m ≥ m̃ the first

derivative is

Hm = −1 + ρ > 0, where ρ :=

√

1 +
ω2
2 + [2ω2 + (ω1 + ω3)(m− m̃)]ω3(m− m̃)

[2ω2 + (ω1 + ω3)(m− m̃)]ω1(m− m̃)
. (E2)

H(0) = 0 and (E2) imply that there is one and only one m̂ ∈]m̃, n[ satisfying H(m̂) = 1.

Hence if m̂ is an integer and m̂ > m̃, the coalitions of size m̂ and size m̂ + 1 are stable

coalitions. Otherwise, there exists one and only one stable coalition. Its size is the (unique)

integer in the interval ]m̂, m̂+ 1[.

Ad (ii): Verify Hω1 = −2ω2(m−m̃)+ω3(m−m̃)2

2ρω2
1

< 0, Hω2 = m−m̃
ρω1

> 0, Hω3 = (m−m̃)2

2ρω1
> 0

and observe that the differential of H(m̂, ω1, ω2, ω2) = 1 yields ∂m̂
∂ωi

= −
Hωi

Hm
for i = 1, 2, 3.

Therefore sign ∂m̂
∂ωi

= −signHωi
.

Ad (iii): Insert m = m̂ and H(m̂) = 1 in (E1) to obtain, after some rearrangement of terms,

m̂− m̃ = −
ω2 − ω1

ω3

+

√

(ω2 − ω1)2 + ω1ω3

ω2
3

> 0. (E3)

Denote by m̃(+) the smallest integer greater than m̃ and recall that m∗ ∈ [m̂, m̂ + 1]. It

follows that (m̂ − m̃) < 1 is a necessary condition for m∗ = m̃(+). Invoking (E3), we find

that (m̂− m̃) < 1 holds, if and only if 3ω1 < 2ω2 + ω3. �

Appendix F: Proof of
∣
∣Rsc

∣
∣ >

∣
∣Ra

sc

∣
∣

Making use of the parametric functions in the fringe country’s first-order condition V ′(ei) +

T ′(ei)−D′
(
∑

j ej

)

= 0 yields

ei =
α

α + b+ 1
−

1

α + b+ 1

∑

j 6=i

ej . (F1)
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Multiplying (F1) by (n−m) and setting ei = ef =
sf

n−m
and

∑

j 6=i ej = mec+(n−m−1)ef =

sc+
n−m−1
n−m

sf we obtain after rearrangement of terms the aggregate fringe best reply function

sf = Ra(sc, m) :=
(n−m)α

α + b+ n−m
−

n−m

α + b+ n−m
sc. (F2)

Next, differentiating (A5) and (F2) we get

∣
∣Ra

sc

∣
∣ <

∣
∣Ra

sc

∣
∣ ⇐⇒

1

α + b+ n−m
<

H

1 + (n−m− 1)H
⇐⇒

1

H
< 1 + α+ b. (F3)

Inserting H from (A1) in (F3) and rearranging terms establishes

∣
∣Ra

sc

∣
∣ <

∣
∣Ra

sc

∣
∣ ⇐⇒ αn < α(α+ b)(n− 1) + αn2. (F4)

�

Appendix G: Example 1 for autarky (only for the referees)
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Figure 11: Emissions and welfare in Example 1 for autarky
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Figure 12: Emissions in Example 1 for autarky
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Figure 13: Emissions in Example 1 for autarky

1.005 1.010 1.015 1.020 1.025 1.030

16.4302

16.4302

16.4302

16.4302

m

m̃a

Wo

Wfa(m)

Wca(m)

1.005 1.010 1.015 1.020 1.025

16.4302

16.4302

16.4302

16.4302

16.4302

m
m̃a

Wo

Wca(m)

Figure 14: Welfare in Example 1 for autarky
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