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Abstract. This paper introduces aging of workers into the neoclassical theory of labor
demand. Among other things, it is shown that under reasonable hypotheses employment,
even of younger workers, increases in the span of working life. Using the standard model
without aging, the analysis of such issues has not been possible up to now. The main
results derived for constant returns to scale carry over to the qualitatively equivalent
steady state of a model with decreasing returns to scale. Thus, constant returns to scale
loose much of their special flavor. The implied age-structure of optimum employment
turns out to accord well with empirical evidence.
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1 Introduction

Adjustment costs were introduced into the neoclassical theory of investment
by Eisner and Strotz (1963), who were followed by Lucas (1967) and others.
Subsequently, adjustment costs have also been used in the dynamic theory of
labor demand (cf. Nickell, 1986). Recently, the neoclassical theory of investment
has been augmented by allowing for aging of capital goods (vintage capital) in
a complete dynamic optimization framework by Feichtinger et al. (2001) and
Barucci and Gozzi (2001), who also provide an extensive overview on various
approaches to vintage capital in the literature. The purpose of the present paper
is to introduce aging of workers into the theory of labor demand. As in the case
of capital goods, this problem would be trivial in the absence of adjustment costs.
For the firm’s dynamic problem would be equivalent to an infinite sequence of
static problems in which optimum demand for labor (of possibly different ages)
could be determined at every instant without any consequences for the future.1

Thus, aging of workers will be considered in the framework of a neoclassical
adjustment costs model.

Although there are close similarities between the theory of labor demand
and the theory of capital demand, there are also some important differences.
First, while a firm usually accumulates the capital stock that it buys on the
capital goods market, it just rents labor services at the current wage rate. Thus,

1E.g., demand for human capital in the general equilibrium model of vintage human capital
by Chari and Hopenhayn (1991) has this simple structure. Their model is otherwise much more
sophisticated than the present partial equilibrium approach, however.

The present paper is not concerned with the non-trivial empirical problem of complementarity
or substitutability between workers of different age-groups, on which cf. e.g. Levine and Mitchell
(1988).
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the optimization problem with respect to labor demand is not equivalent to
the optimization problem with respect to capital demand. Second, the span of
working life may be influenced by political decisions and is therefore a reasonable
candidate for a sensitivity analysis of labor demand. Third, a large part of
labor adjustment costs does not arise for technical reasons but because of legal
regulations, making it interesting to consider the impact of different adjustment
costs on the employment decisions of a firm.

There are two principle approaches for handling aging in the framework of
continuous time dynamic optimization models. While Feichtinger et al. (2001)
use the maximum principle for systems with distributed parameters embedded
in the McKendrick partial differential equation (PDE), Barucci and Gozzi (2001)
transform the PDE into an ordinary differential equation with values in an infi-
nite dimensional vector space. Both papers are concerned with explicit solutions
of linear models arising from production functions with constant returns to scale.

The present paper follows the approach of Feichtinger et al. (2001), but
vintage capital goods are replaced by aging workers. In addition to the already
mentioned differences of the respective optimization problems and the focus of
the analysis, the basic set-up will be extended by considering age dependent
adjustment costs and the case of decreasing returns to scale. Although explicit
solutions are merely numerically feasible in this case, analytical results can be
obtained using phase diagram analysis and variational equations.

Among other things, it will be shown that under constant returns to scale
a firm’s employment increases in the span of working life provided that at the
time of retirement of workers their marginal productivity exceeds their wage
rate. The impact of adjustment costs on employment is negative. Moreover,
some unrealistic implications of the case without aging under constant returns
to scale disappear once aging is taken into account. Even without voluntary
quitting, there exists a steady state with respect to calendar time in which
employment is time invariant. With neither aging nor voluntary quitting, on
the other hand, the firm either exits from the market or employment is ever
increasing in calendar time, implying that equilibrium under perfect competition
does not exist. Considering the steady state, the case of decreasing returns to
scale turns out to be qualitatively equivalent to the case of constant returns to
scale under some simplifying hypotheses.

The presented model is too simple for an immediate application to reality
and data. Nevertheless, it is possible to put forward some plain hypotheses that
allow for a macroeconomic interpretation of the results. It is remarkable that
the implied age-structure of optimum employment turns out to accord well with
recently observed patterns in G7-countries.

A basic model with constant returns to scale will be presented in Section 2.
This model has the advantage of allowing for an explicit solution (which is derived
in an appendix) with clear-cut economic implications. The case of decreasing
returns to scale is analyzed in Section 3, which also includes a brief presentation
of empirically observed patterns of the age-structure of employment. The final
section concludes.
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2 Constant Returns to Scale

2.1 Solution of the Optimization Problem

Consider a firm producing its output Y (t) according to the constant returns to
scale production function

Y (t) =

∫ T

0
a(τ)L(t, τ) dτ

under perfect competition. Labor input of age τ , τ ∈ [0, T ], at time t, t ∈ [0,∞),
is denoted by L(t, τ) and a(τ) is the productivity of labor of age τ . Workers of
age T leave the firm for free. Although there are no other inputs besides labor,
it is reasonable to use the notion constant returns to scale as labor input is not
homogenous but has possibly different productivities at different ages.

Labor costs are the wage rate w(τ) and adjustment costs c(τ)u(t, τ)2/2,
c(τ) > 0, where u(t, τ) is the rate of hiring or firing of workers of age τ at
time t. Both the wage rate and the adjustment costs generally depend on age τ .
Adjustment costs are symmetric, strictly convex, and represented by a quadratic
cost function. Hamermesh and Pfann (1996) reject this standard assumption as
being not consistent with empirical evidence. It is adopted here for the sake
of simplicity, however, as the analysis focuses on the effects of aging on labor
demand. For an overview and assessment of other specifications of adjustment
costs in the literature, cf. Hamermesh and Pfann (1996).

The firm’s objective is to maximize the present value of all its cash flows
from the present to the indefinite future. As the output price will be assumed to
be constant, it may as well be normalized to p ≡ 1. Denoting partial derivatives
by subscripts, the optimization problem can thus be written as

max
u(t,τ)

∫
∞

0

∫ T

0

[

a(τ)L(t, τ) − w(τ)L(t, τ) −
c(τ)

2
u(t, τ)2

]

e−rt dτ dt (1a)

subject to Lt(t, τ) + Lτ (t, τ) = u(t, τ) − δ(τ)L(t, τ), (1b)

L(0, τ) = L0(τ), L(t, 0) = 0, (1c)

where r is the constant interest rate (a non-constant interest rate could be intro-
duced at the cost of complicating notation without adding much insight). Vol-
untary quitting of workers takes place at the percentage rate δ(τ) and induces
no direct costs. The functions a, w, c, and δ are assumed to be positive and
twice continuously differentiable. For simplicity, the state constraint L(t, τ) ≧ 0
is not considered explicitly, which should be kept in mind for the remainder of
this paper.

The partial differential equation (1b) captures the fact that workers are get-
ting older. E.g., if u(t, τ) = 0 and δ(τ) = 0, then Lt(t, τ) = −Lτ (t, τ), that is,
the rate of change of the number of workers of age τ with respect to calendar
time would exactly balance the rate of change with respect to age. The boundary
conditions (1c) indicate that at time 0 there is an initial distribution L0(τ) of
workers of ages τ ∈ [0, T ] and that at each time t ∈ [0,∞) there are no workers
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of age zero. The model could be augmented to include a positive number of
workers of age zero at each time t by introducing a boundary control u0(t) and
setting L(t, 0) = u0(t), cf. Feichtinger et al. (2001) for the case of investment
demand. In order to simplify notation and as it would not add too much in-
sight, this generalization will be neglected at the moment. A boundary control
will be considered in Section 3, however, as it turns out to be important with
respect to an explanation of empirically observed patterns of the age-structure
of employment.

Setting up the current-value Hamiltonian,

H = [a(τ) − w(τ)]L(t, τ) −
c(τ)

2
u(t, τ)2 + λ(t, τ)[u(t, τ) − δ(τ)L(t, τ)],

the following necessary conditions for optimality are derived:2

Hu = 0 ⇐⇒ u(t, τ) = λ(t, τ)/c(τ) (2a)

λt(t, τ) + λτ (t, τ) = rλ(t, τ) − HL = [r + δ(τ)]λ(t, τ) − a(τ) + w(τ), (2b)

λ(t, T ) = 0. (2c)

These conditions must hold almost everywhere on t ∈ [0,∞) and τ ∈ [0, T ].
The solution of the partial differential equation (2b), taking the boundary

condition λ(t, T ) = 0 into account, is3

λ(t, τ) =

∫ T

τ

[a(σ) − w(σ)]e−
R

σ

τ
[r+δ(ρ)] dρ dσ.

Combining this result with the optimum condition (2a) immediately yields the
optimum demand for new workers of age τ at time t (which may be negative if
firing instead of hiring is optimal):

u(t, τ ; T ) =
1

c(τ)

∫ T

τ

[a(σ) − w(σ)]e−
R

σ

τ
[r+δ(ρ)] dρ dσ. (3)

The dependence of the optimum solution on the span of working life is empha-
sized by the inclusion of T as a variable. Notice that u(t, τ ; T ) is independent of
calendar time t. Therefore, it is reasonable to define

ũ(τ ; T ) := u(t, τ ; T ). (4)

As an immediate implication of equation (3), observe that if a(T ) < w(T ),
ũ(τ ; T ) may become negative at τ1 < T even if a(τ1) > w(τ1). Hence, if a firm
expects that the marginal productivity of workers will fall short of their wage

2An introduction to the maximum principle for systems with distributed parameters can be
found in Feichtinger and Hartl (1986, App. 5). More general optimum conditions have been
derived by Feichtinger et al. (2000).

3The solution of equation (1b) by the method of characteristics is explained in the appendix.
Equation (2b) can be solved by the same method. In order to verify this and other solutions
derived in this paper the reader should recall Leibniz’s rule of differentiation of a definite
integral.
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rate in the future, it is rational to release workers at an age when their marginal
productivity still exceeds their wage rate.

It is shown in the appendix that the solution of (1b) using the boundary
conditions (1c) is

L(t, τ ; T ) = L0(τ − t)e−
R

τ

τ−t
δ(ρ) dρ +

∫ τ

τ−t

ũ(s; T )e−
R

τ

s
δ(ρ) dρ ds if t < τ, (5)

L̃(τ ; T ) := L(t, τ ; T ) =

∫ τ

0
ũ(s; T )e−

R
τ

s
δ(ρ) dρ ds if t ≧ τ. (6)

Observe that L(t, τ ; T ) is independent of t for t ≧ τ , which accounts for the
definition L̃(τ ; T ) := L(t, τ ; T ). Since τ ≦ T , this implies together with (4) that
after no more than T years everything becomes time-invariant, yielding

Proposition 1 The steady state of the solution to problem (1) with respect to
calendar time is reached after no more than T years. Employment of workers of
any age τ is constant in the steady state.

An analogous result has been derived by Feichtinger et al. (2001) for the case of
capital goods.

2.2 A Note on Perfect Competition

While the constant returns to scale technology is usually considered an important
standard case due to the well-known replication argument, introducing adjust-
ment costs into the standard model without aging leads to a contradiction if
there is no voluntary quitting of workers. For the sake of simplicity, consider
a production function with just one input, non-aging labor, and a firm under
perfect competition striving to solve

max
u(t)

∫
∞

0

[

(a − w)L(t) −
c

2
u(t)2

]

e−rt dt,
dL(t)

dt
= u(t) − δL(t), L(0) = 0.

A straightforward application of Pontryagin’s maximum principle shows that the
solution to this problem is given by

u(t) =
a − w

cr
, L(t) =

a − w

cr
t, if a ≧ w and δ = 0,

u(t) =
a − w

c(r + δ)
, L(t) =

a − w

cδ(r + δ)
−

a − w

cδ(r + δ)
e−δt, if a ≧ w and δ > 0.

If a < w, then u(t) = L(t) = 0. Thus, without voluntary quitting (δ = 0),
if a ≦ w, the firm will exit the market, while if a > w, it will grow without
bound, contradicting the assumption of a small firm under perfect competition.
Therefore, in the presence of adjustment costs and if δ = 0 in the standard
model, an equilibrium under perfect competition does not exist under constant
returns to scale. This assertion does not depend on labor being the only input. If
δ is getting positive, the dynamic behavior of the system changes radically, that
is, δ = 0 is a bifurcation point at which the equilibrium L = (a−w)/[cδ(r + δ)],
which exists if δ > 0, disappears.
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Taking aging of workers into account, Proposition 1 shows that there is nei-
ther a contradiction if δ = 0 nor is δ = 0 a bifurcation point. In fact, if a(τ) = a,
w(τ) = w, c(τ) = c, and δ(τ) = δ are constants and a > w in the model with ag-
ing, ũ(τ ; T ) and L̃(τ ; T ) can be explicitly calculated in order to directly compare
the results. If δ = 0, the solutions for t ≧ τ are

ũ(τ ; T ) =
a − w

rc

(

1 − er(τ−T )
)

, (7)

L̃(τ ; T ) =
a − w

rc

[

τ −
1

r

(

er(τ−T ) − e−rT
)]

. (8)

As in the case without aging, the firm will exit if a ≦ w, but it will not grow
without bound if a > w. Also, the bifurcation of behavior at δ = 0 disappears.
While an explicit solution is even possible if δ > 0, the resulting expressions are
rather tedious. The qualitative properties of the steady state solution in case of
δ > 0 will be derived in the next section, however.

2.3 Steady State Implications

According to Proposition 1, it is reasonable to concentrate on the steady state
properties of the hiring or firing decisions and employment, respectively. The
following propositions pertain to the steady state with respect to calendar time
of the solution to problem (1).

Proposition 2 (Comparative Dynamics of Hiring and Firing)

(a) If a(T ) > w(T ) (a(T ) < w(T ), resp.), the rate of hiring of workers of all
ages τ increases (decreases, resp.) in the span of working life T .

(b) The higher the adjustment costs c(τ) for workers of age τ , the lower is the
hiring or firing rate of such workers.

Proof: (a) The derivation of (3) with respect to T is

ũT (τ ;T ) =
1

c(τ)
[a(T ) − w(T )]e−

R
T

τ
[r+δ(ρ)] dρ T 0 if a(T ) T w(T ).

(b) Obvious from (3). ¤

Proposition 2 (a) shows that the chances of getting a job for younger workers
depend on their expected span of working life. E.g., it pays to hire additional
workers if their duration in the firm is extended and their marginal productivity
at the moment when they leave the firm for free exceeds their wage rate at that
time. Proposition 2 (b) has an obvious interpretation which coincides with the
case without aging.

The impact of age τ on the hiring or firing decision is not unambiguous.
Using Leibniz’s rule, the derivative of (3) with respect to τ is

ũτ (τ ; T ) =

[

r + δ(τ) −
cτ (τ)

c(τ)

]

ũ(τ ; T ) −
a(τ) − w(τ)

c(τ)
. (9)
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This equation reveals four effects of age τ on the hiring decision of the firm. Sup-
pose that ũ(τ ; T ) > 0. Then, first, rũ(τ ; T ) > 0 captures the positive discounting
effect, as the interest costs of hiring new workers of age τ do not accrue if workers
of age τ + ǫ, ǫ → 0+, are hired. Second and similarly, δ(τ)ũ(τ ; T ) > 0 is the
positive quitting effect. Third, the adjustment costs effect [−cτ (τ)/c(τ)]ũ(τ ; T )
is positive (negative) if adjustment costs of older workers are lower (higher) than
for younger workers. Fourth, −[a(τ) − w(τ)]/c(τ) is negative if a(τ) > w(τ),
since a worker hired at a marginally older age cannot contribute to the revenue
of the firm at the time when he is of age τ (the age effect).4 Thus, a general
conclusion with respect to the sign of ũτ (τ ; T ) is not possible. Proposition 4
below shows, however, that if a(τ), w(τ), c(τ), and δ(τ) are constant and a > w,
the firm will always hire more younger than older workers.

While Proposition 2 deals with the firm’s hiring and firing decisions, the next
proposition pertains to the level of employment.

Proposition 3 (Comparative Dynamics of Employment)

(a) If a(T ) > w(T ) (a(T ) < w(T ), resp.), employment of workers of all ages τ
increases (decreases, resp.) in the span of working life T . Hence, even total
employment (aggregated over τ) increases in T if a(T ) > w(T ).

(b) Let L̃(τ ; T ) > 0. If adjustment costs c(τ) for labor of all ages increase
proportionally, employment decreases proportionally.

Proof: (a) The derivative of (6) with respect to T , taking the proof of Proposition
2 (a) into account, is

L̃T (τ ;T ) =

∫ τ

0

ũT (s;T )e
R

s

τ
δ(ρ) dρ ds T 0 if a(T ) T w(T ).

(b) Substituting (3) into (6) and replacing c(τ) by εc(τ) yields

L̃(τ ;T, ε) :=

∫ τ

0

1

εc(s)

∫ T

s

[a(σ) − w(σ)]e−
R

σ

τ
[r+δ(ρ)] dρ dσe

R
s

τ
δ(ρ) dρ ds

=
1

ε
L̃(τ ;T ).

Thus, dL̃(τ ;T, ε)/dε = −L̃(τ ;T ) < 0 evaluated at ε = 1, or dL̃/L̃ = −dε/ε at
ε = 1. ¤

Proposition 3 (a) has a similar economic explanation as Proposition 2 (a).
In particular, it shows that under the reasonable hypothesis that the marginal
productivity of workers exceeds their wage rate at the usual age of retirement,
employment increases in the span of working life. In contrast, Proposition 3 (b)
cannot readily be explained in terms of Proposition 2 (b), which states that the
hiring and the firing rate both decrease in adjustment costs, leaving the overall

4Feichtinger et al. (2001) derive similar effects for the case of investment in machines. As
they do not consider age dependent adjustment costs, however, there is no related effect in
their model, which instead involves an effect of acquisition costs of new machines which are not
considered here.
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effect on employment open at first sight. Nevertheless, Proposition 3 (b) shows
that the level of employment decreases in adjustment costs. As Bertola (1992)
has shown using an asymmetric adjustment costs model without aging, however,
it is possible that the average level of employment increases in firing costs. A
more thorough analysis of the impact of firing costs on average employment in the
present model would require asymmetric adjustment costs not considered here.
As in Bertola (1992), it would also be reasonable to include cyclical behavior
of revenues, e.g. by modelling the price of output as a trigonometric function of
time. Such issues will be left for future research at the moment.

Definite implications with respect to the age-structure of employment can be
derived under the additional assumptions of the following proposition. Notice
that in case of constant productivities and wages an interesting problem requires
that a > w.

Proposition 4 (Age-Structure of Hiring and Employment) Suppose that a(τ) =
a, w(τ) = w, c(τ) = c, and δ(τ) = δ, 0 ≦ δ < 1 are constants and that a > w.
Then:

(a) The firm always hires more younger than older workers.

(b) The age-structure of employment is single peaked, that is, employment first
increases and eventually decreases in τ . If δ = 0, the peak occurs at τ = T .

Proof: (a) Under the above hypotheses, (9) reduces to

ũτ (τ ;T ) =
a − w

c

(

1 − e(r+δ)(τ−T )
)

−
a − w

c
= −

a − w

c
e(r+δ)(τ−T ) < 0.

(b) Let δ > 0. As Lt = 0 in a steady state, (1b) and (4) imply that

L̃τ (τ ;T ) = ũ(τ ;T ) − δL̃(τ ;T ).

As ũτ (τ ;T ) < 0 according to (a) and ũ(T ;T ) = 0 from (3), it follows that
ũ(0;T ) > 0. Since L̃(0;T ) = L(t, 0;T ) = 0 according to (1c) and L̃(T ;T ) > 0
from (6) (taking (3) and a > w into account), it follows that

L̃τ (0;T ) = ũ(0;T ) − δL̃(0;T ) > 0,

L̃τ (T ;T ) = ũ(T ;T ) − δL̃(T ;T ) < 0.

Thus, there exists τ1 ∈ (0, T ) such that L̃τ (τ1;T ) = 0. Now, observe that

L̃ττ (τ1;T ) = ũτ (τ1;T ) − δL̃τ (τ1;T ) = ũτ (τ1;T ) < 0,

implying that there is an ǫ > 0 such that L̃τ (τ ;T ) < 0 for τ1 < τ < τ1 + ǫ,
which by substitution into L̃ττ (τ ;T ) yields L̃ττ (τ ;T ) < 0 and L̃τ (τ ;T ) < 0 for
all τ > τ1. Thus, L̃ assumes a unique and global maximum at τ1, and L̃ increases
(decreases) in τ if τ < τ1 (τ > τ1), proving (b) if δ > 0. If δ = 0, the proposition
follows immediately from L̃τ (τ ;T ) = ũ(τ ;T ) > 0. ¤

Although the constancy hypotheses of Proposition 4 are rather restrictive,
its implications are convincing. It will be shown in the next section that the
age-structure of employment according to Proposition 4 is also valid in case of
decreasing returns to scale under similar hypotheses and that it accords well
with recently observed patterns in G7-countries.
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3 Decreasing Returns to Scale

3.1 The Age-Structure of Employment in the Steady State

Although the maximum principle for systems with distributed parameters applies
to more general cases, using it similar to the case of constant returns to scale
requires that the production function is additively separable in labor of different
ages. A suitable formulation is given by

Y (t) =

∫ T

0
a(τ)L(t, τ)α dτ, 0 < α < 1. (10)

One of the objectives of this section is to show that the model of labor demand
with aging is consistent with empirical observed age-structures of employment in
industrialized countries. It turns out that it is reasonable to include a boundary
control u0(t) to this end, which indicates the number of workers of age 0 hired
at time t. (Notice the difference between hiring u0(t) and the rate of hiring or
firing, u(t, τ).) Thus, the relevant optimization problem now reads

max
u(t,τ),u0(t)

∫
∞

0

∫ T

0

[

a(τ)L(t, τ)α − w(τ)L(t, τ) −
c(τ)

2
u(t, τ)2

]

e−rt dτ dt

−

∫
∞

0

[
c(0)

2
u0(t)

2

]

e−rt dt (11a)

subject to Lt(t, τ) + Lτ (t, τ) = u(t, τ) − δ(τ)L(t, τ), (11b)

L(0, τ) = L0(τ), L(t, 0) = u0(t). (11c)

In addition to the usual optimum conditions, it is now necessary that u0(t)
maximizes the boundary Hamiltonian

H = −
c(0)

2
u0(t)

2 + λ(t, 0)u0(t).

Thus, the following first-order conditions for optimality must hold:

u(t, τ) = λ(t, τ)/c(τ) (12a)

u0(t) = λ(t, 0)/c(0) (12b)

λt(t, τ) + λτ (t, τ) = [r + δ(τ)]λ(t, τ) − a(τ)αL(t, τ)α−1 + w(τ), (12c)

λ(t, T ) = 0. (12d)

Although there is no general theorem available asserting that the optimum
solution must asymptotically approach a steady state with respect to calendar
time, it will be shown that the steady state solution satisfies the sufficient op-
timum conditions for a suitable initial distribution L0(τ). Thus, consider the
steady state solution where

λt(t, τ) ≡ Lt(t, τ) ≡ 0.

Defining λ̃(τ) := λ(t, τ) and L̃(τ) := L(t, τ), (12c) reduces to

λ̃τ (τ) = [r + δ(τ)]λ̃(τ) − a(τ)αL̃(τ)α−1

︸ ︷︷ ︸

=:ã(τ)

+w(τ) = [r + δ(τ)]λ̃(τ) − ã(τ) + w(τ)
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in the steady state. Comparing this equation with (2b) and noting that the
optimum condition for u has been left unchanged, it is obvious that formally the
steady state solution in case of decreasing returns can be obtained completely
analogously to the solution under constant returns to scale. In order to compare
the solutions immediately, disregard the boundary control u0(t) at the moment.
The optimum steady state solution for u would then be given by (3) with a(σ)
replaced by ã(σ). Using this solution in equation (6) would yield optimum
employment in the steady state. As ã(τ) depends on L̃(τ), however, equations
(3) and (6) would now be interdependent rather than recursive. Substituting (3)
into (6) would therefore yield a non-linear integral equation in L̃(τ) that could
be solved numerically but not analytically.

Being interested in analytical rather than numerical results, an alternative,
graphical approach under the additional assumption that a(τ) = a, w(τ) = w,
c(τ) = c, and δ(τ) = δ, 0 ≦ δ < 1, are constant is chosen. For this matter,
the optimum conditions pertaining to the steady state with respect to time are
rewritten as

L̃τ (τ) = ũ(τ) − δL̃(τ), L̃(0) = ũ(0), (13a)

ũτ (τ) = (r + δ)ũ(τ) − (a/c)αL̃(τ)α−1 + w/c, ũ(T ) = 0, (13b)

where, as λt = Lt = 0, (13a) follows from (11b), while (13b) follows from (12c)
and ũ(τ) := u(t, τ) = λ̃(τ)/c according to (12a). Equations (12a) and (12b)
imply that ũ(0) := u(t, 0) = u0(t) = const., as λt ≡ 0. Together with (11c), this
implies the boundary condition L̃(0) = ũ(0). The boundary condition ũ(T ) = 0
follows immediately from (12a) and (12d).

Equations (13) can be analyzed using the phase diagram in Figure 1. In-
spection of the isoclines L̃τ = 0 and ũτ = 0 reveals that the optimum trajectory
must qualitatively look like the one starting at ũ(0) (where L̃(0) = ũ(0) along
the 45◦-line) below the stable arm of the saddle-point and terminating at L̃(T )
(where ũ(T ) = 0). All other trajectories would violate the boundary conditions
in (13).

ũ

L̃

− w
c(r+δ)

ũ(0)

L̃(T )

+
−

+
− ũτ = 0

L̃τ = 0

L̃(0) = ũ(0)

Figure 1. Solution of System (13)
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The optimum trajectory in Figure 1 reveals that ũ is decreasing in τ and that
L̃ is first increasing and eventually decreasing in τ , confirming the results ob-
tained for the case of constant returns to scale. Thus, the firm always hires more
younger than older workers and the distribution of employment with respect to
age is single-peaked. It is also immediate from Figure 1 that the employment
peak would occur at τ = T if δ = 0, that is if there was no voluntary quitting.
Although it has been assumed that a and w are constant, there is no need to
make an assumption about the relative magnitude of these parameters to derive
these results. The reason is that the marginal productivity of labor of any age
τ increases without bound when L(τ) → 0.

It will now be shown that the trajectory [ũ(τ), L̃(τ)] solving system (13) is
an optimum solution for an initial distribution L0(τ) which is consistent with
the steady state. Sufficient conditions for control problems with distributed
parameters have been derived by Haurie et al. (1984). Although the present
model is no special case of the models in Haurie et al. (1984), a minor variation of
the proof of their Proposition 4 (p. 146) shows that conditions (12) are sufficient
if in addition the Hamiltonian H is concave in (L, u) and

lim
t→∞

∫ T

0
e−rtλ(t, τ)[L(t, τ) − L̃(τ)] dτ ≧ 0, (14)

where L(t, τ) denotes any other admissible solution (cf. also Feichtinger and
Hartl, 1986, p. 524). Concavity of H is assured as the integrand in (11a) is
concave and the state equation is linear. To prove (14), note that while the non-
negativity of L(t, τ) has not been explicitly imposed in problem (11), using it
would not have affected the derivation of the single trajectory in Figure 1 meet-
ing the necessary optimum conditions, which does not violate the non-negativity
of L(t, τ) anyway. Thus, the solution in Figure 1 would also apply if the condi-
tion L(t, τ) ≧ 0 had been imposed. Hence, it is possible to proceed under the
(reasonable) assumption that all admissible solutions for L(t, τ) must be non-
negative. As ∞ > L̃(τ) > 0 and ∞ > λ(t, τ) ≧ 0 for all τ ∈ [0, T ], it follows that
condition (14) is met. Thus, [ũ(τ), L̃(τ)] is an optimum solution if the system
starts in the steady state with respect to calendar time.

Although the present model refers to an individual firm, the following simple
hypotheses can be put forward to give a macroeconomic interpretation of the
model’s results. First, the firm is a representative firm under perfect competition,
second, the wage rate is fixed, e.g. due to union power, and third, labor supply of
any age τ does not fall short of labor demand for age τ . It is straightforward from
the shape of the optimum solution in Figure 1 that the aggregate age-structure
of employment will qualitatively look as shown in the final panel of Figure 2.
This theoretical distribution is obtained by entering discrete data points and
joining them by straight lines, just as it is done with respect to the empirically
observed age-structures of employment in G7-countries of 2001.5

5G7 instead of G8 has been used as data for Russia were neither available nor would it
be too sensible to compare them with the steady state-distribution of a theoretical model of a
market economy.
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While the model is too simple for an immediate application to reality and
data, it is remarkable that the implied age-structure of employment accords well
with empirically observed patterns. As shown in Figure 2, with the exception
of Japan, the empirical distributions in G7-countries 2001 match the theoretical
distribution well. (Data for the United Kingdom were merely available in highly
aggregated form.) Notice that without the boundary control u0(t) the theoretical
distribution would start on the age-axis. Thus, including the boundary control
appears to be important with respect to empirical applications of the model.
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Figure 2. Age-Structure of Employment in G7-Countries 2001, Numbers of Active Pop-
ulation in Thousands, Data Source: International Labor Organization, ILO Bureau of
Statistics.

3.2 Comparative Dynamics of the Steady State

The effects of varying the span of working life T can be determined using vari-
ational equations. To this end, turn system (13) hypothetically into an initial
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value-problem with initial values

ũ(0) = u, L̃(0) = u. (15)

The solutions of this initial value-problem are denoted ũ(τ ; u) and L̃(τ ; u). The
variational equations are obtained by substituting these solutions into (13) with
the boundary conditions replaced by (15) and differentiating both with respect
to u:6

∂L̃τ (τ ; u)

∂u

=
∂

∂τ

∂L̃(τ ; u)

∂u

=
∂ũ(τ ; u)

∂u

− δ
∂L̃(τ ; u)

∂u

,
∂L̃(0; u)

∂u

= 1,

∂ũτ (τ ; u)

∂u

=
∂

∂τ

∂ũ(τ ; u)

∂u

= (r + δ)
∂ũ(τ ; u)

∂u

+ α(1 − α)
a

c
L̃(τ ; u)α−2 ∂L̃(τ ; u)

∂u

,

∂ũ(0; u)

∂u

= 1.

Setting z1 := ∂L̃/∂u, z2 := ∂ũ/∂u, and A(τ) := α(1 − α)aL̃(τ ; u)α−2/c, it
follows that the partial derivatives of ũ(τ ; u) and L̃(τ ; u) with respect to u are the
solutions of the linear, non-autonomous, and homogeneous initial value problem

z1τ = −δz1 + z2, z1(0) = 1

z2τ = A(τ)z1 + (r + δ)z2, z2(0) = 1.

The signs of z1 and z2 are determined by means of Figure 3. It is straightforward
that the trajectory starting at (1, 1) cannot cross the isocline z1τ = 0. Thus, z1

and z2 are positive for all τ ∈ [0, T ], that is

∂L̃(τ ; u)

∂u

> 0,
∂ũ(τ ; u)

∂u

> 0 ∀τ ∈ [0, T ]. (16)

To complete the analysis, the relation between u and T has to be estab-
lished. Note that u must be chosen optimally depending on the value of T . The
boundary condition in (13b) implies ũ(T, u) ≡ ũ(T ) ≡ 0. By the rule of implicit
differentiation,

du

dT
= −

∂ũ(T, u)/∂T

∂ũ(T, u)/∂u

.

Note that ∂ũ(T, u)/∂T = (∂ũ(τ ; u)/∂τ)|τ=T . This derivative has already been
shown to be negative by means of Figure 1. Thus, in view of (16), du/dT > 0. It
is now possible to compute the derivatives of ũ(τ ; T ) ≡ ũ(τ ; ũ(T )) and L̃(τ ; T ) ≡
L̃(τ ; ũ(T )), the steady state solutions of the optimization problem, with respect
to T :

∂ũ(τ ; T )

∂T
=

∂ũ

∂u

du

dT
> 0,

∂L̃(τ ; T )

∂T
=

∂L̃

∂u

du

dT
> 0 ∀τ ∈ [0, T ].

6The validity of changing the order of differentiation after the first equality sign follows
from the proof of the theorem on the dependence on initial conditions for ordinary differential
equations, cf. e.g. Perko (1996, pp. 80–84, eq. (5)), who does not use the standard term
variational equation, however.
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z1

z2

1

1

+
−

+−

z1τ = 0

z2τ = 0 (age dependent)

Figure 3. Determining the Signs of z1 and z2

The effect of adjustment costs c on hiring or firing and employment can
similarly be calculated using the variational equations obtained by differentiating
with respect to c. It turns out that the results obtained for the case of constant
returns with a(T ) > w(T ) carry over to the present case. Thus, all comparative
dynamics results obtained for the case of constant returns to scale under the
assumption that a(T ) > w(T ) are valid for the steady state under decreasing
returns to scale if a(τ), w(τ), c(τ), and δ(τ) are constant. In summary:

Proposition 5 Let a(τ), w(τ), c(τ), and δ(τ) = δ, 0 ≦ δ < 1, be constant. Then
the implications of Propositions 2, 3, and 4 for the case a(T ) > w(T ) are equally
valid with respect to the steady state of the model using production function (10)
with decreasing returns to scale.

Notice that Proposition 5 does not require a condition like a > w.
Without aging or an exogenous percentage rate of voluntary quits, the solu-

tions of the models with constant and decreasing returns to scale, respectively,
are qualitatively different. Under decreasing returns, the solution approaches a
steady state, while under constant returns, the firm exits the market or it grows
without bound if δ = 0 (cf. Section 2.2). Proposition 5 shows that, if aging
of workers is taken into account, the steady state solutions under constant and
decreasing returns are qualitatively equivalent (at least in case of constant para-
meter values). Thus, constant returns to scale loose much of their special flavor
if the model is pushed a step further to reality.

Proposition 5 implies that even strictly convex adjustment costs are an im-
portant determinant of steady state labor demand under decreasing returns to
scale. Faria and Jellal (2002), who consider efficiency wages in the framework of
a dynamic model with neither aging nor voluntary quitting, show that strictly
convex adjustment costs do not affect the steady state determination of employ-
ment in this setting, whereas linear adjustment costs do. They conclude that
“one can infer what type of adjustment costs prevail by investigating empirically
whether wages and employment are affected by adjustment costs”. The model
with aging shows, however, that the proposed empirical test is impossible.
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4 Conclusions

The introduction of aging into the dynamic theory of labor demand pushes the
model a step towards real life. Among other things, a theoretical analysis of
the effects of different spans of working life on employment decisions becomes
possible. Under plain-sailing hypotheses it is possible to provide an explanation
of empirically observed age-structures of employment. It is remarkable that the
cases of constant and decreasing returns to scale turn out to be very similar once
aging of workers is taken into account.

Although the analysis requires to deal with partial differential equations,
the model introduced in Section 2 is relatively simple and admits a complete
analytical solution. As has been shown in Section 3, even the case of decreasing
returns to scale is analytically tractable. Other generalizations of the baseline
model should therefore be possible. Hence, it is reasonable to expect further
applications adding to the understanding of the mechanics of labor demand
when workers are getting older, possibly even in a general equilibrium setting or
using a framework of imperfect competition.

Appendix: Solution of Equation (1b)

This appendix sketches the method of characteristics for the solution of a linear partial
differential equation (PDE) such as (1b) with boundary conditions (1c).7 Using the op-
timal control ũ(τ) := u(t, τ) (suppressing the variable T used in the text), this equation
reads

Lt(t, τ) + Lτ (t, τ) = ũ(τ) − δ(τ)L(t, τ), L(0, τ) = L0(τ), L(t, 0) = 0. (A1)

The first step is to represent t and τ parameterically as functions t(σ) and τ(σ) with
t′(σ) = τ ′(σ) = 1 (note that t and τ are measured in the same units). Substituting into
(A1) reduces the PDE to an ordinary differential equation (ODE)

dL̂

dσ
= ũ(τ(σ)) − δ(τ(σ))L̂(σ), (A2)

where L̂(σ) := L(t(σ), τ(σ)). Choosing the initial point (t0, τ0), it follows that t = t0 +σ
and τ = τ0 + σ. Therefore, solving the linear ODE (A2) one gets

L̂(σ) = e−
R

σ

0
δ(τ0+ρ) dρ

[

L̂(0) +

∫ σ

0

ũ(τ0 + s)e
R

s

0
δ(τ0+ρ) dρ ds

]

= e
−

R
τ0+σ

τ0
δ(ρ) dρ

[

L(t0, τ0) +

∫ τ0+σ

τ0

ũ(s)e
R

s

τ0
δ(ρ) dρ

ds

]

, (A3)

which together with t = t0 + σ and τ = τ0 + σ is called a characteristic of (A1).
With respect to the boundary conditions two cases must be distinguished. (a) If

t < τ and choosing the initial point (t, τ) = (0, τ0), the condition L(0, τ) = L0(τ) implies
that

L̂(σ) = e
−

R
τ0+σ

τ0
δ(ρ) dρ

[

L0(τ0) +

∫ τ0+σ

τ0

ũ(s)e
R

s

τ0
δ(ρ) dρ

ds

]

.

7For a general account of this method, which can be used to solve all linear PDEs appearing
in the present paper, cf. any textbook on PDEs. Keyfitz and Keyfitz (1997) comprehensively
discuss the solution of the famous McKendrick PDE, which is a prototype of PDEs appearing
in population studies. The method works even in the more general case of quasi-linear PDEs.
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For the initial point (0, τ0) and (t, τ) = (0 + σ, τ0 + σ), the definition of L̂ implies
L̂(σ) = L(σ, τ0 + σ) = L(t, τ). Using τ − t = τ0 + σ − 0 − σ = τ0, it follows that

L(t, τ) = e−
R

τ

τ−t
δ(ρ) dρ

[

L0(τ − t) +

∫ τ

τ−t

ũ(s)e
R

s

τ−t
δ(ρ) dρ ds

]

= L0(τ − t)e−
R

τ

τ−t
δ(ρ) dρ +

∫ τ

τ−t

ũ(s)e−
R

τ

s
δ(ρ) dρ ds if t < τ.

(b) If t ≧ τ , choosing the initial point (t, τ) = (t0, 0) and using the conditions L(t, 0) = 0,
τ = τ0 + σ = σ in (A3) immediately implies that

L(t, τ) = e−
R

τ

0
δ(ρ) dρ

∫ τ

0

ũ(s)e
R

s

0
δ(ρ) dρ ds =

∫ τ

0

ũ(s)e−
R

τ

s
δ(ρ) dρ ds if t ≧ τ.

It follows from the general properties of the method of characteristics that the so-
lution of the boundary value problem (A1) is unique, because the boundary conditions
in (A1) are specified along a so-called non-characteristic curve, the non-negative t- and
τ -axes, being transversal to the projection of the characteristics into the (t, τ)-plane.
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