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Abstract: In terms of convex analysis the revenue function of a country with a given factor endowment

may be seen as the support function of the production possibility set. At the same time this revenue

function is the so called convex-conjugate of the indicator function of the production possibility set. The

task of this paper is to apply duality results of this kind to sums of functions, where Rockafellar (1972)

has shown that the operations of addition and the infimal convolution of convex functions are dual to each

other. To be more concrete, we refer to the theory of international trade, where the factor endowment of

each country is given and the factors of production are internationally immobile. If the country specific

outputs sum up to a world production, what is the meaning of the appropriate dual problem? The answer

will deal with the national and world-wide problem of revenue maximization. Moreover, we shall discuss

the properties of an optimal commodity price vector in relation to the "dual" world output and to the

national commodity supply. Similar problems will be analyzed on a national level, where the factors of

production can easily be moved from one firm or sector to another. The second part of the paper draws the

attention to the inverse production technology, namely the input correspondence. Here, the results based

on convex revenue functions are applied to concave cost functions.
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1 Production Theory in View of Convex Analysis

This paper deals with different problems of production theory, where an appropriate interpretation of

the problem at hand depends on the assumptions implied by convex analysis. Given the notation of

Section 2.1, Section 2.2 is concerned with the following question: are the countries of the world economy

able to produce together a certain commodity bundle x? Here, it is assumed, that the countries possess

individual production technologies and that the factor endowments are fixed, i.e. the factors of production

are immobile. The dual problem presumes a given commodity price vector p, which is valid for each

country. This optimization problem is implied by the theory of conjugate functions and seeks for a

revenue maximizing commodity bundle among all producible output vectors. Proposition 1 refers to a

pair of dual points (x, p) and makes a statement on the properties of an optimal price vector given the

commodity bundle, et vice versa. Both vectors x and p can be expressed in terms of a subgradient, whose

geometric meaning will be explained at a later stage. By Proposition 2, the aggregate commodity supply

consists of the national commodity bundles, which in turn maximize the national revenues (Proposition 3).

Proposition 4 states, that the revenue maximizing price vector is valid for each country.

Section 2.3 draws the attention to the output distance function. By means of convex analysis, the revenue

function of Section 2.2 and this distance function are polar gauges. They are connected by Mahler’s

inequality (2.20) while the indicator function and the revenue function of Section 2.2 satisfy the Young-

Fenchel inequality (2.4). The two polar gauges represent the same technology and can be transformed into

each other under certain regularity conditions. Hence, it is straightforward to analyze a problem similar

to that of Section 2.2: find a price vector, which is feasible for all countries by means of their "polar"

production technologies, so that total revenue is maximized. Notice that the duality results in Proposition 5

differ from Proposition 1. The price vector is no longer determined by the sum of production possibility

sets but by the intersection of their so called polar sets, which are introduced at the beginning of Section

2.3. This is the reason why Mahler’s inequality (2.20), which holds true for each country, is not valid on

an aggregate level.

Section 2.4 takes a different point of view. On a national level the factors of production are mobile between

firms, while the national factor endowment is given. All commodity prices are fixed by the world markets.

Now a fictional benevolent dictator intending to maximize the national revenue has the problem of how to

allot the factor endowments to the firms. This problem is not too far away from reality as shown by the

dual program of profit maximization. If each firm maximizes its profit, they behave together as the above

mentioned benevolent dictator. The duality results are similar to Section 2.2 with the exception that the

results of convex analysis are now applied to concave functions.
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While Section 2 is based on output correspondences decribing the production technologies, Section 3

refers to the inverse input correspondence. In this regard the analysis switches over from convex revenue

functions to concave cost functions. Accordingly, the duality results describe an optimal matching of input

vectors and factor price vectors. One important difference is that the results of cost minimization are now

discussed on the basis of mobile inputs, so that the factor prices are valid for each firm.

The crucial problem of Section 3.3 will be the observation that no input requirement set contains the input

vector vb = 0 given any commodity bundle xb 6= 0, that is, no positive output can be produced with

zero inputs. The result will be described by a modification of Mahler’s inequality. Nevertheless, under

analytical aspects the duality results of Propositions 13–16 are in line with the outcomes of Section 2.3 and

2.4. But from an economic point of view the last two sections deal with completely different optimization

problems.

2 Dual Operations Based on Output Correspondences

2.1 Production Possibility Sets

In order to represent ν not necessarily distinct production technologies we make use of ν families of

production possibility sets
(

Pb(vb)| vb ∈ _m
)

with b = 1,¼, ν. Each member Pb(vb) denotes the

collection of all commodity bundles xb capable of being produced by the firm b or alternatively in the

economy b by using the inputs vb. Every activity (vb, xb), which is compatible with the given respective

technology, satisfies xb ∈ Pb(vb). The set valued technology Pb is called the output correspondence of

firm b.

The indicator function1 is the perhaps easiest representation of the production possibility set Pb(vb) ⊆ _n.

For every feasible activity it is δ(xb|Pb(vb)) = 0. In all other cases the indicator function is set to

δ(xb|Pb(vb)) = +∞. Given the input vector vb, the shorter form δb ≡ δ(·|Pb(vb)) is used for the

sake of brevity. By assumption each production possibility set is nonempty, closed and convex for each

feasible input vector, so that its indicator function δb is proper, closed and convex.

cl δb = δb(2.1)

1 The unusual properties of proper, n-proper, closed, and polar functions are explained in the appendix. Moreover the basic
principles of conjugate and polar function as well as the indicator function (5.60), the gauge function (5.61) and the support
function (5.62) are introduced. Besides the infimal convolution (5.58) these terms are indispensable for the understanding of this
text. Please take a look at the glossary in the appendix.
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By Theorem 3,2 the proper indicator function δb determines a convex-conjugate function δ∗b being not only

closed and convex but also proper.

δ∗b(p) = sup
{

pTxb − δb(xb)| xb ∈ _n
}

= sup
{

pTxb| xb ∈ Pb(vb)
}

(2.2)

This support function of the production possibility set Pb(vb) corresponds to the revenue function of

firm b, which is reflected by the following notation:

δ∗b ≡ δ
∗(·|Pb(vb)) ≡ rb(·, vb)(2.3)

With the aid of the convex-biconjugate function we return – again by Theorem 3 – to the initial indicator

function δ∗∗b = cl δb = r∗b(·, vb) , where the closure operation may be omitted by (2.1). As shown by

Rockafellar (1972) this one-to-one correspondence, i.e. δb → δ∗b → δ∗∗b = δb, holds true in the class of

all closed proper convex functions. The definition of conjugate functions immediately yields the Young-

Fenchel inequality satisfied particularly for the indicator function and the revenue function.

δb(xb)+ rb(p, vb) e pTxb ∀ xb, ∀p(2.4)

As Section 2.2 applies these results to sums of functions we need an idea of how to sum up production

possibility sets. Starting with a given factor allocation ¯ = (v1,¼, vν), the aggregate production

technology

P6(¯) E P1(v1)+µ+ Pν(vν) = {x1+µ+ xν| xb ∈ Pb(vb) ∀ b}(2.5)

is described by the indicator function δB ≡ δ(·|P6(¯)). If each set Pb(vb) is convex, then P6(¯) is also

convex. Moreover, Berge (1963, Corollary 2, p. 161) has proved, that the sum of finitely many compact

sets is again compact, i.e. in particular δB = cl δB. Notice, that (2.5) constitutes more than the set P6(¯).

The relation x ∈ P6(¯) implies that there is a feasible commodity allocation ±, i.e.

∃ ± = (x1,¼, xν) : x = x1+µ+ xν with xb ∈ Pb(vb) ∀ b(2.6)

As long as the factors of production are mobile within an economy between firms the consideration of all

feasible factor allocations leads to the production possibility set of the entire economy.

P(v) = {x| x ∈ P6(¯), ¯ = (v1,¼, vν), v = v1+µ+ vν}

2 All of the cited theorems can be found in the appendix.
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2.2 Duality of Feasible Activities and Revenue Maximization

In what follows a given factor allocation ¯ is supposed. This assumption corresponds to internationally

given factor endowments with immobile factors of production. To stress this point we speak of the

economy b in this section. On the contrary in section 2.4 we seek for a factor allocation which maximizes

the revenue. This problem arises within an economy with mobile factors. Therefore it is more useful to

speak of the firm b in that context. As the firms are not differentiated in this paper by the commodities

they produce, the term sector will not be used. Nevertheless, analogue to (2.5) each technology Pb can be

thought of as an aggregate technology of different firms.

A commodity bundle x is called producible at the given factor allocation provided a commodity allocation

± exists such that the optimal value of the following infimal convolution is finite. The convolution of the

function δ1,¼, δν is indicated by � µ �, where the definition is taken from (5.58) in the appendix. In

accordance with (2.5) we have

(δ1� µ �δν)(x) = inf {δ1(x1)+µ+ δν(xν)| x1+µ+ xν = x}

= δ(x|P6(¯)) ≡ δB(x)
(2.7)

This function takes a finite value, δB(x) = 0, if and only if each economy b realizes a feasible activity

(xb, vb), i.e. δb(x) = 0, b = 1,¼, ν. Given the factor allocation ¯, we now analyze the convex-conjugate

function

(δ1� µ �δν)
∗(p) = sup

{

pTx− (δ1� µ �δν)(x)| x ∈ _n
}

(2.8)

δ∗B(p) = sup
{

pTx− δB(x)| x ∈ _n
}

,or

which are equivalent by definition. The next step refers to Theorem 6 (with fb = δb). It emphazises

that the operations of addition (2.9) and the infimal convolution (2.7) of convex functions are dual to each

other.

δ∗B(p) ≡ (δ1� µ �δν)
∗(p) = δ∗1(p)+µ+ δ∗ν(p)

:⇐⇒ r(p, ¯) = r1(p, v1)+µ+ rν(p, vν)
(2.9)

On an international level with immobile factors of production, i.e. a given factor allocation, the world wide

maximum revenue r(·, ¯) results from the sum of the national maximum revenues. Although this outcome

seems to be trivial, it constitutes the initial point for the further analysis. To stress the aspect of duality

of (2.7) and (2.9), it may be helpful to apply again Theorem 6. If the effective domains Dom rb(·, vb),

b = 1,¼, ν, have a relative interior point in common, then r∗(·, ¯) = (δ1� µ �δν). At first glance this
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is an astonishing result, because the definition of the convex-conjugate function r∗(·, ¯) yields

r∗(x, ¯) = sup
{

pTx− r(p, ¯)| p ∈ _n
}

= sup
{

pTx− r1(p, v1)−µ− rν(p, vν)| p ∈ _n
}

and this formula seems to be far away from (2.7). Nevertheless, an optimal price vector with r∗(x, ¯) = 0

is the same as having (δ1� µ �δν)(x) = 0. This guarantees the existence of an optimal commodity

allocation solving (2.7).

Taking the definition of subgradients (5.63) into account, Theorem 7 yields immediately

1 Proposition If the indicator function δB ≡ (δ1� µ �δν) is proper and convex, the subsequent three

conditions on x̂ are equivalent to each other.

p̂ ∈ ∂δB(x̂)(2.10a)

p̂Tx− δB(x) achieves its supremum in x at x̂; see (2.8)(2.10b)

δB(x̂)+ δ∗B(p̂) = p̂Tx̂(2.10c)

As the indicator function is closed anyway, cl δB = δB, two more conditions can be added to the list.

x̂ ∈ ∂δ∗B(p̂)(2.10d)

pTx̂− δ∗B(p) achieves its supremum in p at p̂; see (2.9)(2.10e)

A pair (x̂, p̂) satisfying all five conditions of Proposition 1 is called a pair of dual points. The proposition

will now be discussed in detail by some remarks which particularly refer to the commodity supply and the

common price vector.

The proposition presupposes a given factor allocation ¯ = (v1,¼, vν) with v = v1+µ+ vν. Notice

in (2.10b) and (2.10c), that δB(x̂) = 0 or x̂ ∈ P6(¯) is equivalent to the existence of a feasible

commodity allocation ±̂ = (x̂1,¼, x̂ν) according to (2.6).

The assumed properties of δB hold true because each indicator function δb satisfies the assumptions

of Theorem 2. The aggregate technology especially allows for the possibility of inaction, δB(0) =

δ1(0)+ µ + δν(0) = 0, because each production possibility set Pb(vb) includes the possibility of

inaction xb = 0.

Regarding (2.10d) recall particularly δ∗B ≡ r(·, ¯). Thus, if the revenue function is differentiable at p̂,

x̂ = ∇pr(p̂, ¯) .
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This statement on the pair of dual points (x̂, p̂) is now generalized with respect to the aggregate commodity

supply x̂ of (2.10d). In order to break x̂ down into its constituents x̂b, b = 1,¼, ν, we make use

of Theorem 9 so that the right hand side of (2.10d) will be expressed by a sum of subgradients of the

individual revenue functions δ∗b ≡ rb.

2 Proposition If the convex effective domains Dom δ∗b, b = 1,¼, ν, have a relative interior point in

common, then

∂δ∗B(p) = ∂δ
∗
1(p)+µ+ ∂δ∗ν(p) ∀ p

In the case of Proposition 2 an allocation ±̂ exists for every commodity vector x̂ ∈ ∂δ∗B(p̂) so that the total

revenue maximizing supply is composed of the country specific commodity supply.

∃ ±̂ = (x̂1,¼, x̂ν) :
∑

b x̂b = x̂ and x̂b ∈ ∂δ
∗
b(p̂) ∀ b

Under the condition of Proposition 2 the allocation ±̂ solves (2.7) provided the pair (x̂, p̂) satisfies the five

conditions of Proposition 1. The proof results from (2.10c). If ±̂ is no optimal solution to (2.7), then

p̂Tx̂− δ∗B(p̂)
(2.10c)
= δB(x̂)

(2.7)
< δ1(x̂1)+µ+ δν(x̂ν)

(2.9)
⇐⇒ p̂T(x̂1+µ+ x̂ν)+ δ∗1(p̂)+µ+ δ∗ν(p̂) < δ1(x̂1)+µ+ δν(x̂ν)

This inequality is contradicted by x̂b ∈ ∂δ
∗
b(p̂) for all b being equivalent to p̂Tx̂b = δb(x̂b)+ δ

∗
b(p̂).

Assuming differentiable revenue functions, the commodity supply of each country results from

x̂b = ∇prb(p̂, vb) ∀ b.

The following proposition is based on Corollary 7.3. It hands in the explanation why it is meaningful to

call x̂b a revenue maximum commodity supply.

3 Proposition ("Commodity Supply") Let the production possibility set Pb(vb) be nonempty, closed

and convex and p be an arbitrary price vector. Then ∂δ∗b(p) = ∂rb(p, vb) – provided this set is not

empty – consists of all commodity bundles xb where the linear function pTxb attains its maximum over

Pb(vb).

As having been noted in Corollary 7.1, the subdifferentials of the indicator function ∂δB in (2.10a) and the

revenue function ∂δ∗B ≡ ∂r(·, ¯) in (2.10d) denote inverse correspondences.

p̂ ∈ ∂δB(x̂) ⇐⇒ x̂ ∈ ∂δ∗B(p̂) = ∂r1(p̂, v1)+µ+ ∂rν(p̂, vν)
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The subdifferential on the left hand side corresponds to the normal cone of the set P6(¯) at x̂. This cone

includes all price vectors p being normal to P6(¯) at x̂. Proposition 4 states that an optimal price vector p̂

given by Proposition 1 is also optimal for each involved economy b. The main difference between the two

propositions is that Proposition 1 refers to the indicator function δB of the aggregate technology, while the

following proposition is based on the individual indicator functions δb. Consequently, p̂ is also normal to

each production possibility set Pb(vb) at the respective point x̂b.

4 Proposition ("World Market Prices") A price vector p̂ satisfies

p̂ ∈
⋂

b=1,¼,ν

∂δb(x̂b)(2.11)

if and only if the allocation ±̂ solves the problem (2.7) and (2.10a) holds good.

Proof: Starting with (2.10c), which is equivalent to (2.10a), yields

δB(x̂)+ δ∗B(p̂) = p̂Tx̂

⇐⇒ (δ1� µ �δν)(x̂)+ (δ1� µ �δν)
∗(p̂) = p̂Tx̂ cf. (2.9)

⇐⇒ (δ1� µ �δν)(x̂)+ δ∗1(p̂)+µ+ δ∗ν(p̂) = p̂Tx̂ by Theorem 5

An optimal allocation ±̂, which solves the problem (2.7), satisfies x̂ = x̂1+µ+ x̂ν, so that

δ1(x̂1)+µ+ δν(x̂ν)+ δ∗1(p̂)+µ+ δ∗ν(p̂) = p̂T(x̂1+µ+ x̂ν).(2.12)

According to the Young-Fenchel inequality (5.59) it is δb(x̂b)+ δ
∗
b(p̂) e p̂Tx̂b for all b, so that

δb(x̂b)+ δ
∗
b(p̂) = p̂Tx̂b ∀ b(2.13)

applies by (2.12). By Proposition 1, (2.13) is equivalent to p̂ ∈ ∂δb(x̂b) for all b, so that (2.11) results.

On the opposite, if (2.11) holds good, then (2.13) and, therefore, (2.12) or

δ1(x̂1)+µ+ δν(x̂ν)+ (δ1� µ �δν)
∗(p̂) = p̂Tx̂(2.14)

(again by Theorem 5) are satisfied. Moreover the inequality implied by (2.7)

(δ1� µ �δν)(x̂)− δ1(x̂1)−µ− δν(x̂ν) d 0

⇐⇒ (δ1� µ �δν)(x̂)+ δ∗1(p̂)+µ+ δ∗ν(p̂) d p̂T(x1+µ+ xν)

⇐⇒ (δ1� µ �δν)(x̂)+ (δ1� µ �δν)
∗(p̂) d p̂Tx̂
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faces the Young-Fenchel inequality according to (2.8).

(δ1� µ �δν)(x̂)+ (δ1� µ �δν)
∗(p̂) e p̂Tx̂

Hence, (2.10c) or equivalently (2.10a) results. Together with (2.14) it follows

δ1(x̂1)+µ+ δν(x̂ν) = (δ1� µ �δν)(x̂),

that is, the allocation ±̂ = (x̂1,¼, x̂ν) is optimal for the problem (2.7). �

2.3 Polar Production Possibility Sets

2.3.1 Duality of Polar Sets and Functions

This section refers again to a given factor allocation ¯ and a given commodity bundle x. The main problem

will be the revenue maximization problem (2.24), which may be seen as opposite to (2.9), but now the

commodity bundle x is given, while formerly the price vector was fixed. However, under technical aspects

it will be shown that (2.24) corresponds to the convex-conjugate function of (2.7). Before continuing with

the analysis, the principle of polar sets and functions has to be introduced. It should be kept in mind, that

two sets being polar to each other embody the same information. Similar to conjugate functions there is

a one-to-one correspondence in the class of all closed convex set containing the origin, i.e. C → C◦ →

C◦◦ = C. Hence, the results of the examination of one set are also implied by the other one. A similar

statement holds true regarding two polar functions.

The polar production possibility set

P◦b (vb) E
{

p ∈ P| pTxb d 1 ∀ xb ∈ Pb(vb)
}

(2.15)

is a closed convex set containing the origin, hence it is star shaped. It consists of all price vectors, such

that the revenue does not exceed the value 1 in any case. Graphically the boundary of the set P◦b (vb) can be

represented by determining all price vectors such that the respective hyperplanes pTxb = 1 are tangent

to the production possibility set Pb(vb) at xb. The properties of the polar set imply its indicator function

δ(·|P◦b (vb)) to be proper, closed (thus (2.1) holds analogously) and convex. Under the assumption of a

given factor allocation the simplified notation

δ(·|P◦b (vb)) ≡ δ
◦
b

emphasizes at the same time that δ◦b is the polar function of δb. This function is defined by

δ◦b(p) = inf
{

λ e 0| pTxb d 1+ λδb(xb) ∀ xb
}

,(2.16)
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so that polar functions have the following property:

pTxb d 1+ δb(xb) δ
◦
b(p) ∀ xb ∈ Dom δb, ∀ p ∈ Dom δ◦b

In the case at hand it is particularly

pTxb d 1 ∀ xb ∈ Pb(vb), ∀ p ∈ P◦b (vb)(2.17)

This relationship has a useful interpretation, if we assume that the polar production possibility set P◦b (vb)

is known. In this case the commodity bundle xb is producible if and only if pTxb d 1 for all price vectors

of the set P◦b (vb). Technically, this statement can be expressed by the bipolar set P◦◦b , which is defined by

P◦◦b (vb) E
{

xb ∈ _n| pTxb d 1 ∀ p ∈ P◦b (vb)
}

.

For a closed convex set containing the origin, one can show that the bipolar set equals the initial production

possibility set, P◦◦b (vb) = Pb(vb).

As stressed by Rockafellar (1972, Theorem 15.4), the possibility of inaction δb(0) = 0 implies δ◦b(0) = 0

as well as δ◦◦b = cl δb. Therefore, we are permitted to write δ◦◦b = δb because δb is closed.

The convex-conjugate function of δ◦b results from

δ◦∗b (xb) = sup
{

pTxb − δ
◦
b(p)| p ∈ P

}

= sup
{

pTxb| p ∈ P◦b (vb)
}

.

This support function corresponds to the output distance function3 tOb(·, vb) = δ◦∗b by Theorem 4,

where tOb(·, vb) is defined to be the distance function of the production possibility set Pb(vb). Therefore,

we have tOb(·, vb) ≡ γ(·|Pb(vb)) in the notation of (5.61). A detailed discussion of the economic

importance of this output distance function can be found in Färe (1988). An intuitive idea of this function

results from the observation that Pb(vb) is a nonempty closed convex set containing the origin. In this

case xb ∈ Pb(vb) holds good if and only if δ◦∗b (xb) = tOb(xb, vb) d 1 applies. Hence, the output

distance function may be seen as generalized production function in the context of more than one output.

Interestingly, a similar relationship can be transferred to the revenue function, since the polar set P◦b (vb)

has the same properties as Pb(vb). Thus, the relation p ∈ P◦b (vb) is satisfied if and only if δ∗b(p) =

rb(p, vb) d 1.

Technically, the relationship between the revenue function rb(·, vb) ≡ δ∗b and the output distance

function tOb(·, vb) = δ◦∗b is given by an extremely simple equation. As the indicator function δb is
3 In economics the mathematical gauge function is called a distance function.
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a nonnegative closed convex function, with δb(0) = 0, we gain

δ∗◦b = δ
◦∗
b(2.18)

by Rockafellar (1972, Corollary 15.5.1). The revenue function and the output distance function are polar

gauges, where the definition of polar functions by (2.16) reduces to

rb(p, vb) = inf
{

λ e 0| pTxb d λtOb(xb, vb) ∀ xb
}

(2.19)

because of the linear homogeneity of tOb(·, vb). Thus the revenue function and the output distance

function satisfy Mahler’s inequality which is cited in Theorem 5:

pTxb d rb(p, vb) tOb(xb, vb) ∀ xb ∈ Dom rb(·, vb), ∀ p ∈ Dom tOb(·, vb)(2.20)

:⇐⇒ pTxb d δ∗b(p) δ
∗◦
b (xb) ∀ xb ∈ Dom δ∗b, ∀ p ∈ Dom δ∗◦b

This result has been discussed in detail in Bobzin (1999). There the attention is drawn to the case where

Mahler’s inequality is satisfied as an equation. It is worthwhile to notice the difference between the

Young-Fenchel inequality (2.4) and the preceding Mahler’s inequality.

2.3.2 Dual Operations Regarding Polar Production Possibility Sets

Having introduced the revenue function and the output distance function to be polar gauges, we now turn

to the polar production possibility sets. Given the factor allocation ¯ = (v1,¼, vν), each country b is

characterized by a unique set P◦b (vb) of price vectors. Therefore, seeking for a price vector p common

to all countries is the same as calculating the intersection of the polar sets P◦b (vb), b = 1,¼, ν, which is

abbreviated to

P◦∩(¯) E P◦1 (v1)∩µ∩ P◦ν (vν)

for the sake of clarity. Alternatively, the relation p ∈ P◦∩(¯) holds true if and only if δ◦1(p)+µ+ δ◦ν(p) =

δ(p|P◦∩(¯)) = 0. Similar to (2.7) this is a sum of indicator functions, but now the functions are evaluated at

the same point p. Hence, the second formula of Theorem 6 (with fb = δ
◦
b) determines the dual operation.

If we assume that the polar production possibility sets P◦b , b = 1,¼, ν, have a relative interior point in

common, then

(δ◦1+µ+ δ◦ν)
∗(x) = (δ◦∗1 � µ �δ◦∗ν )(x)(2.21)

where the infimum of

(δ◦∗1 � µ �δ◦∗ν )(x) = inf
{

δ◦∗1 (x1)+µ+ δ◦∗ν (xν)| x1+µ+ xν = x
}

(2.22)
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is attained for each x. To get an idea of the economic meaning we firstly rewrite the preceding equation.

(δ◦∗1 � µ �δ◦∗ν )(x) = inf {tO1(x1, v1)+µ+ tOν(xν, vν)| x1+µ+ xν = x}(2.23)

Hence, a commodity allocation is needed which minimizes the sum of the individual output distance

functions. As the advantage of an allocation being optimal in this sense is not immediate4, the attention is

now drawn to the right hand side of (2.21).

(δ◦1+µ+ δ◦ν)
∗(x) = sup

{

pTx− δ◦1(p)−µ− δ◦ν(p)| p ∈ P
}

(2.24)

= sup
{

pTx| p ∈ P◦1 (v1)∩µ∩ P◦ν (vν)
}

= δ∗
(

x|P◦∩(¯)
)

The attraction of this problem is obvious. We seek for a price vector p common to all countries, which

maximizes the total revenue pTx for the given output vector x holding the factor allocation ¯ fixed. The

properties of such a price vector will be given in Proposition 5. The differences between (2.24) and the

revenue maximization problem (2.9) will be discussed at the end of this section.

From the properties of polar sets it is known that their intersection is closed and convex and that it contains

the origin, 0 ∈ P◦∩(¯). Thus, the indicator function δ(p|P◦∩(¯)) is a proper closed convex function.

Moreover, by Theorem 3, its convex-conjugate function δ∗(·|P◦∩(¯)) ≡ (δ◦1+ µ + δ◦ν)
∗ is not only

closed and convex but also proper so that the biconjugate function satisfies

δ∗∗(·|P◦∩(¯)) = cl δ(·|P◦∩(¯)) = δ(·|P
◦
∩(¯)) = δ

◦
1+µ+ δ◦ν.(2.25)

Now Theorem 7 can be applied to the total revenue δ∗(·|P◦∩(¯)) – as it is given in the initial equation (2.21)

– where (2.25) has to be noted.

5 Proposition As δ∗(·|P◦∩(¯)) is a proper closed convex function, the following five conditions on the pair

of points (x̂, p̂) are equivalent to each other.

p̂ ∈ ∂δ∗(x̂|P◦∩(¯))(2.26a)

p̂Tx− δ∗(x|P◦∩(¯)) achieves its supremum in x at x̂(2.26b)

δ∗(x̂|P◦∩(¯))+ δ(p̂|P
◦
∩(¯)) = p̂Tx̂(2.26c)

x̂ ∈ ∂δ(p̂|P◦∩(¯))(2.26d)

pTx̂− δ(p|P◦∩(¯)) achieves its supremum in p at p̂; see (2.24)(2.26e)

4 For an interpretation of (2.23) it may be useful to take the case of one country, ν = 1, into account. The output x1 = x is
producible, i.e. x1 ∈ P1(v1), if and only if δ◦∗1 (x) = inf {tO1(x1, v1 )| x1 = x} = tO1(x, v1) d 1.
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Recall in (2.26e) or equivalently (2.24) that the supremum is finite, δ(p̂|P◦∩(¯)) = 0, if and only if there

is a price vector p̂ ∈ P◦∩(¯) common to all economies. In this case (2.26c) determines the revenue

maximum δ∗(x̂|P◦∩(¯)) = p̂Tx̂.

Regarding (2.26d), it is worthwhile to notice that the subdifferential can be divided into a sum of normal

cones by Corollary 9.1,

∂δ(p̂|P◦∩(¯)) = ∂δ
◦
1(p̂)+µ+ ∂δ◦ν(p̂),[a]

provided the convex sets P◦b (vb) have a relative interior point in common. Thus, if (2.26d) applies, there

is a commodity allocation ±̂ solving (2.23)5 such that

±̂ = (x̂1,¼, x̂ν), x̂ = x̂1+µ+ x̂ν and x̂b ∈ ∂δ
◦
b(p̂) ∀ b.(2.27)

Each optimal commodity bundle x̂b corresponds to a vector being normal to the respective polar set P◦b (vb)

of country b at the point p̂. In order to prove that the commodity bundle x̂b maximizes country b’s revenue

at the common price vector p̂ it is useful to apply Proposition 5 to the function δ◦∗b ≡ δ∗(·|P◦b (vb)).

In this case (2.26d) becomes x̂b ∈ ∂δ
◦
b(p̂), which is equivalent to tOb(x̂b, vb) ≡ δ◦∗b (x̂b) = p̂Tx̂b

resulting from (2.26c) with δ◦b(p̂) = 0. As has been shown in Bobzin (1999, Proposition 2.1), this result

applies if and only if x̂b solves the problem of revenue maximization (2.3). The pair of polar points (x̂b, p̂)

satisfies Mahler’s inequality (2.20) as an equation.

Regarding Proposition 5, which is based on the Young-Fenchel inequality, (x̂, p̂) is called a pair of dual

points. However, Proposition 2.1 in Bobzin (1999) refers to polar gauges and, therefore, is based on

Mahler’s inequality. Hence, (x̂, p̂) is called a pair of polar points.

2.3.3 Comparison of some Results

Regarding the common price vector p̂, two outcomes can be compared to each other:

p̂ ∈ ∂δ∗(x̂|P◦∩(¯)) by (2.26a)[b]

p̂ ∈ ∂δ(x̂|P6(¯)) by (2.10a)[c]

This result is noteworthy because the indicator function δ(·|P◦∩(¯)) and the support function δ∗(·|P6(¯))

are based on completely different principles. Putting tO(·, ¯) ≡ δ
∗(·|P◦∩(¯)) analogous to the revenue

5 Suppose the allocation ±̂ in (2.27) does not solve (2.22), then (2.21), (2.22) and (2.24) imply

p̂Tx̂− δ◦1(p̂)−µ− δ◦ν(p̂) < δ◦∗1 (x̂1)+µ+ δ◦∗ν (x̂ν)

But x̂b ∈ ∂δ
◦
b(p̂) is the same as p̂Tx̂b = δ

◦
b(p̂)+ δ

◦∗
b (x̂b ) contradicting the above inequality.
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function, it can be summarized that

δ(x̂|P6(¯)) = (δ1� µ �δν)(x̂) = δ1(x̂1)+µ+ δν(x̂ν)

δ∗(p̂|P6(¯)) = (δ1� µ �δν)
∗(p̂)= δ∗1(p̂)+µ+ δ∗ν(p̂) = r(p̂, ¯)

δ(p̂|P◦∩(¯)) = δ◦1(p̂)+µ+ δ◦ν(p̂)

δ∗(x̂|P◦∩(¯)) = (δ
◦
1+µ+ δ◦ν)

∗(x̂)= δ◦∗1 (x̂1)+µ+ δ◦∗ν (x̂ν)= tO(x̂, ¯)

Regarding a graphical representation it is important to note, that [a], [c] and even (2.11) in Proposition 4

refer to indicator functions. Thus [a] represents the normal cone of the intersection P◦∩(¯) at p̂. Similarly,

[c] corresponds to the normal cone of the set P6(¯) at x̂. On the contrary, [b] is based on a support

function. Rewriting the subgradients as
( p̂
−1

)

, these vectors form the so called normal cone in the sense of

Clark.6 This cone is normal to the epigraph of δ∗(·|P◦∩(¯)) at

(

x̂
δ∗(x̂|P◦∩(¯))

)

.

Finally, it has to be stressed that the outcome of (2.18) cannot be passed on to sums of functions. By (2.18),

the revenue function and the output distance function of each country b are polar gauges. Symbolically

this statement can be made clear by putting C = Pb(vb):

tOb(·, vb) = δ
∗(·|C◦) = γ(·|C) ←→ rb(·, vb) = δ

∗(·|C) = γ◦(·|C)

If we want to apply this result to the sum of output distance functions, then it is important to know, that

P◦∩(¯) = D◦ is satisfied by Rockafellar (1972, Corollary 16.5.2) provided the set D is defined as follows:

D E conv{Pb(vb)| b = 1,¼, ν} =
⋃

λbe0
λ1+µ+λν=1

{λ1 P1(v1)+µ+ λνPν(vν)}

Hence, the sets D and P6(¯) differ, so that P◦∩(¯) and P6(¯) are no polar sets as well as tO(·, ¯) and r(·, ¯)

are no polar gauge functions.

tO(·, ¯) = δ
∗(·|P◦∩(¯)) = δ

∗(·|D◦) = γ(·|D)

r(·, ¯) = δ∗(·|P6(¯)) 6= δ
∗(·|D) = γ(·|D◦) = γ◦(·|D)

In the above sense the result of (2.20) is not valid on an aggregate level.

2.4 Duality of Revenue Maximization and Profit Maximization

In what follows it is presumed that the factors can be moved from one firm to another. The commodity

price vector p is constant and, therefore, dropped from notation for the sake of clarity. The problem of this
6 In general, a subgradient ŷ of a convex function f at a point x̂, i.e. ŷ ∈ ∂ f (x̂), satisfies f (x) e f (x̂)+ ŷT(x− x̂) for all x̂. At

the same time the normal cone to the epigraph epi f at
( x̂

f (x̂)

)

is given by
{

(ŷ
ξ

)∣

∣

( x̂
µ

)T(ŷ
ξ

)

d
( x̂

f (x̂)

)T(ŷ
ξ

)

∀
(x
µ

)

∈ epi f
}

. Rewriting

the restriction with ξ = −1 shows that
( ŷ
−1

)

is an element of this normal cone. Hence,
( ŷ
−1

)

is normal to epi f at
( x̂

f (x̂)

)

.
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section is to allocate the given factor endowment v to the firms, b = 1,¼, ν, such that the total revenue is

maximized.7

(r1� µ �rν)(v) = sup {r1(v1)+µ+ rν(vν)| v1+µ+ vν = v}(2.28)

Dually, for a given vector of factor prices q the concave-conjugate function

(r1� µ �rν)∗(q) = inf
{

qTv− (r1� µ �rν)(v)| v ∈ _m
}

= r1∗(q)+µ+ rν∗(q)
(2.29)

determines those factor endowments v, which realize the minimum of the "negative profit". Here, firm b’s

profit results from πb(·, p) ≡ −rb∗, where

rb∗(q) E inf
{

qTvb − rb(vb)| vb ∈ _m
}

.

The concave-biconjugate function leads back to the revenue function rb, which is closed and concave.

rb∗∗(vb) = inf
{

qTvb − rb∗(q)| q ∈ _m
}

= cl rb(vb) = rb(vb)

Again the one-to-one correspondence f → f∗ → f∗∗ = f holds true in the class of all n-proper closed

concave functions. As long as every rb is n-proper and concave – excluding increasing economies of scale

for each firm –, (r1� µ �rν) also shows these properties, particularly

(r1� µ �rν)(v) = inf
{

qTv− (r1� µ �rν)∗(q)| q ∈ _m
}

(2.30)

After Theorem 7 has been switched over to n-proper concave functions – where the subdifferential ∂ f of

the convex function f becomes the superdifferential1(r1� µ �rν) of the concave function (r1� µ �rν)

– it follows

6 Proposition If (r1� µ �rν) is an n-proper concave function, the following three conditions on a vector

v̂ are equivalent to each other.

q̂ ∈ 1(r1� µ �rν)(v̂)(2.31a)

q̂Tv− (r1� µ �rν)(v) achieves its infimum in v at v̂; see (2.29)(2.31b)

(r1� µ �rν)(v̂)+ (r1� µ �rν)∗(q̂) = q̂Tv̂(2.31c)

7 The problem (2.28) is equivalent to

(r1� µ �rν)(p,v) = sup
¯

{r(p,¯)| ¯ = (v1,¼, vν ), v = v1 +µ+ vν}

where the maximum revenue r(p,¯) regarding the allocation ¯ has been defined by (2.9). A simplified version of this problem
concerning the Ricardo-Viner model can be found in Dixit, Norman (1980).
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If (cl(r1� µ �rν))(v̂) = (r1� µ �rν)(v̂), then three more conditions can be added to the list.

v̂ ∈ 1(r1� µ �rν)∗(q̂)(2.31d)

qTv̂− (r1� µ �rν)∗(q) achieves its infimum in q at q̂; see (2.30)(2.31e)

q̂ ∈ 1(cl(r1� µ �rν))(v̂)(2.31f)

Given a pair of dual points (q̂, v̂) satisfying all six conditions, (2.31c) simply states that the total profit

equals revenue less factor costs.

π(q̂, p) = −(r1� µ �rν)∗(q̂) = (r1� µ �rν)(v̂)− q̂Tv̂

In accordance with Theorem 9 the condition (2.31d) can be put into a more concrete form.

7 Proposition If the convex effective domains n-Dom rb∗, b = 1,¼, ν, have a relative interior point in

common, then

1(r1� µ �rν)∗(q) = 1r1∗(q)+µ+1rν∗(q) ∀ q

For an economic interpretation it is easier to apply Proposition 6 to the revenue function of merely one

firm so that (r1� µ �rν) becomes rb. The analogue of (2.31d), v̂ ∈ 1rb∗(q̂) is fulfilled if and only if

the negative profit in (2.31b), i.e. q̂Tv− rb(v), attains its minimum at v̂b. Finally, the dual view can be

stressed by examining a pair of dual points (q̂, v̂b) satisfying all six conditions of the translated version of

Proposition 6. Now firm b faces two inverse correspondences, namely

q̂ ∈ 1rb(v̂b) ⇐⇒ v̂b ∈ 1rb∗(q̂).

In the case of differentiable functions the factors v̂ demanded are chosen such that the factor prices equal

the marginal revenue.

If the aggregate factor demand holds v̂ ∈ 1(r1� µ �rν)∗(q̂) so that q̂ solves (2.29) by (2.31e), then

an allocation ˆ̄ exists with

ˆ̄ = (v̂1,¼, v̂ν), v̂ = v̂1+µ+ vν and v̂b ∈ 1rb∗(q̂) ∀ b,

which solves the dual problem (2.28). In particular differentiable profit functions imply Hotelling’s

lemma,

v̂b = ∇rb∗(q̂) = −∇qπb(q̂, p) ∀ b.

Similar to (2.31d), we can put (2.31a) into a more concrete form where the proof corresponds to that of

Proposition 4.
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8 Proposition ("Common Factor Prices") For a price vector q̂ ,

q̂ ∈
⋂

b=1,¼,ν

1rb(v̂b)(2.32)

holds true if and only if the allocation ˆ̄ solves the problem (2.28) and (2.31a) is satisfied.

Assuming that each revenue function is differentiable at the respective point v̂b, the factor prices of all

firms correspond to the marginal revenue, q̂ = ∇rb(v̂b) for all b.

3 Dual Operations Based on Input Correspondences

3.1 Input Requirement Sets

The firm b’s output correspondence Pb is opposite to the input correspondence Lb. Now the input

requirement set Lb(xb) includes all input vectors vb permitting the production of the commodity bundle

xb. The inverse character of both correspondences is reflected by the following equivalence relation,

which is fulfilled for every admissible activity (xb, vb):

xb ∈ Pb(vb) ⇐⇒ vb ∈ Lb(xb)

To deal with the nonempty closed convex input requirement sets Lb(xb) in an appropriate way, the

reciprocal 8 indicator function %(·|Lb(xb)) is introduced. Similar to the original indicator function,

%(vb|Lb(xb)) = 0 if and only if vb ∈ Lb(xb) holds good. On the contrary we now set %(vb|Lb(xb)) =

−∞ instead of +∞ for each inadmissible activity (xb, vb). Every nonempty input requirement set has

an n-proper closed concave indicator function.

cl %(·|Lb(xb)) = %(·|Lb(xb))(3.33)

The abbreviated notation %b ≡ %(·|Lb(xb)) will be used as long as the commodity vectors xb are given.

Again %(·|L6(±)) ≡ %B is the indicator function of the aggregate technology

L6(±) E L1(x1)+µ+ Lν(xν) = {v1+µ+ vν| vb ∈ Lb(xb) ∀ b} ,(3.34)

where the allocation ± = (x1,¼, xν) is held fixed. As the sum of closed sets needs not be closed,

cl %B = %B cannot be assumed a priori. In order to avoid an extensive proof of this equation, this fact is

explicitly stressed in the subsequent Proposition 9.
8 The term "reciprocal" will be dropped in all cases of unambiguity.
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According to (2.2) the concave-conjugate function %b∗ is n-proper closed and concave and corresponds to

the reciprocal support function of the input requirement set:

%b∗(q) = inf
{

qTvb − %b(vb))| xb ∈ _n
}

= inf
{

qTvb| vb ∈ Lb(xb)
}

From an economic point of view, %b∗ is the cost function denoted by %b∗ ≡ cb(·, xb). Again the one-

to-one correspondence between the indicator function and the cost function (%b ↔ %b∗) is determined by

the concave-biconjugate function,

cb∗(·, xb) = %∗∗b = cl %b = %b

in accordance with (3.33).

3.2 Duality of Feasible Activities and Cost Minimization

Suppose now, that the factor endowment v of the economy concerned is fixed and that each firm has

to produce a certain commodity bundle xb. According to this commodity allocation ±, the supremal

convolution (3.35) gives an answer to the question whether it is possible to determine a factor allocation

¯ so that all firms b = 1,¼, ν choose an admissible activity (xb, vb) with the restriction that the factor

demand v1+µ+ vν equal factor supply v.

(%1� µ �%ν)(v) = sup {%1(v1)+µ+ %ν(vν)| v1+µ+ vν = v}(3.35)

If a factor allocation of the above type exists, then %b(vb) = 0 for each firm b and the optimal value

of (3.35) is finite. In all other cases at least one %b takes the value −∞ so that the infimal convolute

(%1� µ �%ν) is also infinite. Therefore, with regard to (3.34) the optimal value may be rewritten as

(%1� µ �%ν) = %(·|L6(±)) ≡ %B.

In accordance with the “concave version” of Theorem 6 (with fb = %b) the minimal total cost at a factor

price vector q results from

(%1� µ �%ν)∗(q) ≡ %B∗(q) E inf
{

qTv− %B(v)| v ∈ _m
}

(3.36)

= %1∗(q)+µ+ %ν∗(q)

:⇐⇒ c(q, ±) = c1(q, x1)+µ+ cν(q, xν),
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where again the commodity allocation ± is given. The two problems (3.35) and (3.36) reflect the analogue

duality of (2.7) and (2.8). Assuming the effective domains n-Dom cb(·, xb), b = 1,¼, ν to have a relative

interior point in common, then Theorem 6 implies

c∗(v, ±) = inf
{

qTv− c(q, ±)| q ∈ _m
}

conjugate of (3.36)(3.37)

= inf
{

qTv− c1(q, x1)−µ− cν(q, xν)| q ∈ _m
}

= sup {c1∗(v1, x1)+µ+ cν∗(vν, xν)| v1+µ+ vν = v} by Theorem 6

= sup {%1(v1)+µ+ %ν(vν)| v1+µ+ vν = v}

= (%1� µ �%ν)(v) cf. problem (3.35)

Having this result in mind, Proposition 9 firstly describes the properties of optimal solutions to (3.36) and

(3.37). Afterwards, we turn to an optimal solution to (3.35). Theorem 7 yields immediately

9 Proposition If the indicator function %B ≡ (%1� µ �%ν) is n-proper and concave, then the

following three conditions on a vector v̂ are equivalent to each other.

q̂ ∈ 1%B(v̂)(3.38a)

q̂Tv− %B(v) achieves its infimum in v at v̂; see (3.36)(3.38b)

%B(v̂)+ %B∗(q̂) = q̂Tv̂(3.38c)

If (cl %B)(v̂) = %B(v̂), then three more conditions can be added to the list.

v̂ ∈ 1%B∗(q̂)(3.38d)

qTv̂− %B∗(q) achieves its infimum in q at q̂; see (3.37)(3.38e)

q̂ ∈ 1(cl %B)(v̂)(3.38f)

Similar to Proposition 1 some remarks on the economic content are handed in referring particularly to the

factors demanded and the common vector of factor prices.

The preceding proposition presupposes a commodity allocation ± = (x1,¼, xν) and investigates the

question whether there are feasible activities for all firms such that they produce altogether the commodity

bundle x = x1+µ+ xν. Regarding (3.38b) and (3.38c), it is worthwhile to recall that %B(v̂) = 0 or

v̂ ∈ L6(±) is equivalent to the existence of a feasible factor allocation ˆ̄, i.e.

∃ ˆ̄ = (v̂1,¼, v̂ν) : v̂ = v̂1+µ+ v̂ν and v̂b ∈ Lb(xb) ∀ b.

While this relationship emphasizes the admissibility of activities, (3.40) stresses their optimality. However,

before proceeding with (3.40) we need some further results. Concerning (3.38d), %B∗ ≡ c(·, ±) has to
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be taken into account. Hence, the assumption that the cost function is differentiable at q̂ implies a formula

similar to Shephard’s lemma,

v̂ = ∇qc(q̂, ±).(3.39)

With the aid of Theorem 9 this statement becomes more concrete by the following

10 Proposition Assuming the convex effective domains n-Dom %b∗, b = 1,¼, ν, to have a relative

interior point in common yields

1%B∗(q) = 1%1∗(q)+µ+1%ν∗(q) ∀ q.

Recall that %b∗ denotes firm b’s cost function cb(·, xb). If v̂ ∈ 1%B∗(q̂) holds good, there is a factor

allocation ˆ̄ with

ˆ̄ = (v̂1,¼, v̂ν), v̂ = v̂1+µ+ v̂ν and v̂b ∈ 1%b∗(q̂) ∀ b.(3.40)

While q̂ solves (3.36) by (3.38e), the allocation ˆ̄ solves the dual problem (3.35). The proof follows the

same arguments as footnote 5. The statement of (3.36) becomes more obvious by noting the next

11 Proposition ("Factor Demand") Let the input requirement set Lb(xb) be nonempty closed and con-

vex and let q be an arbitrary vector of factor prices. Then the superdifferential 1%b∗(q) = 1cb(q, xb)

consists of all points vb – provided this set is not empty – where the linear function qTvb attains its

minimum over Lb(xb).

The statement of this proposition can be compared to (3.39). Assuming differentiable cost functions, the

firms’ specific factor demand results from

v̂b = ∇qcb(q̂, xb) ∀ b,

which is frequently called Shephard’s lemma. Recall that this outcome results from (3.38d), where the

dual condition (3.38a) refers to the inverse correspondence, i.e. explicitly

q̂ ∈ 1%B(v̂) ⇐⇒ v̂ ∈ 1%B∗(q̂)

Geometrically, the left hand side superdifferential corresponds to the normal cone of the set L6(±) at v̂.

This cone includes all price vectors q being normal to L6(±) at the point v̂. Economically, the same factor

prices are valid with respect to all firms:
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12 Proposition ("Common Prices") For a price vector q̂ ,

q̂ ∈
⋂

b=1,¼,ν

1%b(v̂b)

is satisfied if and only if the allocation ˆ̄ solves (3.35) and (3.38a) holds true.

The proof parallels that of Proposition 4 and is omitted. With Proposition 12 the factor price vector q̂ is

not only normal to the set L6(±) at v̂ but also to each input requirement set Lb(xb) at the respective point

v̂b.

3.3 Polar Input Requirement Sets

3.3.1 Duality of Reciprocally Polar Sets and Gauges

Following the arguments of Section 2.3.1, the analysis is now converted to reciprocally polar sets,

Lb◦(xb) E
{

q ∈ Q | qTvb e 1 ∀ vb ∈ Lb(xb)
}

,

which are again closed and convex. Each set Lb◦(xb) consists of all factor price vectors so that the

minimum costs of producing xb do not fall below 1. In contrast to the polar production possibility sets

of (2.15) they do not contain the origin q = 0 and they are not star shaped but aureoled as the input

requirement sets9 themselves, i.e. λLb◦(xb) ⊆ Lb◦(xb) for all λ e 1. As the inequality in the definition

cannot be fulfilled for vb = 0 we have to assume xb 6= 0 for the given commodity allocation ± such that

0 /∈ Lb(xb). Because of the properties of Lb◦(xb) its indicator function %(·|Lb◦(xb)) is n-proper, closed

– hence (3.33) holds analogously – and convex and, particularly, %(0|Lb◦(xb)) = −∞. One important

result is based on the assumption, that Lb(xb) is a closed convex set not containing the origin. If Lb(xb) is

aureoled as well then the one-to-one correspondence Lb(xb) ↔ Lb◦(xb) results from (see Bobzin (1998,

p. 159))

Lb◦◦(xb) = Lb(xb).(3.41)

As long as the commodity allocation ± is held fixed, we make use of the simplified notation

%(·|Lb◦(xb)) ≡ %b◦.

This suggests the assumption that %b◦ is the reciprocally polar function of %b. As it is difficult to prove a

relationship similar to (2.16) regarding aureoled sets not containing the origin, this aspect is omitted. But
9 The assumption of aureoled input requirement sets Lb(xb) corresponds to the assumption of free disposability of inputs. In this

sense idle inputs may be thrown away without disturbing the productions process.
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it is no problem to comprehend that the inequality analogous to (2.17) remains valid.

qTvb e 1 ∀ vb ∈ Lb(xb), ∀ q ∈ Lb◦(xb)(3.42)

To grasp the economic meaning of the concave-conjugate function of %b◦

%b◦∗(vb) E inf
{

qTvb − %b◦(q)| q ∈ Q
}

= inf
{

qTvb| q ∈ Lb◦(xb)
}

(3.43)

we firstly define the reciprocal gauge of a set C by

ψ(z|C) E sup
{

λ e 0| z ∈ λC
}

.

Now t Ib(·, xb) ≡ ψ(·|Lb(xb)) is called the input distance function, whose argument is an input vector

vb. In comparison to the output distance function the newly defined input distance function has a similar

meaning. It may be seen as generalization of a production function in the case of multi-outputs. While

t Ib(·, xb) takes the output vector as given, tOb(·, vb) depends on the parameter vb. Looking back on

(3.43), the relationship between the input distance function and the cost function is determined by the

support functions of the sets Lb(xb) and Lb◦(xb) (cf. Bobzin (1998, Corollary III.16.1)):

%b◦∗(vb) = ψ(vb|Lb(xb)) = t Ib(vb, xb) ∀ vb ∈ K(Lb(xb))(3.44)

%b∗(q) = ψ(q|Lb◦(xb)) = cb(q, xb) ∀ q ∈ K(Lb◦(xb))(3.45)

The enclosed cones K are in general defined by K(C) E {λz| z ∈ C, λ > 0}. Regarding (3.46) and (3.47)

these cones are of importance because they ensure for instance

vb ∈ K(Lb(xb)) ⇐⇒ t Ib(vb, xb) > 0.

Finally, McFadden (1978) has proved that the cost function in (3.45) and the input distance function in

(3.44) are reciprocally polar gauges, i.e.

cb(q, xb) = sup
{

λ e 0| qTvb e λt Ib(vb, xb) ∀ vb ∈ K(Lb(xb))
}

∀ q ∈ K(Lb◦(xb))(3.46)

t Ib(vb, xb) = sup
{

λ e 0| qTvb e λcb(q, xb) ∀ q ∈ K(Lb◦(xb))
}

∀ vb ∈ K(Lb(xb))(3.47)

Hence, both functions satisfy the modified Mahler’s inequality

qTvb e cb(q, xb) t Ib(vb, xb) ∀ vb ∈ K(Lb(xb)), ∀ q ∈ K(Lb◦(xb))

Analogous to (2.18) it may be useful to know the following result on the cost function and the input

distance function as polar gauges.

t Ib(vb, xb) = %b◦∗(vb) = %b∗◦(vb) = cb◦(vb, xb) ∀ vb ∈ K(Lb(xb))
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3.3.2 Dual Operations Regarding Polar Input Requirement Sets

Starting with a commodity allocation ±̂, each firm b shows a unique polar input requirement set Lb◦(xb)

consisting of factor price vectors. If the same price vector is valid for all firms, then it should be an

element of the following intersection

L∩◦(±) E L1◦(x1)∩µ∩ Lν◦(xν).

The properties of polar sets ensue that their intersection L∩◦(±) is closed and convex. Thus, the indicator

function %(·|L∩◦(±)) is closed and concave, however, is it n-proper? Regarding the given commodity

allocation ±, xb 6= 0 has been assumed for all firms. Therefore, each feasible factor allocation has to fulfill

vb 6= 0, b = 1,¼, ν. Now, there is no difficulty to determine a sufficiently large price vector q̃ such that

(3.42) is satisfied for all firms, i.e. q̃ ∈ L∩◦(±). Thus, %(·|L∩◦(±)) is n-proper.

However, q ∈ L∩◦(±) is the same as %1◦(q)+µ+ %ν◦(q) = %(q|L∩◦(±)) = 0. The problem of finding

a cost minimum factor price vector – see (3.50) – has a dual problem, which is now determined by the

supremal convolution instead of the infimal convolution of Section 2. An application of Theorem 6 (with

fb = %b◦) yields

(%1◦+µ+ %ν◦)∗(v) = cl(%1◦∗� µ �%ν◦∗)(v).(3.48)

Neglecting the closure operation on the right hand side of (3.48) implies

(%1◦∗� µ �%ν◦∗)(v) = sup {%1◦∗(v1)+µ +%ν◦∗(vν)| v1+µ+ vν = v}

= sup {t I1(v1, x1)+µ+ t Iν(vν, xν)| v1+µ+ vν = v}
(3.49)

by definition. As the sum of input distance functions has no immediate meaning even for an optimal factor

allocation ˆ̄, the attention is now drawn to the left hand side of (3.48).

(%1◦+µ+ %ν◦)∗(v) = inf
{

qTv− %1◦(q)−µ− %ν◦(q)| q ∈ Q
}

(3.50)

= inf
{

qTv| q ∈ L1◦(x1)∩µ∩ Lν◦(xν)
}

= %∗(v|L∩◦(±))

Hence, we seek for a price vector q common to all firms, which minimizes their total cost.

According to Theorem 3, the concave-conjugate function %∗(·|L∩◦(±)) is not only closed and concave but

also n-proper and

%∗∗(·|L∩◦(±)) = cl %(·|L∩◦(±)) = %(·|L∩◦(±)).

With this information the "concave version" of Theorem 7 can be applied to %∗(·|L∩◦(±)):
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13 Proposition As the total cost %∗(·|L∩◦(±)) is an n-proper closed concave function, the subsequent five

conditions on the pair of points (v̂, q̂) are equivalent to each other.

q̂ ∈ 1%∗(v̂|L∩◦(±))(3.51a)

q̂Tv− %∗(v|L∩◦(±)) achieves its infimum in v at v̂(3.51b)

%∗(v̂|L∩◦(±))+ %(q̂|L∩◦(±)) = q̂Tv̂(3.51c)

v̂ ∈ 1%(q̂|L∩◦(±))(3.51d)

qTv̂− %(q|L∩◦(±)) achieves its infimum in q at q̂; see (3.50)(3.51e)

Regarding (3.51e) it is to be noted that the infimum is finite if and only if %(q̂|L∩◦(±)) = 0 or q̂ ∈

L∩◦(±) holds good. Hence, (3.51c) determines the cost minimum q̂Tv̂.

By Corollary 9.1, the superdifferential1%(q̂|L∩◦(±)) in (3.51d) can be divided into a sum of superdiffer-

entials

1%(q̂|L∩◦(±)) = 1%1◦(q̂)+µ+1%ν◦(q̂)

provided the convex sets Lb◦(xb) have a relative interior point in common. Moreover, it is known that the

relation (3.51d) holds good if and only if there is a factor allocation ˆ̄ such that

ˆ̄ = (v̂1,¼, v̂ν), v̂ = v̂1+µ+ v̂ν and v̂b ∈ 1%b◦(q̂) ∀ b.

While q̂ solves the problem of cost minimization (3.48), we have learned from the arguments in footnote

5 that the factor allocation ˆ̄ is an optimal solution to the dual problem (3.49).

It follows from the supergradient relation that an optimal input vector v̂b is normal to the polar input

requirement set Lb◦(xb) at q̂. At the same time this input vector is cost minimal for the production of xb.

To see this apply Proposition 13 to %b◦∗ instead of %∗(·|L∩◦(±)). The condition (3.51c) becomes then

%b◦∗(v̂b)+ %b◦(q̂) = q̂Tv̂b with %b◦(q̂) = 0

As has been proved in Bobzin (1999, Proposition 3.1), the input distance function %b◦∗ = tOb(·, xb)

achieves the value q̂Tv̂b if and only if v̂b solves the corresponding problem of cost minimization.

Regarding a graphical representation of the price vector q̂, we have to note the completely different

principles of construction regarding the functions %(·|L6(±)) and %∗(·|L∩◦(±)).

q̂ ∈ 1%∗(v̂|L∩◦(±)) by (3.51a)

q̂ ∈ 1%(v̂|L6(±)) by (3.38a)
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If a geometrical representation is needed, one can orientate oneself to the hints on page 14. The same

holds true with respect to the result at the end of Section 2.3.3, i.e. q̂ ∈
⋂

b=1,¼,ν

1%b(v̂b).

3.4 Duality of Cost Minimization and Profit Maximization

This last section returns to the case of immobile factors of production. To stress this assumption we go

back to the notion of countries instead of firms. At the same time the vector of factor prices q ∈ Q is held

fixed so that it is dropped from notation for the sake of clarity.

Given the world output x, the first problem is to find a cost minimum commodity allocation ± = (x1,¼, xν)

so that the country specific outputs xb sum up to x. Technically, this problem corresponds to the infimal

convolution10

(c1� µ �cν)(x) = inf {c1(x1)+µ+ cν(xν)| x1+µ+ xν = x}.(3.52)

Regarding a given commodity price vector p, the convex-conjugate function

(c1� µ �cν)
∗(p) = sup

{

pTx− (c1� µ �cν)(x)| x ∈ _n
}

= c∗1(p)+µ+ c∗ν(p)
(3.53)

determines those commodity bundles x, which maximize total profit. In doing so the profit of each firm

πb(·, p) ≡ c∗b is given by

c∗b(p) = sup
{

pTxb − cb(xb)| xb ∈ _n
}

,(3.54)

where the biconjugate function leads back to the initial cost function, provided the cost function is closed

and convex. This one-to-one correspondence of the cost function and the profit function (cb ↔ cb∗ =

πb(·, p)) is emphasized by

c∗∗b (xb) = sup
{

pTxb − c∗b(p)| p ∈ _n
}

= cl cb(xb) = cb(xb).

If every cb is proper and convex – excluding increasing economies of scale –, then the infimal convolute

(c1� µ �cν) shows these properties, too, and

(c1� µ �cν)
∗∗(x) = cl(c1� µ �cν)(x) = sup

{

pTx− (c1� µ �cν)
∗(p)| p ∈ _n

}

(3.55)

10 The problem (3.52) can equivalently be written as

(c1� µ �cν)(x) = inf
±

{c(q,±)| ± = (x1,¼, xν ), x = x1 +µ+ xν}
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If each country maximizes its profit in accordance with (3.54), then, by (3.53), they behave together as if

they minimize the total cost in the production x by (3.52). The duality of (3.53) and (3.55) is reflected by

the properties of their respective solutions. Theorem 7 yields immediately

14 Proposition Letting (c1� µ �cν) be a proper convex function, then the following three conditions

on the vector x̂ are equivalent to each other.

p̂ ∈ ∂(c1� µ �cν)(x̂)(3.56a)

p̂Tx− (c1� µ �cν)(x) achieves its supremum in x at x̂; see (3.53)(3.56b)

(c1� µ �cν)(x̂)+ (c1� µ �cν)
∗(p̂) = p̂Tx̂(3.56c)

If (cl(c1� µ �cν))(x̂) = (c1� µ �cν)(x̂), then three more conditions can be added to this list.

x̂ ∈ ∂(c1� µ �cν)
∗(p̂)(3.56d)

pTx̂− (c1� µ �cν)
∗(p) achieves its supremum in p at p̂; see (3.55)(3.56e)

p̂ ∈ ∂(cl(c1� µ �cν))(x̂)(3.56f)

Given a pair of dual points (p̂, x̂) satisfying all six conditions, (3.56c) merely states that the total profit

(c1� µ �cν)∗(p̂) equals revenue p̂Tx̂ less cost (c1� µ �cν)(x̂).

An additional information to (3.56d) results from Theorem 9:

15 Proposition If the convex effective domains Dom c∗b, b = 1,¼, ν, have a relative interior point in

common, then

∂(c1� µ �cν)
∗(p) = ∂c∗1(p)+µ+ ∂c∗ν(p) ∀ p

An economic interpretation is more convenient, if Proposition 14 is applied to the cost function cb instead

of (c1� µ �cν). Analogous to (3.56d) the relation x̂b ∈ ∂c∗b(p̂) is satisfied for a closed cost function if

and only if the profit p̂Txb − cb(xb) (which is analogous to (3.56b)) achieves its maximum at x̂b. Thus,

at the optimum the subdifferential of the function c∗b consists of all supplied commodity bundles. Dually,

p̂ ∈ ∂cb(x̂b) holds good.

If (3.56d) is satisfied for the aggregate supply x̂, then a commodity allocation ±̂ exists such that

±̂ = (x̂1,¼, x̂ν), x̂ = x̂1+µ+ x̂ν and x̂b ∈ ∂c
∗
b(p̂) ∀ b.

This allocation solves (3.52) again by the same arguments as known from footnote 5. While this result is

an immediate consequence of Proposition 15 and, therefore, of (3.56d), the last result refers to the inverse

correspondence of (3.56a). It states that the vector of commodity prices p̂ is valid for each country.
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16 Proposition For a price vector p̂ we have

p̂ ∈
⋂

b=1,¼,ν

∂cb(x̂b)(3.57)

if and only if the allocation ±̂ solves the problem (3.52) and (3.56a) holds good.

Again the proof is omitted as it parallels that of Proposition 4. Assuming differentiable cost functions,

(3.57) holds true if and only if all firms b = 1,¼, ν adjust their marginal costs to the commodity prices,

p̂ = ∇cb(x̂b).

4 Résumé

Once the production technology of a firm or an economy has been described by families of convex sets,

the theory of duality is a more powerful tool than commonly known. Given a closed convex set, we

equivalently express this set set by the indicator function, the support function (cost or revenue function)

or the gauge function (distance functions). All of these functions are closely related to each other, even

though they represent different points of view.

In this paper we go one step further ahead obeserving that the sum of convex sets is again convex. Now

the above given instruments can be applied on an aggregated level to the production theory of international

trade. Here the case of internationally immobile factors of production has to be distinguished from inputs

being nationally mobile between firms. The theoretical findings refer to the results of the individual

behavior of the firms as well as the results of their common behavior. One of the most important

observations is a statement of the following kind: if many firms seek to maximize their common revenue,

then it is required that each firm maximizes its own revenue and that all firms face the same commodity

price vector. Given a common price vector, it is presumably more important, that profit maximizing firms

behave as if they maximize their common revenue.
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5 Mathematical Appendix

5.1 Glossary

aureoled The aureoled hull of a set C is defined by aur C = {λx| x ∈ C, λ e 1}. Accordingly, the set
C is called aureoled, if C = aur C.

closed A proper function f is said to be closed, if its epigraph epi f E
{(x
µ

)

∈ _n+1| f (x) d µ
}

is
closed. The closure of a proper convex function f → cl f corresponds to the closure of its epigraph
epi f → cl(epi f ) and can be determined analytically by

(cl f )(z) = lim
λ↑1

f ((1− λ)x+ λz) with z ∈ rint(Dom f ).

The resulting function cl f is closed and convex and it differs from f at most at those points lying
on the relative boundary of Dom f . Similarly an n-proper function f is said to be closed, if its
hypograph hypo f E

{(x
µ

)

∈ _n+1| f (x) e µ
}

is closed.

Dom/n-Dom The effective domain Dom f consists of all points x of the domain of f where f (x) < +∞.
On the contrary the effective domain n-Dom f denotes the set of all points x of the domain of f
where f (x) > −∞.

normal A vector y is normal to a convex set C at a point a ∈ C, if (x − a)Ty d 0 is satisfied for all
x ∈ C. The set of all vectors y normal to C at a is called the normal cone to C at a.

proper/n-proper A function f is said to be proper, if it attains nowhere the value −∞ and if it is finite
for at least one point. A function f is called n-proper, if − f is proper.

relative interior The relative interior of a convex set C ⊂ _n is denoted by rint C and corresponds to the
interior of the affine hull of C.

star shaped The star shaped hull of a set C is defined by ?C = {λx| x ∈ C, 0 d λ d 1}. Accordingly,
the set C is called star shaped, if C = ?C.

5.2 Dual Operations

Regarding notation it is helpful to bear some symbols in mind. All functions marked by a superior star

∗ denote so called convex-conjugate functions. On the contrary concave-conjugate functions are marked

by a lowered star. Polar sets and functions are awarded a superior circle ◦. Lowered circles characterize

reciprocally polar sets and functions. The infimal convolution, which is in the centre of interest, is denoted

by �. This operation is defined by

( f1� µ � fm)(x) E inf { f1(x1)+µ+ fm(xm)| x = x1+µ+ xm}(5.58)

The following theorems are taken from Rockafellar (1972) without their proof. They serve as basis of the

analysis and remain here without any comment.
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1 Theorem (Rockafellar, Theorem 5.4) Let f i (i = 1,¼,m) be proper convex functions on _n. Then

the infimal convolute ( f1� µ � fm) is a convex function on _n.

2 Theorem (Rockafellar, Theorem 9.3) Let f i (i = 1,¼,m) be proper convex functions on _n. If every

fi is closed and f1+µ+ fm is not identically+∞, then f1+µ+ fm is a closed proper convex function.

If the fi are not all closed, but all effective domains Dom f i have a relative interior point in common, then

cl( f1+µ+ fm) = cl f1+µ+ cl fm .

To emphasize the aspect of duality it may be useful to denote the subsequently used spaces by X = _n =

X∗. The convex-conjugate function11 f ∗ : X∗→ [−∞,+∞] of a function f : X→ [−∞,+∞] is

defined by

f ∗(x∗) E sup
{

x∗Tx− f (x)| x ∈ X
}

.

Hence, the pair of functions ( f, f ∗) satisfies the Young-Fenchel inequality

f ∗(x∗)+ f (x) e x∗Tx ∀ x ∈ X, ∀ x∗ ∈ X∗.(5.59)

3 Theorem (Rockafellar, Theorem 12.2) Let f be a convex function. The convex-conjugate function f ∗

is then closed and convex, proper if and only if f is proper. Moreover, f ∗ = (cl f )∗ and f ∗∗ = cl f.

In order to represent a set C ⊂ X by functions we make use of the indicator function δ(·|C) : X →

[0,+∞] with

δ(x|C) E







0 if x ∈ C

+∞ otherwise
(5.60)

Besides that the gauge function γ(·|C) : X → [−∞,+∞] and the support function δ∗(·|C) : X∗ →

[−∞,+∞] will be of major importance.

γ(x|C) E inf
{

λ e 0| x ∈ λC
}

(5.61)

δ∗(x∗|C) E sup
{

x∗Tx| x ∈ C
}

= sup
{

x∗Tx− δ(x|C)| x ∈ X
}

(5.62)

4 Theorem (Rockafellar, Theorem 14.5) Let C be a closed convex set containing the origin. The polar

set C◦ E
{

x∗ ∈ X∗| xTx∗ d 1 ∀ x ∈ C
}

is then another closed convex set containing the origin and

C◦◦ = C. The gauge function γ(·|C) equals the support function δ∗(·|C◦). Dually, the gauge function

γ(·|C◦) corresponds to the support function δ∗(·|C).

11 The biconjugate function f ∗∗, which will be used at a later stage, corresponds to ( f ∗)∗.
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5 Theorem (Rockafellar, Corollary 15.1.2) Let C be a closed convex set containing the origin. Then

γ(·|C) and δ∗(·|C) = γ(·|C◦) = γ◦(·|C) are polar gauges satisfying Mahler’s inequality:

xTx∗ d γ(x|C) γ(x∗|C◦) ∀ x ∈ C, ∀ x∗ ∈ C◦

6 Theorem (Rockafellar, Theorem 16.4)12 Let fi : X → _ (i = 1,¼,m) be proper convex

functions. Then

( f1� µ � fm)
∗(x∗) ≡ f ∗1 (x

∗)+µ+ f ∗m(x
∗)

(cl f1+µ+ cl fm)
∗(x∗) ≡ cl( f ∗1 � µ � f ∗m)(x

∗)

The closure operation can be omitted from the second formula, if the effective domains Dom f i have a

relative interior point in common, and

( f1+µ+ fm)
∗(x∗) = inf

{

f ∗1 (x
∗
1)+µ+ f ∗m(x

∗
m)| x

∗
1+µ+ x∗m = x∗

}

where the infimum is attained for each x∗.

The subsequent results refer to subgradients, where a vector y is said to be a subgradient of the function f

at a point x̂ ∈ X if

f (x) e f (x̂)+ yT(x− x̂) ∀ x ∈ X(5.63)

The set of all subgradients of f at x̂ is called the subdifferential of f at x̂ and is denoted by ∂ f (x̂).13 If

(5.63) is satisfied for the opposite case, where e is substituted by d, then y is called a supergradient of f

at x̂, which is denoted by y ∈ 1 f (x̂).

7 Theorem (Rockafellar, Theorem 23.5) For any proper convex function f and any vector x̂, the follow-

ing three conditions on a vector x̂∗ are equivalent to each other.

x̂∗ ∈ ∂ f (x̂)(a)

xTx̂∗ − f (x) achieves its supremum in x at x̂(b)

f (x̂)+ f ∗(x̂∗) = x̂Tx̂∗(c)

12 Some economic applications of this result can be found in Aubin (1979).
13 In the special case where f is the indicator function of a nonempty set C, i.e. f = δ(·|C), the subdifferential ∂δ(x|C) is the

normal cone to C at x. The subdifferential is empty if x /∈ C.
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If (cl f )(x̂) = f (x̂) , three more conditions can be added to the list.

x̂ ∈ ∂ f ∗(x̂∗)(a∗)

x̂Tx∗ − f ∗(x∗) achieves its supremum in x∗ at x̂∗(b∗)

x̂∗ ∈ ∂(cl f )(x̂)(a∗∗)

7.1 Corollary (Rockafellar, Corollary 23.5.1) Let f be a proper closed convex function. Then the

subdifferentials of the functions f and f ∗ are inverse in the sense of multivalued mappings.

x ∈ ∂ f ∗(x∗) ⇐⇒ x∗ ∈ ∂ f (x) .

7.2 Corollary (Rockafellar, Corollary 23.5.2) Letting f be a proper convex function and x be a point

where f is subdifferentiable, then (cl f )(x) = f (x) and ∂(cl f )(x) = ∂ f (x).

7.3 Corollary (Rockafellar, Corollary 23.5.3) Let C be a nonempty, convex set. Then, for each vector

x∗, the subdifferential of the support function ∂δ∗(x∗|C) consists of points x̂ where the linear function xTx∗

achieves its maximum over C. Notice, that ∂δ∗(x∗|C) may be empty.

8 Theorem (Rockafellar, Theorem 23.7) Let f be a proper convex function and x̂ be a point where f

is subdifferentiable, but f does not achieve its minimum at x̂. Then the normal cone of the set C =
{

x| f (x) d f (x̂)
}

at x̂ is the closure of the convex cone generated by ∂ f (x̂).

Moreover, if x̂ ∈ int(Dom f ), then x∗ is normal to C at x̂ if and only if there is a λ e 0 such that

x∗ ∈ λ∂ f (x̂).

9 Theorem (Rockafellar, Theorem 23.8)14 Let f1,¼, fm be proper convex functions on _n, and let

f = f1+µ+ fm. Then

∂ f (x) ⊃ ∂ f1(x)+µ+ ∂ fm(x) ∀ x .

Moreover, if the convex effective domains Dom f i have a relative interior point in common, then

∂ f (x) = ∂ f1(x)+µ+ ∂ fm(x) ∀ x .

9.1 Corollary (Rockafellar, Corollary 23.8.1) Let C1,¼,Cm be the convex sets in _n whose relative

interiors have a point in common. Then the normal cone to C1 ∩µ∩Cm at any given point x is K1+µ

+ Km, where Ki is the normal cone to Ci at x.

∂δ(x| C1 ∩µ∩Cm) = ∂δ(x|C1)+µ+ ∂δ(x|Cm)

14 Ioffe, Tihomirov (1979, p. 47–50), call this result the Moreau-Rockafellar theorem.
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