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1 Preliminaries

1.1 Characteristics of the Technology

In order to describe the production technology (of a firm or an economy) we
make use of two families of sets, which describe the technological relationship
between the space of factors of productionV = _m

+ and the commodity space
X = _n

+. On the one hand, each memberP(v) of the family of production
possibility sets

(
P(v)| v ∈ V

)
includes all commodity bundlesx ∈ X, which

are producible by an input vectorv ∈ V. On the other hand, the family(
L(x)| x ∈ X

)
consists of input requirement sets, i.e.L(x) includes all input

vectorsv permitting the production ofx. Both families are equivalent, i.e.

x ∈ P(v) ⇐⇒ v ∈ L(x),(1.1)

and they satisfy certain regularity conditions by assumption. In particular
each member of both families is a nonempty closed convex set. The main
difference regarding analytical aspects becomes apparent as follows: whereas
an (aureoled) input requirement setL(x) does not contain the originv = 0
for any commodity bundlex ∈ X\{0}, the possibility of inaction guarantees
the origin x = 0 to be an element of the (star-shaped) production possibility
setP(v). See Färe (1988) or Bobzin (1998) for details.

In the next step economists try to extract activities, which are technologically
efficient, cost minimizing, revenue maximizing and last but not least profit
maximizing. In order to value vectors of outputs or vectors of inputs we need
prices with the spaces of output prices and input prices beingPp = _n

+ and
Q= _m

+, respectively.1

This papers deals with four aspects of duality theory. The first approach
is concerned with the relationship of outputsx and output pricesp given an
input vectorv. The second aspect concentrates on the opposite case, i.e. the
relationship of inputsv and input pricesq holding the output vectorx fixed. In
the third step the attention is directed to the case where the factor endowment
v and the commodity pricesp are given. Finally, the commodity bundlex
and the vector of input pricesq are assumed to be known. While the first two
cases make use of the duality of polar gauges (see Newman (1987) for details),
the third and the fourth case are known from linear programming as shadow
pricing.

1 Formally, the setsPp and Q correspond to the polar cones ofX andV, respectively. Take
for exampleQ = {q ∈ _m

| qTv e 0 ∀ v ∈ V}. This concept is to be distinguished from
that of polar sets which will be introduced at a later stage.
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In what follows we firstly define functions in order to describe the members of
the family

(
P(v)| v ∈ V

)
. In the second step the same is done with respect to

the family
(
L(x)| x ∈ X

)
. For a given input vectorv the revenue functionis

defined as the (convex) support function of the production possibility setP(v)
holding the price vectorp ∈ Pp fixed.

r (p, v)E sup
{
pTx| x ∈ P(v)

}
(1.2)

On the contrary the (dimensionless2) output distance functionis defined by

tO(x, v)E inf {λ e 0| x ∈ λP(v)}.(1.3)

This function may be interpreted as the inverse of Farrell’s output efficiency
measure. AsP(v) is a closed convex set containing the origin it is

x ∈ P(v) ⇐⇒ tO(x, v) d 1.(1.4)

In order to express the preceding two functions as polar gauges it is useful to
describeP(v) by a system of hyperplanes tangent toP(v). In doing so we get

P◦(v) =
{
p ∈ Pp| pTx d 1 ∀ x ∈ P(v)

}
which is called thepolar production possibility set. The roles of the two
functionsr (·, v) andtO(·, v) regarding this set are interchanged. On the one
hand, the output distance function is the (convex) support function3 of P◦(v),
i.e. tO(x, v) = sup

{
pTx| p ∈ P◦(v)

}
. On the other hand, the revenue

function corresponds to the distance function ofP◦(v), i.e. r (p, v) =
inf {µ e 0| p ∈ µP◦(v)}. Similar to (1.4) we have

p ∈ P◦(v) ⇐⇒ r (p, v) d 1.(1.5)

In terms of convex analysisr (·, v) and tO(·, v) may be seen as polar gauges
which satisfy the following

Proposition 1.1 Let P(v) be a nonempty closed convex production possibility
set containing the originx = 0. Then the output distance function tO(·, x)
and the revenue function r(·, x) are polar to each other and fulfil Mahler’s
inequality4

pTx d r (p, v) tO(x, v) ∀ p ∈ Pp, ∀ x ∈ X.(1.6)

2 Presumably, this point shows most obviously that we cannot speak of dual programs holding
a statement of the type supX µ(x) d inf P ν(p).

3 In order to preserve the dimensionless character of the distance function,pTx has to be
divided by 1$.

4 Mahler’s inequality in general deals with the problem of finding “best” pairs of function
( f, g) fulfilling the inequality f (x) · g(y) e xTy ∀x, ∀y .
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Proof: Starting with

r (p, v) = inf {µ e 0| p ∈ µP◦(v)} ∀ p ∈ Pp

we can assumeµ > 0, becauseµ = 0 impliesp = 0 so that (1.6) is satisfied.
Now p/µ ∈ P◦(v) can be rewritten by the definition ofP◦(v):

(p/µ)T(λx) d λ ∀ x ∈ P(v), ∀ λ e 0

If λx is mapped tõx, then

(p/µ)Tx̃ d λ ∀ x̃ ∈ λP(v), ∀ λ e 0

where the minimumλ on the right hand side is equivalent totO(x, v) for all
x ∈ X. The equation

r (p, v) = inf
{
µ e 0| pTx d µ tO(x, v) ∀x ∈ X

}
∀ p ∈ Pp

is usually taken to define the polar of the gaugetO(x, v) and implies (1.6).
�

The analogue definition of thecost function c(q, x)E inf
{
qTv| v ∈ L(x)

}
and theinput distance function tI (v, x)E sup{λ e 0| v ∈ λL(x)} yield sim-
ilar results when defining the reciprocally polar input requirement set by
L◦(x)E{q ∈ Q| qTv e 1 ∀ v ∈ L(x)}. ProvidedL(x) is a nonempty aureoled
closed convex input requirement set not containing the origin then (see Bobzin
(1998, Proposition III.17)

v ∈ L(x) ⇐⇒ t I (v, x) e 1(1.7)

Proposition 1.25 Let L(x) be an input requirement set satisfying the assump-
tions of (1.7). Then the input distance function tI (·, x) and the cost function
c(·, x) are polar to each other and fulfil Mahler’s inequality6

qTv e c(q, x) t I (v, x) ∀ q ∈ K(L◦(x)), ∀ v ∈ K(L(x)).(1.8)

5 Cf. McFadden (1978, Lemma 5) or Bobzin (1998, Corollary III.18.1).
6 Given the commodity bundlex ∈ X, the conesK(L(x))E{λv| v ∈ L(x), λ > 0} and

K(L◦(x))E{λq| q ∈ L◦(x), λ > 0} ensurec(·, x) and t I (·, x) to be positive. It is
important to note that the two cones do not necessarily include the entire boundary of
V or Q, respectively.
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r (p, v) = sup
x

{
pTx| x ∈ P(v)

}
tO(x, v) = sup

p

{
pTx| p ∈ P◦(v)

}

c(q, x) = inf
v

{
qTv| v ∈ L(x)

}
t I (v, x) = inf

q

{
qTv| q ∈ L◦(x)

}
Figure 1: Basic programs of the paper

While the preceding two propositions reflect the horizontal parts of Figure
1, the vertical arrow between the two distance functions is an immediate
consequence of (1.1), (1.4), and (1.7).

t I (v, x) e 1 ⇐⇒ tO(x, v) d 1(1.9)

To be more concrete each feasible activity(v, x) implies t I (v, x) e tO(x, v).
Similarly, the inequalityc(q, x) e r (p, v) will characterize the relationship of
the cost and the revenue function.

Bear in mind that all of the above mentioned functionsr (·, v), tO(·, v), c(·, x),
and t I (·, x) are homogeneous of degree +1. Moreover, one can show that
the output correspondenceP is homogeneous of degreeh if and only if the
inverse input correspondenceL is homogeneous of degree 1/h. In this case
the output distance functiontO(x, ·) and the input distance functiont I (v, ·)
are homogeneous of degree−h and−1/h, respectively. Similarly, the revenue
functionr (q, ·) and the cost functionc(q, ·) are homogeneous of degreeh and
1/h, respectively.

In the case of a homogeneous output correspondence withx 6= 0 we have

t I (v, x) = [tO(x, v)]−1/h(1.10)

For the proof rewrite the definition oft I (v, x) wherex 6= 0 impliesλ > 0.

v ∈ λL(x) ⇐⇒ v/λ ∈ L(x) ⇐⇒ x ∈ P(v/λ) ⇐⇒ x ∈ λ−h P(v)

Now takingµ = λ−h yields (1.10) since

sup
{
λ e 0| x ∈ λ−h P(v)

}
=
[
inf {µ e 0| x ∈ µP(v)}

]−1/h

Comparing (1.10) to (1.9) givest I (v, x) = 1 ⇐⇒ tO(x, v) = 1.
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1.2 Basics of Differential Theory

Before going into further details of the economic analysis, the widely used
concepts of subgradients, supergradients, and gradients are introduced.

A vectory is said to be asubgradientof the function f at point x̂ ∈ X if

f (x) e f (x̂)+ yT(x− x̂) ∀ x ∈ X(1.11)

The set of all subgradients off at pointx̂ is called thesubdifferentialof f at
point x̂ and is denoted by∂ f (x̂).
A vectory is asupergradientof the functiong at x̂ ∈ X if

g(x) d g(x̂)+ yT(x− x̂) ∀ x ∈ X .(1.12)

The set of all supergradients ofg at pointx̂ is called thesuperdifferentialof g
at pointx̂ and is denoted by1g(x̂).

It is immediate from these definitions that a convex functionf attains its
minimum atx̂ if and only if 0 ∈ ∂ f (x̂), i.e.

f (x) e f (x̂) ∀ x ∈ X

Conversely, a concave functiong reaches its maximum atx̂ if and only if 0 ∈
1g(x̂).

For a convex functionf the subdifferential∂ f (x) is a closed (possibly empty)
convex set. If ∂ f (x̂) 6= ∅ , then f is said to besubdifferentiableat pointx̂.
Moreover, for a proper7 convex functionf Rockafellar (1972) proves8

x /∈ Dom f =⇒ ∂ f (x) = ∅ ,

x ∈ rint(Dom f ) =⇒ ∂ f (x) 6= ∅ ,

x ∈ int(Dom f ) ⇐⇒ ∂ f (x) 6= ∅ and bounded.

The concept of gradients is taken from Blum, Öttli (1975). It is slightly
different from the usual definition but more appropriate regarding the Kuhn-
Tucker conditions, which will be used at a later stage. Given a convex set

7 A function f : X→ [−∞,+∞] is said to be proper iff (x) < +∞ for at least onex and
f (x) > −∞ for everyx. The effective domain is defined by Domf = {x ∈ X| f (x) <
+∞}. Sometimes the set n-Domf = {x ∈ X| f (x) > −∞} is also needed.

8 The relative interior of a convex setC ⊂ _n is denoted by rintC. For example, ifC is a
line connecting two distinct pointsx1, x2 in _3, then rintC = C \ {x1, x2

}. Bear in mind
that there is no need to distinguish the relative interior of a setC ⊂ _n from its interior as
long asC is n-dimensional, rintC = int C.
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C ⊂ _n the function f : C→ _ is differentiable at a point̂x ∈ C “regarding
C” if there is a vector∇ f (x̂) such that

(1.13) f (x) = f (x̂)+∇ f (x̂)T(x− x̂)+
r (x− x̂)
‖x− x̂‖

∀ x ∈ C

and lim
x→x̂

r (x− x̂)
‖x− x̂‖

= 0

In general∇ f (x̂) is not uniquely determined. However, ifx̂ ∈ int C and (1.13)
holds good, thenf is differentiableat x̂ in the usual sense, i.e. thegradient
∇ f (x̂) is the vector of partial derivatives evaluated atx̂. Moreover, the gradient
– if it exists – is uniquely determined, providedC is a convex set with intC 6=
∅.

The relationship of subgradients and gradients turns out to be very simple. Let
x be a point at which the convex functionf is finite. If f is differentiable at
pointx, then the gradient∇ f (x) is the unique subgradient off atx, ∂ f (x) =
{∇ f (x)}. Conversely, if a convex functionf has a unique subgradienty(x)
at pointx, then f is differentiable atx and y(x) = ∇ f (x).

2 Revenue Maximization

According to the relationships (1.2) to (1.5) the two programs

r (p, v) = sup
{
pTx| tO(x, v) d 1

}
∀p ∈ Pp(P1)

tO(x, v) = sup
{
pTx| r (p, v) d 1

}
∀ x ∈ X(D1)

are related to each other by Mahler’s inequality (1.6). In order to put the
relationship of a commodity bundlex and its pricesp in concrete form the
following proposition is stated:

Proposition 2.1 For a pair of polar points(p̂, x̂) to satisfy (1.6) for a given
input vector v > 0 as an equation, it is necessary and sufficient that the
output vector̂x solves the problem of revenue maximization(P1) given p̂ ∈
Pp \ {0} or dually thatp̂ is an optimal solution to(D1) given x̂ ∈ X \ {0}.

Provided the functions are differentiable, the Kuhn-Tucker conditions yield two
systems of equations which are dual to each other for an optimal pair of polar
points(p̂, x̂) with p̂Tx̂ = 1 :

∇pr (p̂, v) = x̂(2.1a)

∇xtO(x̂, v) = p̂(2.1b)
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The duality results of this proposi-
x̂ ∈ P(v) p̂ ∈ P◦(v)

tO(x̂, v) = 1 r (p̂, v) = 1

Figure 2:Dual relationships of a pair of
polar points(p̂, x̂)

tion inherit a perfect symmetry for
the casêpTx̂ = 1 which is shown in
Figure 2. In view of dimensional
aspects it may be useful to write

∇xtO(x̂, v) =
p̂

p̂Tx̂

[
1

units ofx

]
The proof of Proposition 2.1 con-
sists of two parts regarding (P1) and

(D1). As the first part parallels the second one, we can ignore one of them.
Here, the Lagrange function for (P1) is chosen

L1(x, λ1) = p̂Tx+ λ1(1− tO(x, v)) ,

where the Lagrange multiplierλ1 is measured in $. The Lagrange multiplier
of the second Lagrange function would have no dimension. Presuming an
input vectorv > 0, the output possibility setP(v) has a relatively interior
point x̃ satisfyingtO(x̃, v) < 1. Thus,x̃ fulfils Slater’s condition such that the
Kuhn-Tucker conditions for (P1)

L1(x̂, λ̂1) e L1(x, λ̂1) ∀ x ∈ X[a]

λ̂1 e 0, 1− tO(x̂, v) e 0, λ̂1(1− tO(x̂, v)) = 0[b]

are necessary and sufficient for(x̂, λ̂1) to be a saddle point of the concave
Lagrange functionL1 or, equivalently, for̂x to solve (P1) forp = p̂.

Regarding the supergradient inequality (1.12), the Lagrange functionL1(·, λ̂1)

attains its maximum at̂x – see condition [a] – if and only ify = 0 is a
supergradient ofL1(·, λ̂1) at x̂, i.e. 0 ∈ 1xL1(x̂, λ̂1).

Since the concave effective domains of the n-proper concave objective function
f0(x) = p̂Tx and the n-proper concave restrictionf1(x) = 1− tO(x, v) have
a relatively interior point in common, i.e._n

∩ rint_n
+ 6= ∅, it follows9

0 ∈ 1xL1(x̂, λ̂1) ⇐⇒ 0 ∈
[
1x f0(x̂)+ λ̂11x f1(x̂)

]
⇐⇒ 0 ∈

[
{p̂} + λ̂11x(−tO(x̂, v))

]
⇐⇒ p̂ ∈ λ̂1 ∂xtO(x̂, v)(2.2)

9 Cf. Rockafellar (1972, Theorem 23.8).
The subdifferential∂ f (x) of a convex function f at point x and the superdifferential
1(− f (x)) of the concave function− f at pointx satisfy −∂ f (x) = 1(− f (x)).
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The assumption̂p 6= 0 requiresλ̂1 > 0 and, therefore,

tO(x̂, v) = 1 and L1(x̂, λ̂1) = p̂Tx̂ = r (p̂, v)

r (p̂, v) tO(x̂, v) = p̂Tx̂or

as stated by Proposition 2.1. Hence, the linear functionp̂Tx achieves
its maximum atx̂ over the convex setP(v), which is equivalent tôx ∈
∂p r (p̂, v) (see Bobzin (1998, Proposition III.8)). Under the assumption of
differentiability this yields (2.1a).

Moreover,p̂ is an optimal solution to

1= tO(x̂, v) = sup
{
pTx̂| r (p, v) d 1

}
= sup

{
pTx̂| p ∈ P◦(v)

}
= sup

{
pTx̂| pTx d 1 ∀ x ∈ P(v)

}
because each alternative price vectorp with tO(x̂, v) > 1 implies x̂ /∈ P(v).
Again this statement is equivalent top̂ ∈ ∂xtO(x̂, v) and the assumption of
differentiability results in (2.1b). Now, in comparison to (2.2)λ̂1 = p̂Tx̂ = 1
holds good.

Finally, we turn over to a parametric variation of the given input vectorv.
Assuming differentiability, the the envelope theorem yields

∇vr (p̂, v) = −r (p̂, v)∇vtO(x̂, v)(2.3)

For a homogeneous technology the most recent gradient can be substituted by
the relationship given in (1.10).

∇vt I (v, x̂) = −
1
h

[tO(x̂, v)]−
1
h−1
∇vtO(x̂, v) = −

1
h
∇vtO(x̂, v)

As will be proved in the subsequent section a cost minimum pair(q̃, ṽ) with
q̃Tṽ = 1 holds∇vt I (ṽ, x̂) = q̃ so that (2.3) becomes10

∇vr (p̂, ṽ) = h q̃ r (p̂, ṽ)
[

$
units ofv

]
(2.4)

For the sake of clarity in the linear homogeneous case withr (p̂, ṽ) = p̂Tx̂ = 1
the factor prices have to agree with their respective marginal revenue.

∇vr (p̂, ṽ) = q̃

There is only little surprise that Euler’s theorem results in

∇vr (p̂, ṽ)Tṽ = h q̃Tṽ r (p̂, ṽ) = h r(p̂, ṽ)

10 Writing out in full we have with respect to dimensions∇vt I (ṽ, x̂) = q̃/q̃Tṽ = q̃.
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3 Cost Minimization

While (P1) and (D1) are concerned with polar gauges, the following programs
reflect the relationship of reciprocally polar gauges. The cost function and the
input distance function are given in the form of (P2) and (D2), respectively.

c(q, x) = inf
{
qTv| t I (v, x) e 1

}
∀q ∈ K(L◦(x))(P2)

t I (v, x) = inf
{
qTv| c(q, x) e 1

}
∀ v ∈ K(L(x))(D2)

Their relationship is discussed in full in Shephard (1953). In particular equa-
tion (3.1a) of the following proposition is frequently referred to as Shephard’s
theorem or Shephard’s lemma. Accordingly, (3.1b) is called Hotelling’s
theorem. However, at this point the two equations are not the result of some
kind of Lagrange duality or of the envelope theorem.11

Proposition 3.1 (Shephard’s Theorem)For a pair of polar points(q̂, v̂) to
satisfy (1.8) for a given commodity bundlex ∈ X \ {0} as an equation,
it is necessary and sufficient that the input vectorv̂ solves the problem of
cost minimization(P2)given q̂ ∈ K(L◦(x)) or dually thatq̂ is an optimal
solution to(D2) given v̂ ∈ K(L(x)).

Provided the functions are differentiable, the Kuhn-Tucker conditions yield two
systems of equations which are dual to each other for an optimal pair of polar
points(q̂, v̂) with q̂Tv̂ = 1 :

∇qc(q̂, x) = v̂(3.1a)

∇vt I (v̂, x) = q̂.(3.1b)

The proof corresponds to that of Proposition 2.1 and is ignored. Once more
the duality shows a perfect symmetry forq̂Tv = 1, which is similar to that of
Figure 2. Provided the Lagrange function of (P2)12

L2(v, λ2; x) = q̂Tv+ λ2(1− t I (v, x))

is differentiable at(v̂, λ̂2, x), the effects of a parametric variation ofx can be
studied. The envelope theorem yields

∇xc(q̂, x) = −c(q̂, x)∇xt I (v̂, x).(3.2)

11 In addition to that the result is independent of any assumption on homogeneity as suggested
by Diewert (1974, p. 112). A correct notion with respect to consumer preferences can be
taken from Blackorby, Primont, Russel (1978, p. 34).

12 Notice thatt I (·, x) is concave for each nonempty convex input requirement setL(x), i.e.
1− t I (·, x) is convex.
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Now, observe (1.10) for a homogeneous technology.

∇xtO(x, v̂) = −h [t I (v̂, x)]−h−1
∇xt I (v̂, x) = −h∇xt I (v̂, x)

By Proposition 2.1 each pair(p, x), which satisfies (1.6) as an equation
(without normalizingpTx = 1), yields

∇xt I (v̂, x) = −
p

hpTx
and ∇xc(q̂, x) =

p c(q̂, x)
hpTx

(3.3)

In the linear homogeneous case the last equation becomes the rule of marginal
cost pricing

∇xc(q̂, x) = p ,

givenc(q̂, x) = q̂Tv̂ = pTx. This case will be dealt with in the next section.

4 Shadow Pricing

4.1 Given Factor Endowment

In accordance with the theory of international trade (e.g. Dixit, Norman
(1980)) it is now assumed that the factor suppliesv of an economy are given.
Holding the vector of output pricesp fixed we reuse (P1)13

r (p, v) = sup
{
pTx| tO(x, v) d 1

}
.(P3)

In the theory of international trade the constrainttO(x, v) d 1 is usually
given in the slightly different form of a transformation functiont(x, v) d 0.
Concerning (1.9) for a feasible activity(v, x) – as a first attempt – the program
(P3) may now be viewed as being opposite to

t I (v, x̂) = inf
{
qTv| c(q, x̂) e 1

}
.

Following the recommendation of Färe (1988), the linear homogeneity of the
cost functionc(·, x̂) gives

tO(x̂, v) d 1 ⇐⇒ t I (v, x̂) =
1
α

inf
{
qTv| c(q, x̂) e α

}
e 1

13 Recall thattO(·, v) is convex. However,t I (v, ·) needs not to be concave. In fact,t I (v, ·) is
quasi-concave iffL is quasi-concave. Hence sup

{
pTx| t I (v, x) e 1

}
is omitted because

it lacks the property of concavity.
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for eachα > 0. Up until nowα is a pure scalar which has no dimension. At
the same timet I (·, x̂) has no dimension by construction. In the next stepx̂
is supposed to be an optimal solution to (P3) such thatr (p, v) = pTx̂ > 0.
Takingα · 1$= r (p, v) then

t I (v, x̂) r (p, v) = inf
q

{
qTv| c(q, x̂) e r (p, v)

}
e r (p, v)(4.1)

is given in $. Besides that the constraint of (P3) yields via (1.9) a weak duality
of the type

inf
q

{
qTv| c(q, x̂) e r (p, v)

}
e sup

x

{
pTx| tO(x, v) d 1

}
(4.2)

However, the latter problem does not depend on any factor price vectorq
and especially the optimal solution of the former problem has no importance.
This relationship will be picked up in the next section concerning linear
programming.

The solution of (P3) has been discussed in section 2. Thus, the attention is
directed to the left hand side of (4.2). Ifq̂ solves

inf
q

{
qTv| c(q, x̂) e r (p, v)

}
(D3)

thenq̂ is called a cost minimal shadow price vector forv. Assuming a feasible
activity (v, x̂), i.e. v ∈ L(x̂), (D3) is a convex program provided the input
requirement set is convex. Notice that the constraintf1(q) = r (p, v)−c(q, x̂)
is defined on the convex set Domf1 = Q. As Q has at least one relatively
interior pointq̃ satisfying f1(q̃) < 0 or c(q̃, x̂) > r (p, v), the vector of
shadow prices̃q fulfils Slater’s conditions so that the following Kuhn-Tucker
conditions are necessary and sufficient for(q̂, λ̂3) to be a saddle point of the
Lagrange functionL3 or, equivalently, forq̂ to solve problem (D3) for the
given input vectorv.

With regard to the Lagrange function including a dimensionless Lagrange
multiplier λ3

L3(q, λ3) = qTv+ λ3
(
r (p, v)− c(q, x̂)

)
the Kuhn-Tucker conditions14

L3(q̂, λ̂3) d L3(q, λ̂3) ∀ q ∈ Q[a]

λ̂3 e 0, r (p, v)− c(q̂, x̂) d 0, λ̂3
(
r (p, v)− c(q̂, x̂)

)
= 0[b]

14 The inequality 0< r (p, v) d c(q, x̂) requiresq ∈ K(L◦(x̂)) so thatc(q, x̂) > 0.
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ensue the existence of a saddle point(q̂, λ̂3).

In accordance with (1.11) the convex Lagrange functionL3(·, λ̂3) attains its
minimum atq̂ (see [a]) if and only ify = 0 is a subgradient ofL3(·, λ̂3) at q̂,
i.e. 0 ∈ ∂qL3(q̂, λ̂3). However each vectory 6= 0 in (1.11) yields also [a]
provided

yT(q− q̂) e 0 ∀q ∈ Q.

With Q= _m
+ it is not too hard to prove that this is equivalent to

y e 0, q̂ e 0, yTq̂ = 0.(4.3)

These conditions will be picked up in (4.8), where the factor supplyv may
differ from the inputs demandedv∗, i.e. y = v− v∗ 6= 0.

Define for the sake of brevityf0(q) = qTv. Both functions – the objective
function f0 and the constraintf1 – are proper and convex. Thus, regarding the
above mentioned Slater’s condition, [a] is equivalent to15

0 ∈ ∂qL3(q̂, λ̂3) ⇐⇒ 0 ∈
[
∂q f0(q̂)+ λ̂3∂q f1(q̂)

]
⇐⇒ 0 ∈

[
{v} + λ̂3∂q(−c(q̂, x̂))

]
⇐⇒ v ∈ λ̂31qc(q̂, x̂)

Assumingv > 0 requiresλ̂3 > 0 andq̂ ∈ Q. Besides that [b] ensues

pTx̂ = r (p, v) = c(q̂, x̂) and(4.4)

L3(q̂, λ̂3) = q̂Tv = t I (v, x̂) r (p, v).(4.5)

At this point it is important to know that the superdifferentialλ̂31qc(q̂, x̂) does
not include any input vector with0 < v∗ < v.16 In this casey = v − v∗ > 0
could be used to produce more of a goodj which has a positive pricep j . But
this contradicts the assumption of a revenue maximizing vector of outputsx̂.
Therefore, in line with the outcomes in Ruys, Weddepohl (1979) regarding
linear programming and duality, we have

t I (v, x̂) = 1,(4.6)

pTx̂ = r (p, v) = c(q̂, x̂) = q̂Tv(4.7)

15 If q lies in the boundary ofQ then1qc(q, x̂)may be empty or even unbounded. In the case
of a Cobb-Douglas production function we have1qc(q, x) = ∅ for every price vectorq
including a zero price. The reason is that the corresponding factor demand goes to infinity.

16 For the comparison of two vectorsx, y ∈ _n we use the following notation:x > y ⇐⇒
x j > y j j = 1,¼, n; x e y ⇐⇒ x j e y j j = 1,¼, n; x ≥ y ⇐⇒ [x e y ∧ x 6= y].
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In comparence to (4.2) this outcome represents the strong duality regarding the
shadow price vector̂q.

Condition (4.5) states that the linear functionqTv attains its minimum over the
convex setL◦(x̂) at the pointq̂/r (p, v). Hence, in contrast to (2.4) the vector
of shadow prices yiels

q̂/r (p, v) ∈ 1vt I (v, x̂)

even forh 6= 1.
Although λ̂31qc(q̂, x̂) does not include any input vectorv∗ with 0 < v∗ < v,
this is perfectly possible for an input vector satisfying0 < v∗ ≤ v. Taking
againy = v − v∗ ≥ 0 results iny ∈ ∂qL3(q̂, λ̂3). Regarding the price vector
q̂ this relation is fulfilled if and only if (4.3) holds true:

v− v∗ e 0, q̂ e 0, (v− v∗)Tq̂ = 0(4.8)

On the one hand, a positive shadow priceq̂ j impliesv j = v
∗
j and, on the other

hand,v j > v∗j requires explicitelŷq j = 0.

Remark (Homogeneity): An output correspondenceP which is homoge-
neous of degree+h yields

x̂ solves (P3)⇐⇒ pTx̂ = r (p, v) ⇐⇒ tO(x̂, v) = 1

⇐⇒ t I (v, x̂) = 1 ⇐⇒ c(q̂, x̂) = q̂Tv

Althoughh can differ from 1, (4.7) states that revenue equals cost. This result
is now discussed in more detail under the assumption of differentiability.

Remark (Differentiability): If L3(·, λ3) is differentiable at̂q ∈ Q “regarding
Q”, then [a] can be substituted by the linearised Kuhn-Tucker condition

∇qL3(q̂, λ̂3)
T(q− q̂) e 0 ∀q ∈ Q.[c]

As Q = _m
+ the linearised Kuhn-Tucker condition [c] is equivalent to both of

the following systems

∇qL3(q̂, λ̂3) e 0, q̂ e 0, ∇qL3(q̂, λ̂3)
Tq̂ = 0[c’]

v− λ̂3∇qc(q̂, x̂) e 0, q̂ e 0,
(
v− λ̂3∇qc(q̂, x̂)

)Tq̂ = 0[c”]

Regarding Euler’s theorem, [c”] yields

t I (v, x̂) r (p, v) = q̂Tv = λ̂3 q̂T
∇qc(q̂, x̂) = λ̂3 c(q̂, x̂)−

14



Therefore, by (4.7),̂λ3 = t I (v, x̂) = 1. The effects of a parametric variation
of the commodity bundlêx can be studied by applying the envelope theorem:

∇xt I (v, x̂) pTx̂+ t I (v, x̂)p = t I (v, x̂)
(
p−∇xc(q̂, x̂)

)
⇐⇒ ∇xc(q̂, x̂) = −

pTx̂
t I (v, x̂)

∇xt I (v, x̂) cf. (3.2)

⇐⇒ ∇xc(q̂, x̂) =
pTx̂

h∇xt I (v, x̂)Tx̂
∇xt I (v, x̂)

According to (1.10) it appears

∇xt I (v, x̂) = −
1
h

[tO(x̂, v)]−
1
h−1
∇xtO(x̂, v)

where the revenue maximizinĝx results intO(x̂, v) = 1. Using (2.1b) without
normalizingpTx̂ = 1 implies

∇xtO(x̂, v) =
p

pTx̂
⇐⇒ ∇xt I (v, x̂) = −

p
hpTx̂

⇐⇒ ∇xc(q̂, x̂) =
p
h

This result confirms (3.3) and leads to marginal cost pricing forh = 1. In
the special case of two commodities (even forh 6= 1) the marginal rate of
transformation takes the form

∂c
∂x1

(q̂, x̂)

∂c
∂x2

(q̂, x̂)
=

p1

p2
=

∂t I

∂x1
(v, x̂)

∂t I

∂x2
(v, x̂)

=

∂tO

∂x1
(x̂, v)

∂tO

∂x2
(x̂, v)

Moreover, Euler’s theorem reveals (4.7), i.e. zero profit for everyh > 0.

1
h

pTx̂ = ∇xc(q̂, x̂)Tx̂ =
1
h

c(q̂, x̂)(4.9)

This result is important to know, because a profit maximizing pricing rule
∇xc(q, x̂) = p is consistent with the shadow pricesq̂ in (4.7) if and only if
h= 1. The relationship of (4.9) states that

∇xc(q̂, x̂) j p if h k 1.

A similar pricing rule regarding inputs results from applying the envelope
theorem with respect to the factor endowmentv.

∇vt I (v, x̂) r (p, v)+ t I (v, x̂)∇vr (p, v) = q̂+ t I (v, x̂)∇vr (p, v)

⇐⇒ ∇vt I (v, x̂) = q̂/r (p, v) cf. (3.1b)
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Again, Euler’s theorem yields (4.5) or similarly (4.4).

According to (2.4), in the special case of two inputs the marginal rate of
substitution becomes

∂r
∂v1

(p, v)

∂r
∂v2

(p, v)
=

q̂1

q̂2
=

∂tO

∂v1
(x̂, v)

∂tO

∂v2
(x̂, v)

=

∂t I

∂v1
(v, x̂)

∂t I

∂v2
(v, x̂)

Summarizing the main results forh= 1 we note

∇qc(q̂, x̂) = v,

∇vt I (v, x̂) = −∇vtO(x̂, v) = q̂/r (p, v),

∇xt I (v, x̂) = −∇xtO(x̂, v) = −p =⇒ ∇xc(q, x̂) = p

In a more condensed form we have

q̂Tv = q̂T
∇qc(q̂, x̂) = c(q̂, x̂) = ∇xc(q̂, x̂)Tx̂ = pTx̂

A point of further research is the question as to how far this result can be
transferred to an economy which consists of many sectors. Although the
answer will be given in another paper, the idea may be pointed out by a
few steps. Following the theory of international trade, suppose that each
commodityx j is produced by a different sector with all production functions
being homogeneous of degree +1.

c(q, x) =
n∑

j=1

c j (q, x j ) =

n∑
j=1

∂c j

∂x j
(q, x j ) x j =

n∑
j=1

b j (q) x j

whereb j (q) denotes the marginal and average cost of sectorj. Moreover,

∇qc j (q, x j ) = ∇qb j (q) x j = v∗j

is the cost minimal factor demand of sectorj. Noting the restriction of (D3)
it is natural to imposeb j (q) e p j on all sectors so that their behavior is
characterized by

(4.7) =⇒ (b j (q̂)− p j )x̂ j = 0 j = 1,¼, n

(4.8) =⇒ (v−
∑

j v∗j )
Tq̂ = 0

No sector is allowed to achieve a positive profit and their common factor
demand must not exceed the given factor supply. Similar results can be found
in Proposition 5.2.
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4.2 Given Amounts of Outputs

In the opposite case of section 4.1 the vector of factor pricesq and the
commodity bundlex are given instead ofp andv. Observing (1.9)

inf
q

{
qTv| t I (x, v) e 1

}
the constraint yields together with (1.4)

t I (x, v) e 1 ⇐⇒ tO(x, v) =
1
α

sup
p

{
pTx| r (p, v) d α

}
d 1

Again for an optimal solution̂v with qTv̂ > 0 we have two associated
programs

c(q, x) = inf
v

{
qTv| t I (x, v) e 1

}
(P4)

tO(x, v) c(q, x) = sup
p

{
pTx| r (p, v) d c(q, x)

}
(D4)

Analogue to (4.2) the weak duality appears to be

inf
{
qTv| t I (x, v) e 1

}
= qTv̂ e p̂Tx = sup

{
pTx| r (p, v̂) d c(q, x)

}
Because a more detailed analysis of this inequality reveals no further insights
of major importance we now turn over to the case of a linear production
technology.

5 Shadow Pricing with a Linear Technology

In order to discuss (4.2) in terms of linear programming it will be useful to go
one step further ahead in duality theory. Starting with the restrictiontO(x, v) d
1 on the right hand side of (4.2), we know that this relation is equivalent to
v ∈ L(x), see (1.1), (1.7), and (1.9). Under the conditions of (1.7) one can
show that the polar set ofL◦(x) satisfies

L(x) = L◦◦(x)E
{
v ∈ V| qTv e 1 ∀q ∈ L◦(x)

}
=
{
v ∈ V| qTv e c(q, x) ∀ q ∈ Q

}
Now the revenue maximization problem becomes a problem with infinitely
many constraints whose structure is discussed in Blum, Öttli (1975).

r (p, v) = sup
{
pTx| qTv e c(q, x) ∀q ∈ Q

}
(5.1)
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With that (4.2) can be discussed in terms of linear programming.

A linear production technology is characterized by anm× n-matrix A where
the constant elementsai j determine the input coefficients of the inputi =
1,¼,m in the production of goodj = 1,¼,m. Now the constraint of (P3)
takes the formAx d v. From the theory of linear programming it is well
known that the following programs

sup
x

{
pTx| Ax d v, x ∈ X

}
(P4)

inf
q

{
qTv| ATq e p, q ∈ Q

}
(D4)

are dual to each other where (4.2) corresponds to

qTv e qTAx e pTx ∀ (x, q) ∈ X× Q.

However, in view of (5.1) the constraints of (P4) may be seen in the form
qT(Ax) d qTv for all q ∈ Q. Actually, this system of inequalities can be found
in the Kuhn-Tucker conditions of (P4). To show this the Lagrangean form,
which is introduced in Walk (1989), is taken as a substitute for the Lagrange
functions of (P4) and (D4):

ϕ(q, x)E pTx+ qTv− qTAx

A point (q̂, x̂) is said to be a saddle point ofϕ with respect toQ× X if

ϕ(q̂, x) e ϕ(q̂, x̂) e ϕ(q, x̂) ∀ (q, x) ∈ Q× X.(5.2)

or, equivalently,

q̂T(v− Ax̂) d qT(v− Ax̂) ∀ q ∈ Q(5.3a)

(p− ATq̂)Tx d (p− ATq̂)Tx̂ ∀ x ∈ X(5.3b)

As Q× X = _m+n
+

the equivalent Kuhn-Tucker conditions describe here the
property of complementary slackness (e.g. Vanderbei (1998)).

Ax̂ d v , x̂ e 0 , q̂T(v− Ax̂
)
= 0 ,(5.4a)

ATq̂ e p , q̂ e 0 ,
(
ATq̂− p

)Tx̂ = 0(5.4b)

They implicitly include the conditions 0d qT(v − Ax̂) for all q ∈ Q and
(p − ATq̂)Tx d 0 for all x ∈ X. Transferred to convex programming (5.3)
corresponds to

qTv− c(q, x̂) e q̂Tv− c(q̂, x̂) ∀q ∈ Q

pTx− c(q̂, x) d pTx̂− c(q̂, x̂) ∀ x ∈ X
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where, by (4.7), q̂Tv = c(q̂, x̂) = pTx̂. In the next step two generalized
conjugate functions17 are defined, wherec∗ corresponds to the restriction of
(5.1) andc∗ is similar to the constraint of (4.1).

c∗(v, x)E inf
{
qTv− c(q, x)| q ∈ Q

}
with c∗(v, x̂) = 0

c∗(p, q)E sup
{
pTx− c(q, x)| x ∈ X

}
with c∗(p, q̂) = 0

The latter problem determines a profit maximum commodity bundlex. On the
other hand, the former problem seeks for a price vector such that the difference
between the value of the given factor endowmentv and the minimum cost in
the production ofx is minimal.

The subsequent analysis is based on the Lagrangean form

ϕ(q, x)E pTx+ qTv− c(q, x) .

By the following definitions

M(q) E sup
x∈X
{ϕ(q, x)} = qTv+ c∗(p, q) Q◦E{q ∈ Q| M(q) < +∞}

m(x) E inf
q∈Q
{ϕ(q, x)} = pTx+ c∗(v, x) X◦E{x ∈ X| m(x) > −∞}

the functions M : Q◦ → _ and m: X◦ → _ constitute a pair of dual
programs.

inf {M(q)| q ∈ Q◦}(P5)

sup{m(x)| x ∈ X◦}(D5)

Here, (D5) is a problem of revenue maximization, where the revenuepTx is
corrected by the cost termc∗(v, x). The opposite problem (P5) seeks to
minimize costqTv plus a term, which has been interpreted as maximum profit.

Regarding these two problems, we have the following

Proposition 5.1 The subsequent three statements are equivalent:

1. The functionϕ has a saddle point (x̂, q̂) ∈ X × Q such that (5.2)
holds good.

17 Analogue to Mahler’s inequality the duality scheme of (convex) conjugate functions deals
with the problem of finding “best” pairs of function( f, g) fulfilling the Young-Fenchel
inequality f (x)+ g(y) e xTy ∀x, ∀y .
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2. X◦ 6= ∅ and Q◦ 6= ∅. The problems(P5) and(D5) are realizable and

min{M(q)| q ∈ Q◦} = ϕ(q̂, x̂) = max{m(x)| x ∈ X◦}

3. There is a pair (x̂, q̂) ∈ X◦ × Q◦ such that

c(q̂, x̂) = pTx̂− c∗(p, q̂)

c(q̂, x̂) = q̂Tv− c∗(v, x̂)

The proof is straight forward and in line with Walk (1989) it is recommended
to go through the following sequence: 1. =⇒ 3. =⇒ 2. =⇒ 1.

Proposition 5.2 (Kuhn-Tucker conditions) Let c(q, x) be concave-convex.
Suppose c to be differentiable at(q̂, x̂) “regarding Q× X”, where Q= _m

+

and X = _n
+. Then the statements of Proposition 5.1 are satisfied if and

only if

∇xc(q̂, x̂)− p e 0 , x̂ ∈ X , x̂T(
∇xc(q̂, x̂)− p

)
= 0 ,

∇qc(q̂, x̂)− v d 0 , q̂ ∈ Q , q̂T(
∇qc(q̂, x̂)− v

)
= 0

Here, the assumption thatc(q, ·) is convex, rules out increasing returns to
scale. The Kuhn-Tucker conditions correspond to the system (5.4). As it is
common practice, the two preceding equalities can be interpreted as follows:
if the marginal cost of goodj exceeds the pricep j , nothing will be produced
(x̂ j = 0). On the other hand,̂x j > 0 implies marginal cost pricing. Moreover,
a positive factor pricêqi induces that the factor supply corresponds to the factor
demand of inputi. Finally, an excess supply of inputi requires a zero pricêqi .
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