Non-Scale Growth, Endogenous Comparative Advantages, and Industrialization

Thomas Christiaans
University of Siegen

Discussion Paper No. 113-03

ISSN 1433-058x
Non-Scale Growth, Endogenous Comparative Advantages, and Industrialization

Thomas Christiaans
Department of Economics, University of Siegen, 57068 Siegen, Germany
christiaans@vwl.wiwi.uni-siegen.de

Abstract. This paper develops a two-sector non-scale growth model and investigates the relationship between international trade, growth, and industrialization. It is shown that the counterfactual prediction of new growth theories regarding a positive effect of population growth on the growth rate of per capita income is alleviated in consideration of international trade. While the growth-trade linkage is positive in most cases, it is negative if the rate of population growth is relatively large and the initial capital stock is relatively small. As the timing of the switch from autarky to free trade affects the process of industrialization, trade policy can influence long-run growth rates even in non-scale growth models.

Keywords: Industrialization – Growth-Trade Linkage – Learning by Investment
JEL-Classification: F43; O14

1 Introduction

Among the objectives of the new growth theory is the endogenous explanation of Kaldor’s stylized fact about the growth of labor productivity without any evident tendency for declining growth rates over time. Jones (1995) pointed out that endogenous growth models such as Romer’s (1990) seminal contribution exaggerate by implying that an increase in the size or scale of an economy permanently increases its long-run growth rate of income per capita. This criticism of such scale models led to the formulation of non-scale models in which long-run per capita growth rates are not linear in population (or another measure of scale) itself but just in the rate of population growth. As the long-run growth rates in non-scale models are usually independent of policy instruments, they are also known as models of semi-endogenous growth.

Eicher and Turnovsky (1999b) analyze the general steady state properties of closed economy non-scale growth models. It is straightforward that these models are reasonably consistent with the well known stylized facts about growth with two exceptions. First, a closed economy model obviously cannot address the empirically observed positive correlation between the growth in the volume of international trade and the growth of output (the growth-trade linkage). Second,
the models are inconsistent with the observed negative correlation between population growth rates and the levels of per capita income (the *population puzzle*). Even though there is no unanimity regarding both of these facts in the literature, a number of cross-country studies have shown that population growth and growth of per capita output are either uncorrelated or even negatively correlated (e.g., Mankiw et al., 1992). While most of the empirical literature finds evidence for a positive growth-trade linkage, Rodriguez and Rodrik (2000) expressed serious scepticism about these results.

It has been shown in Christiaans (2003a) that the population puzzle need not arise in open economies using a model which cannot address the growth-trade linkage, however. It is the purpose of the present paper to present a simple two-sector (manufacturing and agriculture) small open economy non-scale growth model dealing with the growth-trade linkage and at the same time alleviating the strong prediction that an increase in the rate of population growth *always* increases per capita income growth. As there is no unanimity regarding the empirical validity of these stylized facts, it is reasonable to formulate a model allowing for a positive as well as for a negative growth-trade linkage, e.g., in order to identify the reasons for a particular behavior.

Feenstra (1996) has stressed that the literature on trade and growth entails two opposite sets of results. While models based on learning by doing or human capital accumulation (e.g., Lucas, 1988, sec. 5) usually predict unequal growth rates of economies (an exception is Goh and Olivier, 2002), models of endogenous technological change following Romer (1990) establish that trade will lead to a convergence of growth rates across countries. The latter result often depends on the crucial assumption that the international diffusion of knowledge appears simultaneously with trade. As the empirical evidence by Branstetter (2001) suggests, however, knowledge spillovers are primarily intranational and not international in scope.

The present model uses learning by investment as the engine of growth and sticks to the assumption that learning is external on the firm level but internal on the country level. In contrast to former scale models, it is possible to consider a positive rate of population growth in this non-scale model. The growth rates under free trade of the home country as compared to those of the rest of the world will be shown to depend on the relative magnitude of the domestic population growth rate (as compared to the average rate in the rest of the world) and the pattern of specialization, which is related to a process of industrialization or deindustrialization.

If backwardness of a country is measured by a comparative disadvantage in manufacturing, it turns out that under particular circumstances an initially backward country may grow faster under free trade than the rest of the world. In accordance with the empirical results of Rodriguez and Rodrik (2000), there is no unambiguous relationship between trade and growth. The reason is that switchovers in comparative advantages are possible. Depending on the emerging pattern of specialization, there may be a positive or a negative growth-trade linkage. Moreover, it is possible that the growth rate of per capita income temporarily increases when switching to free trade as a result of accelerated
industrialization, which in the long run is not sustainable, however. In such a case the eventually deindustrialized country will nevertheless gain from a relatively high growth rate abroad since its terms of trade will improve relatively fast. A negative linkage occurs if the population growth rate is relatively high and the initial capital stock is relatively small, in which case the home country has an initial comparative advantage in agricultural production.

There is usually no possibility for the government to influence the long-run growth rates of per capita income in closed economy non-scale growth models. International trade, which may affect the policy ineffectiveness in non-scale models, has so far largely been neglected. Whenever trade policy influences the pattern of international specialization, which in turn has an effect on long-run growth rates, trade policy may at the same time be growth policy. Although the present model is not concerned with the derivation of optimum policy measures, it shows that on principle policy ineffectiveness with respect to long-run growth rates does not hold in open economy models of non-scale growth.

Regarding the existing literature, the model is related to Wong and Yip (1999). In particular, it uses the same production structure and it will equally be assumed that a small country faces a given growth rate of the rest of the world. The most important difference is that the labor augmenting learning index has an exponent smaller than one, which implies decreasing returns to knowledge accumulation. This assumption turns the scale model of Wong and Yip (1999) into a non-scale growth model. As to the demand side, a classical savings function will be employed. This assumption simplifies the analysis as compared to the dynamic optimization approach and also appears to be reasonable for a positive theory of economic growth. Other assumptions differ from those of Wong and Yip (1999) just for the sake of simplicity. Instead of taking cumulated output as the learning index, the capital stock will be used, which has the advantage of dropping one state variable. The production function of sector 1 has the Cobb-Douglas form. These two assumptions together greatly simplify the model and enable a full-fledged dynamical analysis that is not confined to the steady state.

The basic closed economy version of the model is presented in Section 2, while Section 3 analyzes the possible steady states and the transitional dynamics of a small economy under free trade with the rest of the world. Longer derivations are relegated to appendices. The final section discusses the main results, their dependence on some of the assumptions, and their policy implications.

2Among the few exceptions are Eicher and Turnovsky (1999a) and Dinopoulos and Segerstrom (1999). As Eicher and Turnovsky (1999a) discuss international capital flows in a one-sector non-scale growth model, there is no possibility to explain international trade by comparative advantages. The two-country model of Dinopoulos and Segerstrom (1999) is concerned with a trade explanation of increasing wage inequality but not with different growth rates in the two economies, although international trade may affect steady state growth rates. Their model is far too much involved to allow for an analysis out of the steady state.

3It should be noted that the steady state growth rates are largely independent of the particular consumption hypothesis. Moreover, the classical savings function involves some degree of rationality since in its extreme version it implies convergence to the golden rule path in the absence of externalities.
2 The Closed Economy

2.1 The Static Equilibrium

Each of a large number of completely identical firms \(j \) of sector 1 uses labor \(L_{1j} \) and capital \(K_j \) to produce its output \(Y_{1j} \) according to the production function

\[
Y_{1j} = K_j^{\alpha} (K^{\beta/(1-\alpha)} L_{1j})^{1-\alpha}, \quad 0 < \alpha, \beta < 1, \quad \alpha + \beta < 1.
\]

The aggregate quantities are given by \(L_1 = \sum_j L_{1j}, K = \sum_j K_j, \) and \(Y_1 = \sum_j Y_{1j} \). The presence of the aggregate capital stock \(K \) implies labor-augmenting technical progress akin to the learning by doing respectively learning by investment formulation of Sheshinski (1967) or the endogenous growth model of Romer (1986). Notice that the exponent of \(K, \beta/(1-\alpha), \) is smaller than one due to the assumption that \(\alpha + \beta < 1 \). If \(1 - \alpha - \beta = 0 \), the model would involve scale-effects (cf. Jones, 1999, for a related discussion). Although the individual production functions will not be used in the sequel, they are stated here in order to emphasize that an external effect of learning by investment is assumed. If learning were internal to firms, the assumption or perfect competition could not be supported.

Under perfect competition, the individual production functions \(j \) can be aggregated to a sectoral production function for the manufactured commodity 1 (cf. e.g. Sargent, 1987, p. 10):

\[
Y_1 = K_1^{\alpha} (K^{\beta/(1-\alpha)} L_1)^{1-\alpha} = K^{\alpha+\beta} L_1^{1-\alpha}, \quad 0 < \alpha, \beta < 1, \quad \alpha + \beta < 1. \quad (1)
\]

While physical capital, \(K \), is exclusively used in sector 1, labor, \(L \), is allocated between both sectors with \(L_i \) denoting the amount of labor employed in sector \(i \) \((i = 1, 2)\). Production in the second sector (agriculture) uses no capital and is linear in labor. To simplify the discussion of different learning opportunities across sectors as much as possible, the input coefficient of labor in sector 2 is constant and normalized to one. Thus, the production function of sector 2 can be written as

\[
Y_2 = L_2. \quad (2)
\]

Of course, \(Y_i, K, L, \) and \(L_i \) depend on time, but for the sake of notational convenience the time index \(t \) has been dropped. The supposed production structure may be considered a minimal approach to a factor endowments theory of international trade in which a weak version of Rybczynski’s theorem holds [cf. (3) and (4) below].

From the full employment condition for labor, \(L_1 + L_2 = L \), and equation (2) one gets \(L_1 = L - Y_2 \), where it is understood that all variables are not negative. Substituting into (1) yields the transformation frontier at any point in time. As is well known in international trade theory, the supply functions in a setting of
perfect competition are the solutions of the revenue maximization problem

$$\max_{Y_1 \geq 0, Y_2 \geq 0} \left\{ pY_1 + Y_2 \mid Y_1 = K^{\alpha+\beta}(L - Y_2)^{1-\alpha} \right\},$$

where \(p \) denotes the relative price of commodity 1 in terms of commodity 2, which is taken as the numéraire. The implied supply functions are

\[
Y_1 = (1 - \alpha)^{(1-\alpha)/\alpha} K^{(\alpha+\beta)/\alpha} p^{(1-\alpha)/\alpha} \tag{3}
\]

\[
Y_2 = L - (1 - \alpha)^{1/\alpha} K^{(\alpha+\beta)/\alpha} p^{1/\alpha} \tag{4}
\]

Complete specialization in agriculture is not possible as long as \(0 < p < \infty \) and \(K > 0 \). The economy will completely specialize in manufacturing, however, if \(p \) or \(K \) take on sufficiently high values.

Households decide about savings and the allocation of consumption with respect to the two commodities. As a simple and reasonable savings hypothesis, an extreme version of the classical savings function is assumed. Accordingly, all capital income is saved and all labor income is consumed. The instantaneous utility function is assumed to be of the Cobb-Douglas form

\[
U(C_1; C_2) = C_1^{\mu_1} C_2^{1-\mu_1},
\]

where \(C_i \) denotes consumption of commodity \(i \), \(i = 1, 2 \), and \(0 < \mu_1 < 1 \). This utility function implies that both commodities are consumed and therefore produced in a closed economy (if feasible). Hence, it follows from equation (2) that the wage rate in terms of the second commodity is given by

\[
w = \frac{\partial Y_2}{\partial L} = \frac{1}{\mu_1}.
\]

Therefore, the representative household at any point in time maximizes his utility function subject to the constraint

\[
pC_1 + C_2 = L.\]

The solution to this problem is

\[
pC_1 = \theta_1 L, \tag{5}
\]

\[
C_2 = (1 - \theta_1)L. \tag{6}
\]

While it is assumed that the agricultural product is a pure consumption good, the manufactured good shall serve for consumption as well as for investment. Thus, the overall demand for the first commodity comprises \(C_1 \) and investment demand.

Equating demand, (6), and supply, (4), of the second commodity yields the relative price in short-run equilibrium:

\[
p = \frac{\theta_1^\alpha L^\alpha}{(1 - \alpha)K^{\alpha+\beta}}. \tag{7}
\]

Notice that the variables \(L \) and \(K \) are predetermined at any point in time. Substituting into the supply functions (3) and (4), respectively, leads to the equilibrium outputs of both sectors as functions of the predetermined variables:

\[
Y_1 = \theta_1^{1-\alpha} K^{\alpha+\beta} L^{1-\alpha} \tag{8}
\]

\[
Y_2 = (1 - \theta_1)L \tag{9}
\]

\[\text{Notice that the transformation frontier is strictly concave. Since physical capital is exclusively used in sector 1, static revenue maximization is determined by the allocation of labor to manufacturing and agriculture. Thus, the dynamic externality of learning by investment has no distorting impact on static revenue maximization, although the private and social marginal productivities of capital do not coincide.}\]
2.2 Dynamics

The population equals the labor force and grows at an exogenous and constant rate \(n, 0 < n < 1 \), that is \(g_L := \dot{L}/L = n \). (In general, derivatives with respect to time are indicated by a dot and the growth rate of any variable \(x \) is denoted as \(g_x \).) As the manufactured good can both be consumed and invested, aggregate gross investment, \(I \), in short run equilibrium is given by the difference between output, \(Y_1 \), and consumption, \(C_1 \), of the first commodity. Neglecting the depreciation of capital for simplicity, gross investment equals net investment:

\[
\dot{K} = I = Y_1 - C_1.
\]

A steady state growth path is defined as a path along which all variables grow at constant rates. Substituting (7) into (5) and dividing by \(Y_1 \) according to (8) implies \(C_1 = (1 - \alpha)Y_1 \). Inserting into (10) and dividing by \(K \) yields \(g_K = \alpha Y_1 / K \). Therefore, the capital-output-ratio in sector 1 must be constant in a steady state (\(g_{Y_1} = g_K \)). Imposing the conditions of steady state growth and using \(g_L = n \), logarithmic differentiation of equations (8), (9), and (7) yields the following growth rates in a long-run equilibrium:

\[
\begin{align*}
g_{Y_1} &= g_K = \frac{1 - \alpha}{1 - \alpha - \beta} \gamma n, \quad (11) \\
g_{Y_2} &= n, \quad (12) \\
g_p &= -\frac{\beta}{1 - \alpha - \beta} n = (1 - \gamma)n. \quad (13)
\end{align*}
\]

Since it has been assumed that \(1 - \alpha - \beta > 0 \), it follows that \(\gamma > 1 \). Thus, the output of the first commodity grows faster than labor and the model generates semi-endogenous per capita growth. Using equations (11)–(13), the steady state growth rate of national income in terms of the second commodity, \(Y = pY_1 + Y_2 \), is

\[
g_Y = (g_p + g_{Y_1}) \frac{pY_1}{Y} + g_{Y_2} \frac{Y_2}{Y} = n.
\]

While this expression would imply that there is no long-run growth of per capita income, \(g_Y/L = 0 \), it must be noted that this result does not take into account that the relative price of the first commodity steadily declines. Thus, the growth rate of national income (per capita) in terms of manufactured goods is

\[
g_{Y/p} = g_Y - g_p = \gamma n, \quad g_{Y/(pL)} = (\gamma - 1)n > 0.
\]

In a steady state, \(g_{Y_1} - \gamma g_L = g_K - \gamma g_L = 0 \) and \(g_{Y_2} - g_L = 0 \), which implies that the following scale adjusted per capita variables are constant in long-run equilibrium:

\[
y_1 := \frac{Y_1}{L_1}, \quad k := \frac{K}{L_1}, \quad y_2 := \frac{Y_2}{L}.
\]

As shown in Appendix A, the model can now be reduced to a differential equation in \(k \) describing the dynamic behavior of the closed economy:

\[
\dot{k} = \alpha \theta_1^{1-\alpha} k^{\alpha + \beta} - \gamma nk.
\]
Since $0 < \alpha + \beta < 1$ has been assumed, it is straightforward that equation (15) possesses a unique positive equilibrium value

$$k_e = \left(\frac{\alpha \theta^1 - \alpha}{\gamma n} \right)^{1/(1-\alpha-\beta)} \quad (16)$$

which is globally stable for any historically given initial value of the scale adjusted per capita stock of capital, $k(0) = k_0 > 0$. It is therefore reasonable to consider the steady state as describing the long-run development of the closed economy.

The implications of this model with respect to the comparison of various autarkic countries are much like those of other standard models of non-scale growth. The following proposition summarizes the main results.

Proposition 1 If the initial scale adjusted per capita stock of capital is positive, there is a unique, globally stable steady state under autarky. In the steady state, both commodities are produced and the production of agricultural goods grows at the rate n. The production of manufactured goods grows at the rate $\gamma n > n$ and the relative price of manufactured goods decreases at the rate $(1 - \gamma)n$. National income per capita in terms of manufactured goods grows at the rate $(\gamma - 1)n > 0$. It is constant in terms of agricultural goods.

3 The Small Open Economy

3.1 Steady State Analysis

Diversification In the case of a small open economy under free trade with the rest of the world (ROW), the time path of the relative price p of the manufactured commodity in terms of the agricultural good is exogenously given by the world market. Accordingly, p is from now on interpreted as being exogenous to the home country. The allocation of consumption depends on p and supply and demand need not be equalized in the domestic markets. With respect to the dynamic behavior of the model, it is sufficient to consider the households’ savings decision. The supply functions are (3) and (4) as before.

It will be assumed that all parameters of the ROW are equal to the corresponding parameters of the home country, except for the rate of population growth, which may be $n^* \neq n$. This assumption implies that all steady state growth rates derived in Section 2 may now be reinterpreted as being the growth rates of the ROW, exogenous to the home economy.\(^5\) Supposing that the ROW is in a steady state, the exogenous growth rate of the price ratio is

$$g_p = -\frac{\beta}{1 - \alpha - \beta} n^* = (1 - \gamma)n^* \quad (17)$$

For ease of reference, the assumptions on which all of the following propositions are based are summarized: The home country produces according to (1), (2),

\(^5\)If n exceeded n^*, the home country would necessarily become a large country in the long run. It should be noted, however, that n^* has to be interpreted as the average growth rate of the ROW, and the ROW consists of a large number of countries. Thus, the assumption of a small country may be justified for a relatively long time horizon.
and \(L_1 + L_2 = L \) in a setting of perfect competition, the population growth rate being \(q_t = n \). Both commodities are consumed, while the first commodity serves also as an investment good. All capital income is saved and all labor income is consumed. The ROW is on a steady state path and the exogenous price ratio declines at the rate \(g_p = (1 - \gamma)n^* \).

As long as production is diversified (i.e., both goods are produced), the wage rate is \(w = 1 \) and aggregate consumption satisfies \(pC_1 + C_2 = L \). The savings-investment decision under the extreme classical savings hypothesis is therefore determined by

\[
pI = pK = pY_1 + Y_2 - L,
\]

which together with (3) and (4) yields

\[
\dot{K} = \alpha(1 - \alpha)^{(1-\alpha)/\alpha}K^{(\alpha+\beta)/\alpha}p^{-(1-\alpha)/\alpha}.
\] (18)

As the ROW is in a steady state, logarithmic differentiation of (18) using (17) implies that a constant growth rate of \(K \) requires

\[
g_K = -\frac{1 - \alpha}{\beta}g_p = \gamma n^*.
\]

Hence, the variable \(k \) defined by

\[
\tilde{k} := Kp^{(1-\alpha)/\beta}
\] (19)

must be constant in a steady state and the dynamics in case of diversification can be analyzed in terms of \(\tilde{k} \). From the definition of \(\tilde{k} \), \(\ddot{k} = g_K\tilde{k} - \gamma n^*\tilde{k} \).

Substitution of \(g_K \) according to (18) (out of the steady state) and noting that

\[
K^{\beta/\alpha}p^{(1-\alpha)/\alpha} = \bar{k}^{\beta/\alpha}
\]

yields

\[
\dot{\tilde{k}} = \alpha(1 - \alpha)^{(1-\alpha)/\alpha}\bar{k}^{(\alpha+\beta)/\alpha} - \gamma n^*\tilde{k}.
\] (20)

Since \((\alpha + \beta)/\alpha > 1 \), the long-run equilibrium \(\bar{k}^e \) is unstable (cf. Figure 1).\(^6\)

Even though the differential equation (20) has an equilibrium solution \(\bar{k}^e > 0 \), the existence of a steady state further requires that \(n = n^* \). A procedure similar to the one used in deriving equation (15) (cf. Appendix A) may be applied in order to express equations (3) and (4) as functions of \(\bar{k} \):

\[
Y_1 = (1 - \alpha)^{(1-\alpha)/\alpha}\bar{k}^{(\alpha+\beta)/\alpha}p^{-(1-\alpha)/\beta},
\] (21)

\[
Y_2 = L - (1 - \alpha)^{1/\alpha}\bar{k}^{(\alpha+\beta)/\alpha}p^{-(1-\alpha-\beta)/\beta}.
\] (22)

\(^6\) Equation (20) is valid for \(t \to \infty \) only if \(\bar{k}_0 \leq \bar{k}_e \). If \(\bar{k}_0 > \bar{k}_e \), there is a finite \(t \) such that \(\lim_{t \to t} k(t) = \infty \), cf. Appendix B. This causes no problems since the economy will switch to complete specialization in the production of the first commodity at a time \(t_1 < t \) in such a case. The dynamic evolution then follows another differential equation. If \(\bar{k}_0 < \bar{k}_e \), it is proven in Appendix D that the economy asymptotically specializes in agriculture. Since \(k(t) > 0 \) and hence \(\dot{K}(t) > 0 \) for any finite time \(t \) in case of a positive initial capital stock, however, a small amount of the first commodity will nevertheless be further produced forever. Thus, equation (20) continues to be valid in this case.
Equations (21) and (17) immediately imply that \(g_{Y_1} = \gamma n^* \) in a steady state. Equation (22), however, implies

\[
g_{Y_2} = n L - n \frac{L - Y_2}{Y_2}.
\]

(23)

Thus, \(g_{Y_2} \) would be constant only if either \(n = n^* \), in which case \(g_{Y_2} = n \), or if \(L/Y_2 \) was constant. The second case implies a contradiction since \(g_{Y_2} = n \) from \(L/Y_2 = \text{const.} \), while \(g_{Y_2} \neq n \) from (23) if \(n \neq n^* \).

In view of these results, diversified production in the long run is a knife-edge event for the domestic economy. If the knife-edge conditions are not met, a process of complete industrialization or deindustrialization will be initiated at the time of switching to free trade. For the sake of completeness, notice that if \(n = n^* \), (17), (21), and (22) immediately imply the final statement of the following proposition, which summarizes the main results.

Proposition 2 A diversified steady state under free trade does not exist unless the growth rates of population at home and in the ROW coincide. If a diversified steady state exists, it is unstable. If the home country starts at the steady state when switching to free trade, all domestic growth rates coincide with the autarkic growth rates of Proposition 1.

Although the implication of complete specialization in the long run may appear to be strange at first sight, it should be taken into account that the two goods in this model must be interpreted as representing the entire industrialized and agricultural sectors, respectively, and that no impediments to international trade exist in the model. As an example, Germany’s 2000 share of agriculture in gross value added has been just about 1.2%, and without the European Union’s

\[\text{7}\] The situation resembles the dynamic Oniki-Uzawa-Bardhan version of the \(2 \times 2 \times 2 \)-model of international trade, where it is impossible for both countries to be on a steady state path unless the population growth rates coincide, cf. Bardhan (1970, p. 53). Although Khang (1971) has proven that, under suitable assumptions, both countries nevertheless asymptotically approach a steady state path, his result hinges on the fact that the relative population size of the country with the larger population growth rate converges to one while its per capita imports approach zero. In effect, the larger country is asymptotically autarkic, while the smaller country asymptotically completely specializes in such a case.
Common Agricultural Policy this share would even have been smaller. On the other hand, Ethiopia’s 2000 share of industry in gross value added was just about 11%. Similar examples could easily be added. The implication of complete specialization under free trade in the long run appears to be quite reasonable.

Comparative Advantages

According to (7), the price ratio under autarky depends on the absolute values of L and K as well as on the preference parameter θ_1. Thus, a general proposition in terms of the variables k and \hat{k} about the comparative advantages at the time when the country opens up to international trade is not possible. E.g., $\tilde{k}_0 > k_e$ does not generally imply that the home country has a comparative advantage in manufacturing. The following proposition is proven in Appendix C, however.

Proposition 3

Suppose that the home country is on its autarkic steady state path at time $t = 0$ ($k_0 = k_e$) when it switches to free trade.

a) If $n = n^*$, the home country has a comparative advantage in manufacturing (agriculture) if $\tilde{k}_0 > k_e$ ($\tilde{k}_0 < k_e$), while no international trade actually occurs if $\tilde{k}_0 = k_e$.

b) If $n < n^*$, the home country has a comparative advantage in manufacturing if $\tilde{k}_0 \geq k_e$. Otherwise, no simple statement is possible.

c) If $n > n^*$, the home country has a comparative advantage in agriculture if $\tilde{k}_0 \leq k_e$. Otherwise, no simple statement is possible.

Proposition 3 together with Proposition 2 implies that actually no international trade takes place at a diversified steady state.

Specialization in Agriculture

To be brief, the expression specialization will always mean complete specialization in the sequel. It is intuitively clear from Figure 1 and rigorously proven in Appendix D that the economy asymptotically specializes in agriculture if $\tilde{k}_0 < k_e$, where \tilde{k}_0 is the initial value of \tilde{k} when the country opens up to international trade. If only the second commodity is produced, the relevant growth rates follow immediately from $Y = Y_2 = L$ and (17):

$$g_Y = g_{Y_2} = n, \quad g_{Y/p} = n + (\gamma - 1)n^*, \quad g_{Y/L} = 0, \quad g_{Y/(pL)} = (\gamma - 1)n^*.$$

Thus, the per capita growth rate of the home economy is determined by the growth rate n^* of world population and independent of the own rate of population growth. Of course, since both commodities are consumed at home, the country imports manufactured goods and exports agricultural goods.

A steady state with specialization in agriculture is sustainable since p continuously declines, that is, the terms of trade of the country exporting agricultural goods steadily improve while there is no increase in productivity of manufacturing at home. In summary:

Proposition 4

If $\tilde{k}_0 < k_e$, the home country asymptotically specializes in agriculture. Its steady state growth rate of per capita income is independent of its own
rate of population growth. Per capita income in terms of manufactured goods grows at the rate \((\gamma - 1)n^* > 0\), while it is constant in terms of agricultural goods.

Suppose that \(n > n^*\). Then the home economy could reach a higher growth rate, \((\gamma - 1)n\), of per capita income by switching to autarky (if \(K > 0\)). Thus, if \(n > n^*\) and \(\hat{k}_0 < \hat{k}_e\), there is a negative growth-trade linkage related to a process of deindustrialization. As will soon be seen, there is a positive growth-trade linkage if \(n > n^*\) and \(\hat{k}_0 > \hat{k}_e\), related to a process of industrialization. In other words, a country with a higher growth rate of population than the ROW and \(\hat{k}_0 < \hat{k}_e\) would be better off by sticking to autarky and waiting till its capital stock has grown to ensure that \(\hat{k}_0 > \hat{k}_e\) (recall equation (19) and note that capital under autarky grows faster than \(p^{(1-\alpha)/\beta}\) falls in the ROW if \(n > n^*\)). It is important to observe that, starting at the autarkic steady state, a comparative advantage in agriculture is necessary but not sufficient for this scenario (cf. Proposition 3).

Although it will be shown that a country will asymptotically specialize in agriculture regardless of the initial value \(\hat{k}_0\) if \(n < n^*\), there is a positive growth-trade linkage in this case. According to Proposition 4, the growth rate of per capita income in terms of manufactured goods is \((\gamma - 1)n^*\), which exceeds the autarkic growth rate according to Proposition 1 if \(n < n^*\).

Specialization in Manufacturing The wage rate is now \(w = p\partial Y_1/\partial L\), and

\[
 wL = (1 - \alpha)pY_1.
\]

Substituting into \(p\dot{K} = pY_1 - wL\) yields

\[
 \dot{K} = \alpha Y_1 = \alpha K^{\alpha + \beta} L^{1-\alpha}, \quad g_K = \alpha k^{\alpha + \beta - 1}. \tag{24}
\]

Inserting \(g_K\) into \(\dot{k} = g_Kk - \gamma nk\) from the definition of \(k\) implies

\[
 \dot{k} = \alpha k^{\alpha + \beta} - \gamma nk. \tag{25}
\]

It follows from this equation that there is a unique and stable long-run equilibrium provided that specialization in manufacturing is sustainable. It is shown in Appendix B for the case of diversification that \(\lim \hat{k}(t) \to \infty\) in finite time if \(\hat{k}_0 > \hat{k}_e\). Thus, since \(p\) declines, the right hand side of (22) implies that \(Y_2(t_1) = 0\) at a finite time \(t_1\) and specialization in manufacturing emerges. Since \(L_1 = L\), it follows from equation (1) that \(gY_1 = gK = \gamma n\) in a steady state. Together with (17) this result yields

\[
 g_Y = \gamma n + (1 - \gamma)n^*, \quad g_{Y/L} = (\gamma - 1)(n - n^*), \quad g_{Y/p} = \gamma n, \quad g_{Y/(pL)} = (\gamma - 1)n.
\]

Of course, the country exports manufactured goods in exchange for agricultural goods.

While a thorough analysis of the transitional dynamics is postponed to Section 3.2, it may be noted at this stage that the steady state with specialization...
in manufacturing is sustainable only if \(n \geq n^* \). To prove this, note that the right hand side of equation (4) must remain non-positive, which requires
\[
\frac{n}{\alpha} g_K + \frac{1}{\alpha} g_p = \frac{\alpha + \beta}{\alpha} \frac{1 - \alpha}{1 - \alpha - \beta} n - \frac{\beta}{\alpha(1-\alpha-\beta)} n^* \iff n \geq n^*.
\]

In summary:

Proposition 5 If \(\tilde{k}_0 > \tilde{k}_e \), there is a finite time \(t_1 \) such that the home country specializes in manufacturing at \(t_1 \). This pattern of specialization is sustainable only if the growth rate of population at home is not smaller than in the ROW. If it is sustainable, there is a unique and stable steady state in which the growth rate of per capita income increases in the domestic rate of population growth. The growth rate of per capita income in terms of agricultural goods is \((\gamma - 1)(n - n^*) \), while in terms of manufactured goods it grows at the rate \((\gamma - 1)n \).

In contrast to the case of an economy specializing in agriculture, the faster the domestic population of an industrialized country grows, the higher is the growth rate of per capita income. In contrast to autarky, per capita income now also grows at a positive rate in terms of agricultural goods if \(n > n^* \). This result points to an important source of dynamic gains from trade: If the ROW grows slower than the home country, the domestic terms of trade under free trade fall at a smaller rate than they do in the case of autarky. Thus, if \(n \geq n^* \) and \(\tilde{k}_0 \geq \tilde{k}_e \), there is a non-negative growth-trade linkage. Moreover, if \(n > n^* \), the growth rate of income per capita in terms of manufactured or agricultural goods according to Proposition 5 exceeds the corresponding growth rates of an agricultural country according to Proposition 4 despite the fact that the terms of trade of the industrialized country worsen steadily.

According to Proposition 3 it is possible that if \(n > n^* \), a country has a comparative disadvantage in manufacturing even if \(\tilde{k}_0 > \tilde{k}_e \). Under free trade, this disadvantage will switch over to an advantage and the country will grow faster than the ROW in the long run. Thus, initial backwardness may be overcome even under free trade if the country has the potential to grow fast, here measured by its relative population growth rate. The comparison of the various possible configurations that have been analyzed (and additionally the knife-edge cases that have been passed over) together with Proposition 3 yields the following

Proposition 6 A negative influence of international trade on per capita income growth occurs if and only if \(n > n^* \) and \(\tilde{k}_0 \leq \tilde{k}_e \). If the home economy starts at its autarkic steady state, an initial comparative advantage in agriculture is a necessary condition for a negative growth-trade linkage.

3.2 Transitional Dynamics

The Dynamical System According to Proposition 5, it is possible that an economy with diversified production under free trade reaches specialization in manufacturing although the specialized steady state is not sustainable if \(n < n^* \). This result suggests the importance of a thorough analysis of the transitional dynamics. As the dynamics in case of diversification or asymptotic specialization in...
agriculture are best described by the variable \(\hat{k} \) while \(k \) is the proper alternative in case of specialization in manufacturing, the analysis of phase diagrams in \((k, \hat{k})\)-space suggests itself.

The following results are proven in Appendix E. The transition line between the regions of diversification and specialization in manufacturing in \((k, \hat{k})\)-space is a hyperbola. Below this hyperbola, the economy is diversified as long as \((k, \hat{k}) > (0, 0)\), and above it specializes in manufacturing. Both isoclines \(k = 0 \) and \(\hat{k} = 0 \) are horizontal lines defined by \(\hat{k} = \hat{k}_1 \) and \(\hat{k} = \hat{k}_2 = \hat{k}_e \) (cf. Figure 1), respectively, if the economy is diversified. In case of specialization in manufacturing, the isoclines are vertical lines defined by \(k = k_1 \) and \(k = k_2 \), respectively, where \(k_1 \) is the equilibrium value of \(k \) in case of specialization in manufacturing. The values \(\hat{k}_1, \hat{k}_2, k_1, \) and \(k_2 \) are defined in Appendix E. The isoclines coincide if \(n = n^* \), while \(\hat{k} = 0 \) lies above (below) \(\hat{k} = 0 \) if \(n < n^* (n > n^*) \). Thus there are three principal cases to consider. Finally, the assumption \(0 < \theta_1 < 1 \) implies that \(k_1 \) exceeds the autarkic equilibrium value \(k_e \) of \(k \) defined in (16). As it is unlikely that an economy starts with \(k > k_e \) when switching to free trade, it is reasonable to concentrate on initial values \(k_0 < k_1 \).

Figure 2. Phase Diagram: \(n = n^* \)

The Case \(n = n^* \) Figure 2 depicts the phase diagram of the home economy for \(n = n^* \). Although a diversified steady state exists since \(\hat{k} = 0 \) and \(\hat{k} = 0 \) coincide, it is unstable. Given the assumption that \(k_0 < k_1 \) at the time when free trade is allowed, the economy starts to the left of \(k_1 \) in Figure 2. Therefore, all depends on whether \(\tilde{k}_0 > \tilde{k}_1 (= \tilde{k}_2 = \tilde{k}_e) \) or \(\tilde{k}_0 < \tilde{k}_1 \), where \(\tilde{k}_0 \) is the initial value of \(\tilde{k} \) at the time when the economy switches from autarky to free trade.

\(^8\)A deeper analysis of the case \(k_0 > k_1 \) is of minor interest and will not be pursued here. Notice that it is impossible to infer from the phase diagram alone whether a trajectory starting in the upper right region reaches an equilibrium with specialization in manufacturing or switches to diversification to the right of \(\hat{k} = 0 \). An analysis of the dynamics in such a case by explicit solution of equations (25) and (A11), where it is also shown that \(\hat{k} \) asymptotically approaches a finite equilibrium value on \(\hat{k} = 0 \) if specialization is sustainable, is available from the author upon request.
In the first case, the home country will eventually specialize in the production of commodity 1, and in the second case, it will asymptotically specialize in the production of commodity 2. As the growth rates at the diversified steady state coincide with the autarkic growth rates (cf. Proposition 2), there is no possibility for the home country to influence its initial position by sticking to autarky for a longer time. E.g., if industrialization at home started later than in the ROW, the domestic capital stock would be smaller than on average in the ROW and $\bar{k}_0 < \bar{k}_1$.

Figure 3. Phase Diagram: $n < n^*$

The Case $n < n^*$ As can be seen from Figure 3, the economy asymptotically specializes in agricultural production, regardless of the initial values (cf. Proposition 5). The figure includes just one trajectory that shows how an economy evolves which starts with a comparative advantage in manufacturing (cf. Proposition 3) but has a relatively small rate of population growth. Starting from diversification, the economy specializes in manufacturing for a finite time interval and eventually enters the region of diversification again, from which it converges to asymptotical specialization in agriculture. Thus, an industrialized country with too low a growth rate looses its competitiveness under free trade and becomes deindustrialized. The reason is that the domestic capital stock grows at the rate γn, while in the ROW it grows at the average rate $\gamma n^* > \gamma n$.

The Case $n > n^*$ Finally, if $n > n^*$, the situation shown in Figure 4 is similar to the case $n = n^*$. If $\bar{k}_0 > \bar{k}_2$, the economy specializes in manufacturing in the long run, and if $\bar{k}_0 < \bar{k}_2$, it asymptotically specializes in agriculture.\(^9\) In contrast to the case $n = n^*$, however, the movement of k need not be monotonous. Moreover, as the growth rate g_K of capital under free trade at $\bar{k} = \bar{k}_2$ would be γn^* while under autarky it would be $\gamma n > \gamma n^*$, the home country can influence its initial position. If it switches later from autarky to free trade, its capital stock grows faster than capital in the ROW. Hence, it is possible to reach an initial value

\(^9\)If $\bar{k}_0 = \bar{k}_2$, the economy slides along the isocline $\dot{k} = 0$ with $\lim_{t \to \infty} k(t) = 0$ remaining diversified.
Complete Specialization in Manufacturing

Figure 4. Phase Diagram: $n > n^*$

$k_0 > k_2$ and to avoid long-run specialization in agriculture.

4 Concluding Remarks

The extension of a simple non-scale growth model by a second sector and international trade reveals that the rate of population growth is an important determinant of endogenous comparative advantage, industrialization, and long-run growth. International trade leads to a process of industrialization or deindustrialization of the domestic economy, which in turn explains differences in long-run growth rates and in the effects of the population growth on per capita income growth across various countries. E.g., the growth rate of per capita income in terms of manufactured goods increases in the population growth rate in industrialized countries but not in agricultural countries, where the growth rate depends on the growth rate abroad. A country with a relatively high growth rate of population enjoys a positive growth-trade linkage if it has an initial comparative advantage in manufacturing but a negative linkage is possible in case of a disadvantage leading to a process of deindustrialization. A country with a relatively low rate of population growth ($n < n^*$) may even lose an initial comparative advantage in manufacturing and become deindustrialized in the long run. Nevertheless, it gains from international trade because its terms of trade improve faster under free trade than its price ratio under autarky.

The possibility of deindustrialization in case of a relatively small initial capital stock is akin to the low-level traps known in neoclassical growth theory (for a recent analysis, cf. Deardorff, 2001). The present model goes a step ahead in showing that there are not only low-level traps, but also low-growth rate traps, which appear in an otherwise well-behaved model of international trade without any strange assumptions. In fact, it is possible that the long-run per capita growth rate in industrialized countries is higher than in rural countries although the terms of trade of exporters of manufactured goods steadily decline. If agricultural goods were sufficiently inferior to prevent the terms of trade of
manufacturing countries from declining, this prediction would be reinforced.

These results show that there is no simple answer to the question about the best development policy (outward-looking or import substitution). A country with a relatively high growth potential (here measured by the growth rate of population) will suffer from a negative growth-trade linkage related to a process of deindustrialization if it opens up to international trade too early, but it enjoys a higher growth rate under free trade if it is able to start with a comparative advantage in manufacturing. Thus, the timing of the switch from autarky to free trade matters. In this sense, there is no policy ineffectiveness in this non-scale growth model and some temporary policy measures aimed at protecting infant industries may be reasonable. This prediction accords well with the empirical evidence about the growth of the East Asian newly industrialized countries. Although these are often quoted as examples for a successful development under free trade, a closer look at the facts reveals that they did not strictly stick to a neutral, outward-looking development strategy (for the case of South-Korea, cf. Pack and Westphal, 1986), but engaged in an industrial policy aiming at an accelerated industrialization.

While a country with a relatively low growth potential will enjoy a positive growth-trade linkage, it must be noted that this result crucially hinges on the assumed preferences, which imply improving terms of trade of the agricultural societies. Also, measuring the growth potential by the rate of population growth may be appropriate in some cases, but not always. E.g., specific applications require to distinguish between population and the labor force or even human capital and raw labor. A country may also gain from international knowledge spillovers which have been neglected here on the basis of the empirical evidence by Branstetter (2001) as a first approximation to reality. This evidence does not exclude any international spillovers. It is obvious that international trade will at least transfer the knowledge about the existence of commodities which are not available at home. The flow of such basic knowledge, however, would only be prevented in case of prohibitive protectionism. All of these issues point to possible extensions of the model for future research.

Appendix

A Reduction of the Closed Economy Model to Equation (15)

Substituting (8), (5), and (7) into (10) yields

\[g_K = \frac{K}{\bar{K}} = \alpha \theta_1^{1-\alpha} K^{\alpha+\beta-1} L^{1-\alpha} = \alpha \theta_1^{1-\alpha} \left(\frac{K}{L} \right)^{\alpha+\beta-1} L^\gamma(\alpha+\beta-1) L^{1-\alpha} = \alpha \theta_1^{1-\alpha} k^{\alpha+\beta-1}, \]

because, according to the definition of \(\gamma, \gamma(\alpha+\beta-1)+1-\alpha = 0 \). From the definition of \(k, \bar{k} = g_K k - \gamma nk \), which together with the expression for \(g_K \) implies (15). Finally, note that equations (8), (9), and (7) may similarly be expressed in terms of the scale adjusted per capita variables (14):

\[y_1 = \theta_1^{1-\alpha} k^{\alpha+\beta}, \quad y_2 = 1-\theta_1, \quad p = \frac{\theta_1^\gamma}{(1-\alpha)k^{\alpha+\beta}} L^{-\beta/(1-\alpha-\beta)} = \frac{\theta_1^\gamma}{(1-\alpha)k^{\alpha/\gamma}} K^{-\beta/(1-\alpha)}, \]

(A1)
Thus, if k converges to its long-run equilibrium, so do y_1, y_2, and p, where the latter falls at the constant rate $(1 - \gamma)\alpha$ in the steady state.

B Explicit Solution of Equation (20)

Equation (20) is a Bernoulli equation. Thus, it is straightforward to calculate its explicit solution as (cf. any textbook on ordinary differential equations):

\[
\tilde{k}(t, \tilde{k}_0) = \left[\left(\tilde{k}_0^{-\beta/\alpha} - \tilde{k}_e^{-\beta/\alpha} \right) e^{\frac{\beta}{\alpha} \gamma n^* t} + \tilde{k}_e^{-\beta/\alpha} \right]^{-\alpha/\beta},
\]

(A2)

where

\[
\tilde{k}_e = \left(\frac{\gamma n^*}{\alpha(1 - \alpha)(1 - \alpha)/\alpha} \right)^{\alpha/\beta}.
\]

(A3)

It is now readily seen that $\lim_{t \to \infty} \tilde{k}(t, \tilde{k}_0) = 0$ if $\tilde{k}_0 < \tilde{k}_e$, and that there exists a $\tilde{t} < \infty$ such that $\lim_{t \to \tilde{t}} \tilde{k}(t, \tilde{k}_0) = \infty$ if $\tilde{k}_0 > \tilde{k}_e$.

C Proof of Proposition 3

In order to prove Proposition 3, the price ratios under autarky and on the world market must be distinguished. Thus, deviating from notation in the main text, p now denotes the price ratio under autarky at home while p^* is the world market price ratio. Substituting k_e from (16) into (A1) yields the price ratio under autarky for $k_0 = k_e$ at time $t = 0$:

\[
\text{if } k_0 = k_e, \quad \text{then } p = \left(\frac{\gamma n^*}{\alpha(1 - \alpha)(1 - \alpha)/\alpha} \right)^{\alpha/(1 - \alpha)} K(0)^{-\beta/(1 - \alpha)}. \quad \text{(A4)}
\]

Setting $\tilde{k}_0 = K(0)(p^*)^{(1 - \alpha)/\beta} \lesssim \tilde{k}_e$ and using \tilde{k}_e provided in (A3) implies

\[
\tilde{k}_0 \lesssim \tilde{k}_e \iff p^* \gtrless \left(\frac{\gamma n^*}{\alpha(1 - \alpha)(1 - \alpha)/\alpha} \right)^{\alpha/(1 - \alpha)} K(0)^{-\beta/(1 - \alpha)}. \quad \text{(A5)}
\]

Proposition 3 follows from comparing the price ratios in (A4) and (A5) for the various cases.

D Asymptotic Specialization in Agriculture

From equation (21), in order to prove asymptotic specialization in agriculture, it has to be shown that $\tilde{k}_0 < \tilde{k}_e$ implies $\lim_{t \to \infty} \tilde{k}(t)^{(\alpha + \beta)/\alpha} p(t)^{-(1 - \alpha)/\beta} = 0$. Using equation (A2) and $p(t) = p_0 e^{(1 - \gamma)\alpha n^* t}$ according to (17), the product on the left hand side in case of $\tilde{k}_0 < \tilde{k}_e$ is

\[
p_0^{-(1 - \alpha)/\beta} \left[\left(\tilde{k}_0^{-\beta/\alpha} - \tilde{k}_e^{-\beta/\alpha} \right) e^{\beta^2 \gamma n^* t/(\alpha(\alpha + \beta))} + \tilde{k}_e^{-\beta/\alpha} e^{-\beta n^* t/(\alpha + \beta)} \right]^{-\alpha/\beta}.
\]

It is straightforward that this expression converges to 0 for $t \to \infty$.

E The Isoclines in Figures 2, 3, and 4

The transition line from diversification to specialization in manufacturing in (k, \tilde{k})-space can be obtained by setting $Y_2 = 0$ in equation (4) and dividing by L. After some by
now well known manipulation, one gets
\[1 = (1 - \alpha)k^{\alpha+\beta}pL^{\beta/(1-\alpha-\beta)}, \]

where it should be recalled that \(k = K/L^\gamma \) according to (14). Substituting \(p = \tilde{k}^{\beta/(1-\alpha)}K^{-\beta/(1-\alpha)} \) from the definition of \(\tilde{k} \) in (19) and rearranging yields
\[1 = (1 - \alpha)^{1-\alpha}k^{\alpha(1-\alpha-\beta)}\tilde{k}^{\beta}, \quad (A6) \]

the hyperbola in Figures 2, 3, and 4. It is straightforward that below this hyperbola the economy is diversified as long as \((k, \tilde{k}) > (0, 0)\), while above it specializes in manufacturing.

The definitions of \(k \) and \(\tilde{k} \) imply \(\tilde{k} = K/L^{\gamma}p^{(1-\alpha)/\beta} \), from which
\[g_{\tilde{k}} = g_k + \gamma(n - n^*), \quad (A7) \]

Substituting \(g_{\tilde{k}} \) from (20) yields
\[\dot{\tilde{k}} = \alpha(1 - \alpha)^{(1-\alpha)/\alpha}\tilde{k}^{\beta/\alpha}k - \gamma nk, \quad (A8) \]

which together with (20) describes the dynamics in case of diversification. The isoclines \(\dot{k} = 0 \) and \(\dot{\tilde{k}} = 0 \) are given by
\[\dot{k} = 0 : \quad \tilde{k} = \tilde{k}_1 := \left(\frac{\gamma n}{\alpha(1 - \alpha)^{(1-\alpha)/\alpha}} \right)^{\alpha/\beta} \quad (or \ k = 0), \quad (A9) \]
\[\dot{\tilde{k}} = 0 : \quad \tilde{k} = \tilde{k}_2 := \left(\frac{\gamma n^*}{\alpha(1 - \alpha)^{(1-\alpha)/\alpha}} \right)^{\alpha/\beta} \quad (or \ \tilde{k} = 0), \quad (A10) \]

where \(\tilde{k}_2 \) equals \(k_e \) defined before, cf. Figure 1.

In the case of specialization in manufacturing, using (25) together with (A7) yields
\[\dot{\tilde{k}} = \alpha k^{\alpha+\beta-1}\tilde{k} - \gamma n^* \tilde{k}, \quad (A11) \]

which together with (25) describes the dynamics in this case. The isoclines \(\dot{\tilde{k}} = 0 \) and \(\dot{k} = 0 \) are given by
\[\dot{\tilde{k}} = 0 : \quad k = k_1 := \left(\frac{\alpha}{\gamma n} \right)^{1/(1-\alpha-\beta)} \quad (or \ k = 0), \quad (A12) \]
\[\dot{k} = 0 : \quad \tilde{k} = k_2 := \left(\frac{\alpha}{\gamma n^*} \right)^{1/(1-\alpha-\beta)} \quad (or \ \tilde{k} = 0), \quad (A13) \]

where \(k_1 \) is the equilibrium value of \(k \) in case of sustainable specialization in manufacturing. Inserting \(k_1 \) and \(\tilde{k}_1 \) or \(k_2 \) and \(\tilde{k}_2 \), respectively, into (A6) reveals that the loci \(\dot{k} = 0 \) and \(\dot{\tilde{k}} = 0 \) are continuous. The formulas (A9) and (A10) imply that \(\dot{k} = 0 \) and \(\dot{\tilde{k}} = 0 \) coincide if \(n = n^* \), and that \(\dot{k} = 0 \) lies above (below) \(\dot{\tilde{k}} = 0 \) if \(n < n^* \) (\(n > n^* \)).
References

Liste der seit 1993 erschienenen Volkswirtschaftlichen Diskussionsbeiträge

List of Economics Discussion Papers released as of 1993

This list, the abstracts of all discussion papers and the full text of the papers since 1999 are available online at http://www.uni-siegen.de/~vwliv/Dateien/diskussionsbeitraege.htm. Starting with paper 60-97, this information can also be accessed at http://ideas.repec.org. Discussion Papers can be only ordered from the authors directly, in exceptional cases from Prof. Dr. R. Pethig, University of Siegen, D- 57068 Siegen, Germany.

38-93 Reiner Wolff, Saddle-Point Dynamics in Non-Autonomous Models of Multi-Sector Growth with Variable Returns to Scale
39-93 Reiner Wolff, Strategien der Investitionspolitik in einer Region: Der Fall des Wachstums mit konstanter Sektorstruktur
40-93 Axel A. Weber, Monetary Policy in Europe: Towards a European Central Bank and One European Currency
41-93 Axel A. Weber, Exchange Rates, Target Zones and International Trade: The Importance of the Policy Making Framework
42-93 Klaus Schöler und Matthias Schlemper, Oligopolistisches Marktverhalten der Banken
43-93 Andreas Pfingsten and Reiner Wolff, Specific Input in Competitive Equilibria with Decreasing Returns to Scale
44-93 Andreas Pfingsten and Reiner Wolff, Adverse Rybczynski Effects Generated from Scale Diseconomies
45-93 Rüdiger Pethig, TV-Monopoly, Advertising and Program Quality
46-93 Axel A. Weber, Testing Long-Run Neutrality: Empirical Evidence for G7-Countries with Special Emphasis on Germany
47-94 Rüdiger Pethig, Efficient Management of Water Quality
48-94 Klaus Fiedler, Naturwissenschaftliche Grundlagen natürlicher Selbstreinigungsprozesse in Wasserressourcen
49-94 Rüdiger Pethig, Noncooperative National Environmental Policies and International Capital Mobility
51-95 Gerhard Brinkmann, Die Verwendung des Euler-Theorems zum Beweis des Adding-up-Theorems impliziert einen Widerspruch
52-95 Gerhard Brinkmann, Über öffentliche Güter und über Güter, um deren Gebrauch man nicht rivalisieren kann
53-95 Marlies Klemisch-Ahlert, International Environmental Negotiations with Compensation or Redistribution
54-95 Walter Buhr and Josef Wagner, Line Integrals In Applied Welfare Economics: A Summary Of Basic Theorems
55-95 Rüdiger Pethig, Information als Wirtschaftsgut
56-95 Marlies Klemisch-Ahlert, An Experimental Study on Bargaining Behavior in Economic and Ethical Environments
57-96 Rüdiger Pethig, Ecological Tax Reform and Efficiency of Taxation: A Public Good Perspective
58-96 Daniel Weinbrenner, Zur Realisierung einer doppelten Dividende einer ökologischen Steuerreform
59-96 Andreas Wagener, Corporate Finance, Capital Market Equilibrium, and International Tax Competition with Capital Income Taxes
60-97 Daniel Weinbrenner, A Comment on the Impact of the Initial Tax Mix on the Dividends of an Environmental Tax Reform
61-97 Rüdiger Pethig, Emission Tax Revenues in a Growing Economy
62-97 Andreas Wagener, Pay-as-you-go Pension Systems as Incomplete Social Contracts
63-97 Andreas Wagener, Strategic Business Taxation when Finance and Portfolio Decisions are Endogenous
64-97 Thomas Steger, Productive Consumption and Growth in Developing Countries
65-98 Marco Runkel, Alternative Allokationsmechanismen für ein Rundfunkprogramm bei endogener Programmqualität
66-98 Jürgen Ehigen, A Comparison of Solution Methods for Real Business Cycle Models
67-98 Peter Seethaler, Zum Einfluß von Devisentermingeschäften auf das Marktgleichgewicht bei asymmetrischer Information
68-98 Thomas Christlaans, A Note on Public Goods: Non-Excludability Implies Joint Consumability
69-98 Michael Gail, Stylized Facts and International Business Cycles - The German Case
70-98 Thomas Eichner, The state as social insurer: labour supply and investments in human capital
71-98 Thomas Steger, Aggregate Economic Growth with Subsistence Consumption
72-98 Andreas Wagener, Implementing Equal Living Conditions in a Federation