Dynamic Macroeconomics Chapter 2: The centralized economy

Günter W. Beck

University of Siegen

April 11, 2011

Overview

1 Selected stylized facts of business cycles

- 2 Model setup Preferences
 - Production technology Budget constraint
- 3 The maximization problem
- Model solution The two-period case The infinite-horizon case
- **6** Model solution: Long-run equilibrium/Steady state
- 6 Model solution: Model dynamics (graphical solution)
- Model simulation and discussion

• Stylized facts = empirical regularities.

 \Longrightarrow Major objective of macroeconomics: Build models which can explain major stylized facts

- In chapter 2: Analyze behavior of consumption and investment.
 Necessary first step: Derive stylized facts concerning the behavior of consumption and investment.
- Procedure:
 - Obtain data (In our case: Euro area data)
 - Filter data (Decompose data into long-run and short-run component).
 - Compute statistics concerning the behavior of macroeconomic time series (Volatility and correlation of time series).

• Data for output, consumption and investment: Original data

🕷 Microsoft Excel - Macrodata.xls																			
:	Ele E	dit	Yjew	Ins	ert	Forma	t.	Icols D	ata	₩indow	Help	Ac	lobe	PDF					
ED				R.	49	68 I	x	Do 196	- 3	127 -	01 +		Σ	- 41	Z 1	d file	æ	0	
					×	1000	39		~		<u> </u>	840	-	2.			~0		
- 24	25 -	9																	
	A1		-		fx.														
	A		В			C		D	8		F			G		Н		1	
1		_	Y		С		1												
2	1970/Q		0.4	471		0.4449	3	0.4995											
3	1970/Q.	2	0.4	564		0.4519	9	0.5179											
4	1970/0	3	0.4	636		0.4581		0.5292											
5	1970/Q	1	0.4	677		0.4648	5	0.5302											
6	1971/Q		0.4	654		0.4679	3	0.5299											-
7	1971/Q.	2	0.4	732		0.4758	3	0.5395											
8	1971/Q	3	0.4	809		0.4807	1	0.5412											
9	1971/Q	1	0.	483		0.4857		0.5489											
10	1972/Q		0.4	891		0.493/	-	0.5552											-
11	1972/0	2	0.	494		0.4968	3	0.5609											-
12	1972/Q	3	0.5	018		0.5064		0.5738											
13	1972/Q	1	0.5	098		0.5119		0.5888											
14	1973/Q		0.5	177		0.6198	3	0.6982											
15	1973/Q	2	0.	525		0.5274		0.5967											-
16	1973/Q	3	0.5	316		0.5299	3	0.6047											
17	1973/Q	4	0.	539		0.5355	2	0.6033											
18	1974/Q		0.5	437		U.535	2	0.6015											
19	1974/Q	2	0.5	453		0.5392	2	0.5867											
20	1974/Q.	3	0.5	462		0.5414		0.585											
21	1974/Q	1	0.5	403		0.6394		0.6/09											_
22	1975/0		0.5	3/3		U.5443	s	0.5677											
Z3	1975/Q	2	0.5	364		0.5472	2	0.5518											
24	1975/Q.	3	0.5	402		0.6544		0.6653											
25	1975/04	1	0.5	493		0.6635		0.6663											
26	1976/Q		0.5	562		0.5697		0.5635											
27	1976/Q.	2	0.5	638		0.5748	3	0.5664											
28	19/6/0	5	0.5	692		U.6802	-	U.6645									_		
29	1976/Q	\$	0.5	(17		U.5855	2	0.6778									_		
30	1977/Q		0.5	813		U.5905	1	0.5885											
31	19/7/Q	2	0.5	821		U.6958	3	U.6804									_		
32	19/7/0	5	0.5	825		U.601	4	U.581									_		
33	19/7/Q	1	0.5	893		U.6058	2	0.6892											
34	1978/Q		0.5	943		0.6079	1	U.6919									_		
35	19/8/00	2	0.5	991	Page 1	U.6127	1	U.6928					• •				0	-10	100-10

I ← ► H / Output - Cyclical component / Consumption / Investment) Original data / Sheet2 / Sheet3 Ready

• Data for output, consumption and investment: Plot of (In) levels

• Data for output, consumption and investment: Plot of level and trend component

 \implies Observation: Variables exhibit long-run growth

• Data for output, consumption and investment: Plot of cyclical component

 \implies Observation: ?

• Data for output, consumption and investment: Plot of cyclical component (identical scale)

\implies Observations:

- ⇒ Consumption is less volatile than output, investment is much more volatile than output.
- \implies Consumption and investment are strongly procyclical.

- To decompose the original time series: Filtering of the original data is necessary.
- Basic intuition:
 - Denote by {y_t}^T_{t=1} the log of a time series (such as GDP, consumption, investment, ...) that you want to detrend.
 - y_t is considered to be composed of a long-run (y_t^{lr}) and a short-run (y_t^{sr}) component as follows:

$$y_t = y_t^{lr} + y_t^{sr}.$$
 (1)

 \implies To perform empirical growth or business cycle analysis: "Filtering" of the data is necessary to obtain either y_t^{lr} or y_t^{sr} .

- To filter data: Several possibilities exist.
- Most popular filter: Hodrick-Prescott filter.

- Hodrick-Prescott (HP) filter: Intuition
 - According to the Hodrick-Prescott filter, the long-run (growth or trend) component is obtained as the solution to the following minimization problem:

$$\min_{\left\{y_{t}^{lr}\right\}_{t=1}^{T}} \sum_{t=1}^{T} \left(y_{t} - y_{t}^{lr}\right)^{2} + \lambda \sum_{t=2}^{T-1} \left[\left(y_{t+1}^{lr} - y_{t}^{lr}\right) - \left(y_{t}^{lr} - y_{t-1}^{lr}\right) \right]^{2}$$
(2)

where the parameter λ must be chosen by the researcher.

- The higher the value of λ, the smoother the trend component becomes (Can you see why?).
- For quarterly data, $\lambda = 1600$ is chosen.

Model setup: Motivation

- Build up a simple macroeconomic model which allows us to analyze the behavior of aggregate output, consumption and investment.
- Model is microfounded:

 \implies Model household and firm behavior explicitly.

• Behavior of macro variables is obtained by aggregating across households and firms.

 \Longrightarrow Simplifying assumptions: All households are equal, all firms are owned by households.

 \implies It is sufficient to solve the decisions problems of the "representative" household/firm.

Model setup: Preferences

- Economy is inhabited by identical consumers.
 - \implies Individual variables are identical to aggregate variables.
- Consumers have preferences over an infinite stream of consumption $c_t, c_{t+1}, ... = \{c_{t+s}\}_{s=0}^{\infty}$.
- The consumer's lifetime utility function is assumed to be **time-separable** and given by:

$$V_t = \sum_{s=0}^{\infty} \beta^s U(c_{t+s})$$
(3)

- β is the individual's subjective time discount factor. We assume that $0<\beta<1$ holds.
- U(.) denotes the period utility function. We assume that it is strictly increasing and concave.

Model setup: Preferences

• Period utility function: Graphical illustration:

 \implies Positive marginal utility: U'(.) > 0.

 \implies Diminishing positive marginal utility: U''(.) < 0.

Production technology

• Output (GDP) is produced using the following production technology:

$$y_t = F(a_t, k_t, n_t), \qquad (4)$$

with

- y_t: Output
- kt: Capital input
- n_t: Labor input
- *a_t*: Level of technology, knowledge, efficiency of work

Production technology

- Assumptions concerning the production function (continued):
 - Constant returns to scale:

$$F(a, ck, cn) = cF(a, k, n) \quad \text{for all } c \ge 0.$$
(5)

• Positive, but declining marginal products of capital and labor

$$\frac{\partial F(\bullet)}{\partial k} > 0 \text{ and } \frac{\partial^2 F(\bullet)}{\partial k \partial k} < 0 \text{ and } \frac{\partial F(\bullet)}{\partial n} > 0 \text{ and } \frac{\partial^2 F(\bullet)}{\partial n \partial n} < 0 \quad (6)$$

• Both production factors are necessary

$$F(a, 0, n) = 0 \text{ and } F(a, k, 0) = 0$$
 (7)

• Inada conditions are satisfied:

$$\lim_{k \to 0} \frac{\partial F(\bullet)}{\partial k} \to \infty, \quad \lim_{k \to \infty} \frac{\partial F(\bullet)}{\partial k} = 0 \text{ and } \lim_{n \to 0} \frac{\partial F(\bullet)}{\partial n} \to \infty, \quad \lim_{n \to \infty} \frac{\partial F(\bullet)}{\partial n} = 0$$
(8)
Gunter W. Beck () Dynamic Macrosconomics April 11, 2011 15 / 48

Production technology

• For the moment, we assume that n_t is constant:

$$n_t = 1. \tag{9}$$

• Then:

$$y_t = F(A_t, k_t, 1) = F(A_t, k_t).$$
 (10)

• Graphical illustration of the production function (A = 1):

Budget constraint

• Period t's budget constraint is given by:

$$y_t = c_t + i_t \tag{11}$$

 \implies Budget constraint of a closed economy without goverment.

• Moreover, the household faces the following condition concerning the evolution of the capital stock:

$$k_{t+1} = k_t + i_t - \delta k_t \iff i_t = k_{t+1} - (1 - \delta) k_t$$
(12)

• Combining the two above equations, the household's budget constraint can be rewritten as (suppressing the A_t in the production function):

$$c_t + k_{t+1} = F(k_t) + (1 - \delta)k_t.$$
(13)

The maximization problem

- The household maximizes lifetime utility given the resource constraint:
 Dynamic (constrained) intertemporal optimization problem.
- The intertemporal optimization problem is given by:

$$\max_{c_{t}, c_{t+1}, \dots; k_{t}, k_{t+1}, \dots} V_{t} = \sum_{s=0}^{\infty} \beta^{s} U(c_{t+s})$$
(14)

s.t.

$$c_{t+s} + k_{t+s+1} = F(k_{t+s}) + (1-\delta)k_{t+s}, \ \forall s > 0.$$
 (15)

- Solution approaches:
 - Transform constrained into unconstrained maximization problem.
 - Lagrange approach.
 - Dynamic programming.

- To illustrate the basic intuition of the model we first solve it for the simple two-period case.
- In this case, the household's maximization problem is given by:

$$\max_{c_{t},c_{t+1},k_{t+1},k_{t+2}} V_{t} = \sum_{s=0}^{1} \beta^{s} U(c_{t+s}) = U(c_{t}) + \beta U(c_{t+1})$$
(16)

s.t.

$$c_t + k_{t+1} = F(k_t) + (1 - \delta)k_t$$
(17)

$$c_{t+1} + k_{t+2} = F(k_{t+1}) + (1-\delta)k_{t+1}$$
(18)

- To solve the model we employ two different approaches:
 - Approach 1: Transform constrained into unconstrained maximization problem and solve the unconstrained problem.
 - Approach 2: Lagrange approach.

- Solution approach 1: Transform constrained into unconstrained maximization problem and solve the unconstrained problem:
 - Solving the two budget constraint for consumption yields:

$$c_t = F(k_t) + (1 - \delta)k_t - k_{t+1}$$
(19)

$$c_{t+1} = F(k_{t+1}) + (1-\delta)k_{t+1} - k_{t+2}.$$
 (20)

 Since the household no longer lives in period t + 2 it will disinvest its complete capital stock in period t + 1 and consume it. That is, we have:

$$k_{t+2} = 0.$$
 (21)

• Period's t + 1 budget constraint then becomes:

$$c_{t+1} = F(k_{t+1}) + (1 - \delta)k_{t+1}.$$
(22)

- Solution approach 1 (continued):
 - Plugging the transformed budget constraints into the objective function yields:

 $\max_{k_{t+1}} V_t = U(c_t) + \beta U(c_{t+1}) =$ = $U(F(k_t) + (1 - \delta)k_t - k_{t+1}) + \beta U(F(k_{t+1}) + (1 - \delta)k_{t+1})$

• The first-order condition is given by (Notation: $U'(.) = \frac{\partial U}{\partial c}$):

$$U'(c_{t})(-1) + \beta U'(c_{t+1}) \left[F'(k_{t+1}) + 1 - \delta\right] \stackrel{!}{=} 0 \quad \iff (23)$$
$$U'(c_{t}) = \beta \left[F'(k_{t+1}) + 1 - \delta\right] U'(c_{t+1})$$

 \implies Intertemporal Euler equation

- Solution approach 1 (continued):
 - Intuition for intertemporal Euler equation:
 - Assume that consumption is reduced by a small amount (denoted by $\Delta c)$ in Period 0.

 \implies Utility in period 0 is reduced by: $U'(c_t) \Delta c$.

- The amount Δc is invested in capital. In period t + 1 this investment leads to additional output of F' (k_{t+1}) Δc.
- Moreover, the household can transform the amount of consumption invested in period t back into consumption goods in period t + 1.
 Since a proportion δ of Δc is lost through appreciation this leads to an increase in consumption by (1 - δ) Δc in period t + 1.
- Overall, the household can increase consumption by f' (k_{t+1}) + 1 − δ in period t + 1 which in turn leads to an increase in period's t + 1 utility by [F' [k_{t+1}] + 1 − δ] U' (c_{t+1}).

- Solution approach 1 (continued):
 - Intuition for intertemporal Euler equation (continued):
 - From today's perspective the utility gain tomorrow is "worth": $\beta \left[F' \left[k_{t+1} \right] + 1 \delta \right] U' \left(c_{t+1} \right).$
 - In the optimum, the utility loss from saving more today must be equal to the discounted utility gain tomorrow (why?). Thus, we must have:

$$U'(c_t) = \beta \left[F'(k_{t+1}) + 1 - \delta \right] U'(c_{t+1})$$
(24)

- Interpretation of the term $F'(k_{t+1}) + 1 \delta$:
 - Assume you invest one unit of consumption in period 0. Then, your consumption in period 1 increases by:

$$\Xi'(k_{t+1}) + 1 - \delta \tag{25}$$

 \implies $F'(k_{t+1}) + 1 - \delta$ represents the gross real interest rate.

- Solution approach 1 (continued):
 - Implications of the Euler equation (1):
 - Assume that the subjective discount factor (β) is equal to the market discount factor $(\frac{1}{F'(k_{r+1})+1-\delta})$.
 - Then, the Euler equation becomes:

$$U'(c_{t}) = \beta \left[F'(k_{t+1}) + 1 - \delta \right] U'(c_{t+1}) \iff U'(c_{t}) = U'(c_{t+1})$$
(26)

 \implies Consumption in the two periods would be equal:

$$c_t = c_{t+1} \tag{27}$$

 \implies Perfect consumption smoothing

- Solution approach 1 (continued):
 - Why do households want to smooth consumption?
 - Illustrative example:
 - Household has log-utility function $(U(c_t) = \ln c_t)$.
 - Household lives for two periods.
 - There is no discounting: $\beta = 1$.
 - Household can choose between two consumption patterns:

 \implies Pattern 1: $c_t = 9$, $c_{t+1} = 1$.

 \implies Pattern 2 (smooth pattern): $c_t = 5$, $c_{t+1} = 5$.

 \implies Which consumption pattern do households prefer?

• Lifetime utility from pattern 1:

$$V_t^1 = \ln(9) + \ln(1) \approx 2.2$$
 (28)

• Lifetime utility from pattern 2:

$$V_t^2 = \ln(5) + \ln(5) \approx 3.2 > 2.2 = V_t^1$$
⁽²⁹⁾

 \implies Households prefer (lifetime-maximizing) smooth pattern 2.

- Solution approach 1 (continued):
 - Implications of the Euler equation (2):
 - How does β (= subjective discount factor) influence the consumption pattern over time?

• From the Euler equation:

$$U'(c_t) = \beta \left[F'(k_{t+1}) + 1 - \delta \right] U'(c_{t+1})$$

we get:

$$\frac{1}{c_{t}} = \beta \left[F'\left(k_{t+1}\right) + 1 - \delta \right] \frac{1}{c_{t+1}} \Longleftrightarrow c_{t+1} = \beta \left[F'\left(k_{t+1}\right) + 1 - \delta \right] c_{t}$$

 \implies A higher value of β (everything else held constant) implies that c_{t+1} is relatively higher compared to c_t .

- Solution approach 1: (continued):
 - Implications of the Euler equation (2):
 - How does $F'(k_{t+1})$ (= marginal product of next period's capital stock) influence the consumption pattern over time?

 $\implies \text{For illustration purposes, we again assume that } U(c_t) = \ln c_t \\ (U'(c_t) = \frac{1}{c_t}).$

• From above we know that the dynamics of *c* is then given by:

$$c_{t+1} = \beta \left[F'(k_{t+1}) + 1 - \delta \right] c_t \tag{30}$$

 \implies A higher value of $F'(k_{t+1})$ implies (everything else held constant) that c_{t+1} is relatively higher compared to c_t (= intertemporal substitution effect).

- Solution approach 2: Lagrange approach:
 - The household's maximization problem is given by:

$$\max_{c_{t},c_{t+1},k_{t+1},k_{t+2}} V_{t} = \sum_{s=0}^{1} \beta^{s} U(c_{t+s}) = U(c_{t}) + \beta U(c_{t+1})$$
(31)

s.t.

$$c_t + k_{t+1} = F(k_t) + (1 - \delta)k_t$$
 (32)

$$c_{t+1} = F(k_{t+1}) + (1-\delta)k_{t+1}$$
(33)

where we have used that

$$k_{t+2} = 0.$$
 (34)

- Solution approach 2 (continued):
 - The associated Lagrange function is given by:

$$\mathcal{L}_{t} = U(c_{t}) + \beta U(c_{t+1}) +$$

$$+\lambda_{t} [F(k_{t}) + (1 - \delta)k_{t} - c_{t} - k_{t+1}] +$$

$$+\lambda_{t+1} [F(k_{t+1}) + (1 - \delta)k_{t+1} - c_{t+1}]$$

$$= \sum_{s=0}^{1} \{\beta^{s} U(c_{t+s}) + \lambda_{t+s} [F(k_{t+s}) + (1 - \delta)k_{t+s} - c_{t+s} - k_{t+s+1}]\}$$
(35)

with $k_{t+2} = 0$.

- Solution approach 2 (continued):
 - The first-order conditions of the maximization problem are given by:
 - With respect to c_t:

$$\frac{\partial \mathcal{L}}{\partial c_t} \stackrel{!}{=} 0 \Longleftrightarrow \mathcal{U}'(c_t) - \lambda_t = 0 \Longleftrightarrow \beta^{t-t} \mathcal{U}'(c_t) = \lambda_t \qquad (36)$$

• With respect to *c*_{*t*+1}:

$$\frac{\partial \mathcal{L}}{\partial c_{t+1}} \stackrel{!}{=} 0 \iff \beta U'(c_{t+1}) - \lambda_{t+1} = 0 \iff \beta^{t+1-t} U'(c_{t+1}) = \lambda_{t+1}$$
(37)

• With respect to k_{t+1} :

$$\frac{\partial \mathcal{L}}{\partial k_{t+1}} \stackrel{!}{=} 0 \quad \Longleftrightarrow \quad -\lambda_t + \lambda_{t+1} \left[F(k_{t+1}) + (1-\delta) \right] = 0 \quad (38)$$
$$\iff \quad \lambda_t = \lambda_{t+1} \left[F(k_{t+1}) + (1-\delta) \right]$$

- Solution approach 2 (continued):
 - First-order conditions of the maximization problem (continued):
 - With respect to λ_t :

$$\frac{\partial \mathcal{L}}{\partial \lambda_t} \stackrel{!}{=} 0 \quad \Longleftrightarrow \quad F(k_t) + (1 - \delta)k_t - c_t - k_{t+1} = 0 \qquad (39)$$
$$\quad \Longleftrightarrow \quad c_t + k_{t+1} = F(k_t) + (1 - \delta)k_t$$

With respect to λ_{t+1}:

$$\frac{\partial \mathcal{L}}{\partial \lambda_{t+1}} \stackrel{!}{=} 0 \quad \Longleftrightarrow \quad F(k_{t+1}) + (1-\delta)k_{t+1} - c_{t+1} = 0 \quad (40)$$
$$\iff \quad c_{t+1} = F(k_{t+1}) + (1-\delta)k_{t+1}.$$

• Using equations (36) and (37) to replace λ_t and λ_{t+1} in equation (39) we obtain the intertemporal Euler equation:

$$U'(c_{t}) = \beta \left[F'(k_{t+1}) + 1 - \delta \right] U'(c_{t+1}).$$
(41)

• In the infinite-horizon case, the household's maximization problem is given by:

$$\max_{c_{t}, c_{t+1}, \dots; k_{t}, k_{t+1}, \dots} V_{t} = \sum_{s=0}^{\infty} \beta^{s} U(c_{t+s})$$
(42)

s.t.

$$c_{t+s} + k_{t+s+1} = F(k_{t+s}) + (1-\delta)k_{t+s}, \ \forall s > 0.$$
(43)

- To solve the model we employ the Lagrange approach.
- The Lagrange function is given by:

$$\mathcal{L}_{t} = \sum_{s=0}^{\infty} \left\{ \beta^{s} U(c_{t+s}) + \lambda_{t+s} \left[F(k_{t+s}) + (1-\delta) k_{t+s} - c_{t+s} - k_{t+s+1} \right] \right\}$$

 \implies Maximize with respect to $\{c_{t+s}, k_{t+s+1}, \lambda_{t+s}; s \ge 0\}$.

• The first-order condition with respect to c_{t+s} is given by:

$$\frac{\partial L}{\partial c_{t+s}} = 0 \Leftrightarrow \beta^s U'(c_{t+s}) = \lambda_{t+s}$$
(44)

• The first-order condition with respect to k_{t+s+1} is given by:

$$\frac{\partial L}{\partial k_{t+s+1}} = 0 \Leftrightarrow \lambda_{t+s} = \lambda_{t+s+1} \left[F'(k_{t+s+1}) + 1 - \delta \right]$$
(45)

• The first-order condition with respect to λ_{t+s} is given by:

$$\frac{\partial L}{\partial \lambda_{t+s}} = 0 \Leftrightarrow c_{t+s} + k_{t+s+1} = F(k_{t+s}) + (1-\delta)k_{t+s}$$
(46)

• Additionally, the following transversality condition must be satisfied:

$$\lim_{s \to \infty} \lambda_{t+s} k_{t+s+1} = \lim_{s \to \infty} \beta^s U'(c_{t+s}) k_{t+s+1} = 0.$$
 (47)

• Putting together the two first-order conditions yields:

$$U'(c_{t}) = \beta \left[F'(k_{t+1}) + 1 - \delta \right] U'(c_{t+1}) \iff (48)$$
$$\frac{\beta U'(c_{t+1})}{U'(c_{t})} = \frac{1}{1 + F'(k_{t+1}) - \delta}$$

 \implies Intertemporal Euler equation.

• Alternative interpretation: In the optimum, the marginal rate of substitution between consumption today and tomorrow must be equal to the physical rate of transformation.

- An equilibrium/The optimum of the model is characterized by the following:
 - Consumption levels c_{t+s} and capital stock choices k_{t+s+1} must solve the following coupled system of non-linear difference equations

$$U'(c_{t+s}) = \beta U'(c_{t+s+1}) \left[1 + F'(k_{t+s1}) - \delta \right]$$
(49)

and

$$c_{t+s} + k_{t+s+1} = F(k_{t+s}) + (1-\delta)k_{t+s}$$
(50)

 \implies The two equation constitute a system of two nonlinear difference equations in *c* and *k*.

• The boundary (nonnegativity) conditions, the given initial conditions k_0 and the transversality condition must be satisfied.

Model solution: Long-run equilibrium

• In the long-run equilibrium/steady state we have:

$$c_t = c_{t+1} = c^*$$
 (51)

and

$$k_t = k_{t+1} = k^*. (52)$$

• For the first-order conditions (equations (49) and (50)) we then obtain:

$$U'(c^*) = \beta U'(c^*) \left[1 + F'(k^*) - \delta \right]$$
(53)

and

$$c^* + k^* = F(k^*) + (1 - \delta)k^*.$$
 (54)

Model solution: Long-run equilibrium

• This can be simplified to:

$$1 = \beta \left[1 + F'(k^*) - \delta \right]$$
(55)

and

$$c^* = F(k^*) - \delta k^*. \tag{56}$$

- The only unknown variable in the first equation is k^* .
- To obtain the steady-state value of k we thus can simply solve the first equation for k.
- The solution is given by:

$$F'(k^*) = \frac{1}{\beta} - 1 + \delta \iff k^* = F'^{-1}\left(\frac{1}{\beta} - 1 + \delta\right)$$
(57)

Model solution: Long-run equilibrium

• Thus,

- a higher degree of patience (a higher value of β) corresponds to a higher value of k and
- a higher depreciation rate corresponds to a lower steady-state level of *k*.
- Please note that the steady-state capital stock is independently of consumption.
- The steady-state level of c^* is then given by:

$$c^* = f(k^*) - \delta k^*.$$
 (58)

• As shown above the dynamics of the model is determined by the two difference equations:

$$U'(c_{t+s}) = \beta U'(c_{t+s+1}) \left[1 + F'(k_{t+s1}) - \delta \right]$$
(59)

and

$$c_{t+s} + k_{t+s+1} = F(k_{t+s}) + (1-\delta)k_{t+s}$$
(60)

- To obtain a concrete solution we make specific assumptions concerning the utility and the production function.
- We assume that the consumer's period utility function is given by:

$$U(c_t) = ln(c_t) \tag{61}$$

• The production technology of the economy is Cobb-Douglas and thus given by:

$$y_t = a_t f(k_t) = a_t k_t^{\alpha} \text{ with } 0 < \alpha < 1.$$
(62)

• The two first-order conditions then become:

$$U'(c_{t+s}) = \beta U'(c_{t+s+1}) \left[1 + F'(k_{t+s1}) - \delta \right] \iff 1$$

$$\frac{1}{c_{t+s}} = \beta \frac{1}{c_{t+s+1}} \left[1 + \alpha k_{t+s+1}^{\alpha - 1} - \delta \right] \iff c_{t+s+1} = \beta \left[1 + \alpha k_{t+s+1}^{\alpha - 1} - \delta \right] c_{t+s} \iff c_{t+s+1} - c_{t+s} = \Delta c_{t+s+1} = \beta \left[1 + \alpha k_{t+s+1}^{\alpha - 1} - \delta \right] c_{t+s} - c_{t+s} \iff c_{t+s+1} - c_{t+s} = \Delta c_{t+s+1} = \left\{ \beta \left[1 + \alpha k_{t+s+1}^{\alpha - 1} - \delta \right] - 1 \right\} c_{t+s}$$

and

$$c_{t+s} + k_{t+s+1} = F(k_{t+s}) + (1-\delta)k_{t+s} \iff (64)$$

$$k_{t+s+1} - k_{t+s} = \Delta k_{t+s} = F(k_{t+s}) - \delta k_{t+s} - c_{t+s}.$$

- To illustrate the dynamics of the model we can use a phase diagram.
- To construct such a diagram we proceed as follows:
 - First, set the left-hand side of the Euler equation equal to zero and solve for the right-hand side for c_{t+s} . This yields:

$$\{\beta \left[1 + \alpha k_{t+s+1}^{\alpha - 1} - \delta\right] - 1\} c_{t+s} = 0 \iff (65)$$
$$k_{t+s+1} = k^* = \left(\frac{\alpha}{\frac{1}{\beta} - 1 + \delta}\right).$$

- \implies Plot this "function" in a c-k diagram.
- Secondly, set the left-hand side of the budget constraint equal to zero and solve for the right-hand side for c_{t+s} . This yields:

$$F(k_{t+s}) - \delta k_{t+s} - c_{t+s} \iff (66)$$
$$c_{t+s} = F(k_{t+s}) - \delta k_{t+s}$$

 \implies Plot this "function" in a c-k diagram.

- Construction of a phase diagram (continued):
 - The intersection of both steady-state relations defines the steady state of the system. At this steady state, all first-order conditions of households and firms as well as the budget and resource constraints are satisfied.
 - To characterize the dynamics around steady state, consider the dynamics of capital if consumption is below/above the level that would stabilize k, i.e., ibelow/above the steady-state budget constraint:

 \implies A low/high level of c_t implies that k_t is increasing/falling.

• Next, consider the dynamics of c_t if k_t is below/above the level that would stabilize consumption, i.e., "below/above the steady-state Euler equation:"

 \implies A low/high level of k_t implies that c_t is increasing/falling.

• Indicate the just derived dynamics of c_t and k_t apart from the zero-movement lines with corresponding arrows.

• Phase diagram for model solution:

- To draw quantitative implications the model is simulated.
- Unfortunately, the system of the two nonlinear difference equations in c and k which characterize the dynamics of the economy in the optimum does not have an analytical solution.

 \implies To simulate the model the nonlinear difference equations are linearly approximated around the long-run equilibrium.

- Basic procedure:
 - First, compute the long-run steady state.
 - Secondly, log-linearize the system around the steady-state (All variables are expressed in terms of percentage deviations from the steady state).
 - Thirdly, calibrate the model (i.e. determine values for the model parameters.)
 - Forthly, simulate the model and compare its dynamic properties with those found in the data.

- Model setup:
 - The consumer's period utility function is given by:

$$U(c_t) = ln(c_t) \tag{67}$$

• The production technology of the economy is Cobb-Douglas and thus given by:

$$y_t = a_t f(k_t) = a_t k_t^{\alpha}. \tag{68}$$

- We assume that $0 < \alpha < 1$.
- (Log) Total factor productivity is random and follows an AR(1) process

$$\ln(a_{t+1}) = \rho \ln(a_t) + \varepsilon_{t+1}$$
(69)

where 0 $< \rho <$ 1 and ε_{t+1} is Gaussian white noise with initial realization a_0 given.

- Calibration:
 - We assume that the parameters take the following values:

$$\alpha = 0.33$$
(70) $\delta = 0.04$ (71) $\beta = 0.99$ (72) $\rho = 0.95$ (73)

• Effects of a one-time increase in total factor productivity:

 \implies Positive effect on output, consumption and investment. \implies Investment reacts stronger than consumption.

Günter W. Beck ()

Dynamic Macroeconomics

• Model simulation over 500 periods:

 $\implies \text{Positive comovements: } corr(y, c) \approx 0.73, corr(y, i) \approx 0.71,.$ $\implies \text{Relative volatilities: } \frac{\sigma_c}{\sigma_y} \approx 0.77, \frac{\sigma_i}{\sigma_y} \approx 2.01.$