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Introduction to Statistics and Econometrics

Course Outline

Econometric Literature
• Stock, Watson ’Introduction to Econometrics’, 3rd edition (2011)
• Wooldridge, ’Introductory Econmetrics - A modern Approach’, 4th

edition (2008)
• Greene, ’Econometric Analysis’, 7th edition (2010)
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Introduction to Statistics and Econometrics

Introduction to statistics and econometrics

Economics (theory) suggests important relationships, often with policy
implications, but virtually never suggests quantitative magnitudes of
causal effects.

• What is the quantitative effect of increasing interest rates on
consumption?

• How does another year of education change earnings?
• What is the price elasticity of cigarettes?
• etc.
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Introduction to Statistics and Econometrics

Data types

Cross sectional data:
• We observe different objects (e.g. individuals, companies, countries)

at one point in time.
Time series data:

• We observe one object at different points in time.
Panel data:

• We observe different objects at different points in time.
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Review of Statistical Theory

The probability framework for statistical inference
Population

• The group or collection of all possible entities of interest (school
districts).

• We will think of populations as infinitely large (inf is an
approximation to ’very big’).

Random variable Y
• Numerical values of an random outcome (district average test score,

district STR).
Probability distribution of Y

• The probabilities of different values of Y that occur in the
population, for ex. Pr[Y =650], when Y is discrete.

• or: The probabilities of sets of these values, for ex.
Pr[640≤ Y ≤ 660], when Y is continuous.
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Review of Statistical Theory

The probability framework for statistical inference
Mean

• Expected value (expectation) of Y .
• E (Y ) = µy

• Long-run average value of Y over repeated realizations of Y .
Variance

• Averaged squared deviation of the random variable from the expected
value.

• E [(Y − E (Y ))2] = σ2
Y

• Measure of the squared spread of the distribution.
Standard deviation

• Square root of variance.
•

√
σ2

Y = σY

• Same unit as Y.
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Review of Statistical Theory

The probability framework for statistical inference

Skewness
• Measure of asymmetry of a distribution.
• Skewness = 0; distribution is symmetric.
• Skewness > (<) 0; distribution has long right (left) tail.

Kurtosis
• Measure of mass in tails.
• Measure of probability of large values.
• Kurtosis = 3; normal distribution.
• Kurtosis > 3; heavy tails (’leptokurtotic’).
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Review of Statistical Theory

Skewness Kurtosis
E [(y−µy )3]

σ3
y

E [(y−µy )4]
σ4

y
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Review of Statistical Theory

The probability framework for statistical inference

2 random variables: joint distributions and covariance
• Random variables X and Z have joint distribution, Pr(X=x, Z=z).
• The covariance between X and Z is

covXZ = σXZ = E [(X − µX )(Z − µZ )]

=
1

n− 1
n

∑
i=1

(Xi − X̄ )(Zi − Z̄ ) (1)

The covariance is a measure of the linear association between X and
Z ; its units are the units of X times the units of Z .

• cov(X ,Z ) > 0 means a positive relation between X and Z .
• If X and Z are independently distributed, then cov(X ,Z ) = 0.
• The covariance of a random variable v with itself is its variance σ2

X .
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Review of Statistical Theory

The covariance between Test Score and STR is negative,
so the correlation is....
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Review of Statistical Theory

The probability framework for statistical inference

The correlation coefficient is defined in terms of the covariance

corr (X ,Z ) = cov(X ,Z )√
var(X )var(Z )

= σXZ
σX σZ

• −1 ≤ corr (X ,Z ) ≤ 1
• corr (X ,Z ) = 1 means perfect positive linear association
• corr (X ,Z ) = −1 means perfect negative linear association
• corr (X ,Z ) = 0 means no linear association
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Review of Statistical Theory
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Review of Statistical Theory

Conditional distributions
• The distributions of Y , given value(s) of some other random variable.
• Example: the distribution of test scores, given that STR < 20

Conditional expectations and conditional moments
• Conditional mean = mean of conditional distribution

=E (Y |X = x) (important concept and notation)
• Conditional variance = variance of conditional distribution.
• Example:E (Testscores |STR < 20)= the mean of test scores among

districts with small class sizes.
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Review of Statistical Theory

Estimation

Law of Large Numbers

• For large samples, the sample mean is with large probability
close to µy .

• Large sample, i.e. n← ∞
• With large probability, i.e. p ← 1 for n← ∞
• Close to µY , i.e. for large enough n, the deviation of sample mean

from µY is small.
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Review of Statistical Theory

Estimation

Central Limit Theorem

If (YV , ....,Yn) are i.i.d. and 0 < σ2
Y < ∞, then when n is large the

distribution of Ȳ is well approximated by a normal distribution.
• Ȳ is approximately distributed N(µY ,

σ2
Y
n ), ’normal distribution with

mean µY and variance σ2
Y
n .

•
√

n(Ȳ−µY )
σY

is Y approximately distributed N(0, 1), (standard normal).

• That is ’standardized’ Ȳ = Ȳ−E (Ȳ )√
var(Ȳ )

= Ȳ−µY
σY√

n
is approximately

distributed as N(0, 1).
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Linear Regression Model

Basic Idea

We want to find the regression line that fits our scatter plot best.
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Linear Regression Model

Basic Idea

• The slope of the regression line is the expected effect on Y of a unit
change in X .

• In our example, class size and test score.
• With the regression model, we determine

• whether there is a (statistically significant) relation between X and Y ,
• how strong a relation might be,
• whether there is a causal effect between X and Y ?
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Linear Regression Model

Basic Idea

Estimation:
• How should we draw a line through the data to estimate the slope?

• Ordinary Least Squares (OLS).

Hypothesis testing:
• How to test if the slope is zero, i.e. there is no effect of X on Y ?

Confidence intervals:
• How to construct a confidence interval for the slope?
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Linear Regression Model

Basic Idea

• The regression line: Testscore = b0 + b1STR
• b1 = slope of the regression line
• = ∂Testscore

∂STR
• = change in test score for a unit change in STR.

• We would like to know the value of b1.
• Since we do not know b1, we will estimate it, using data.
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Linear Regression Model

The simple linear regression model

Yi = b0 + b1Xi + ui with i = 1, ..., n

• We have n observations, (Xi ,Yi ), i = 1, ..., n.
• X is the independent variable or regressor, also explanatory variable.
• Y is the dependent variable or regressand, also explained variable.
• b0 = intercept
• b1 = slope
• ui = the regression error

The regression error consists of omitted factors. In general, these omitted
factors are other factors that influence Y , other than the variable X . The
regression error also includes error in the measurement of Y .
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Linear Regression Model

The Ordinary Least Squares Estimation

How can we estimate b0 and b1 from the data?
• We will focus on the least squares (’ordinary least squares’ or ’OLS’)

estimator of the unknown parameters β0 and β1.
• The OLS estimator solves,

minb0,b1

n

∑
i=1

[Yi − (b0 + b1Xi )]
2 (2)

• The OLS estimator minimizes the average squared difference between
the actual values of Yi and the prediction (’predicted value’) based on
the estimated line.

• The result are the OLS estimators of b0 and b1.
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Linear Regression Model

The Ordinary Least Squares Estimation
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Linear Regression Model

The OLS Estimator, Predicted Values and Residuals

The OLS estimators fo the slope β1 and the intercept β0 are:

β̂1 =
∑n

i=1(Xi − X̄ )(Yi − Ȳ )

∑n
i=1(Xi − X̄ )2 =

sXY
s2
X

(3)

β̂0 = Ȳ − β̂1X̄ (4)

The OLS predicted values Ŷi and residuals ûi are

Ŷi = β̂0 + β̂1Xi , i = 1, ..., n (5)

ûi = Yi − Ŷi , i = 1, ..., n. (6)
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Linear Regression Model

The OLS Estimator, Predicted Values and Residuals

• The estimated intercept (β̂0), slope (β̂1), and residual (ûi ) are
computed from a sample of n observations of Xi and Yi , i = 1, ..., n.

• These are estimates of the unknown true population intercept (β0),
slope (β1), and the error term (ui ).
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Linear Regression Model

Measures of Fit

Two regression statistics provide complementary measures of how well the
regression line ’fits’ or explains the data:

1 Regression R2

measures the fraction of the variance of Y that is explained by X ; it
is unitless and ranges between zero (no fit) and one (perfect fit).

2 Standard error of the regression (SER)
measures the magnitude of a typical regression residual in the units of
Y .
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Linear Regression Model

Measures of Fit

Yi = Ŷi + ûi

Variance decomposition:
n

∑
i=1

(Yi − Ȳ )2 =
n

∑
i=1

(Ŷi − Ȳ )2 +
n

∑
i=1

û2
i (7)

TSS = ESS + SSR

• TSS= total sum of squares
• ESS = explained sum of squares
• SSR= sum of square residuals

(Here we use ¯̂Y = Ȳ and ¯̂u = 0).
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Linear Regression Model

Regression R2

Regression R2 = fraction of variation of Y is explained by X .

R2 =
ESS
TSS =

∑n
i=1(Ŷi − Ȳ )2

∑n
i=1(Yi − Ȳ )2 = 1− SSR

TSS (8)

• 0 ≤ R2 ≤ 1
• R2 = 1 means ESS=TSS and SSR=0, i.e. all data points are on the

regression line.
• R2 = 0 measn ESS=0 (β1 = 0), i.e. no variation is explained.
• For regression with a single X , R2 = the square of the correlation

coefficient between X and Y .
R2 = [corr (X ,Y )]2
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Linear Regression Model

Standard Error of Regression SER

The SER measures the spread of the distribution of u.

SER =
√

s2
û =

√
1

n− 2
n

∑
i=2

(ûi − ¯̂u)2 =

√
1

n− 2
n

∑
i=2

(û2
i (9)

• The SER is (almost) the sample standard deviation of the OLS
residuals.

• The SER has the units of u, which are the units of Y .
• It measures the average ’size’ of the OLS residual (the average

’mistake’ made by the OLS regression line).
• Why n− 2? Degrees of freedom correction by number of estimated

estimators. (In large samples it is irrelevant, whether division by n,
n− 1 or n− 2).
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