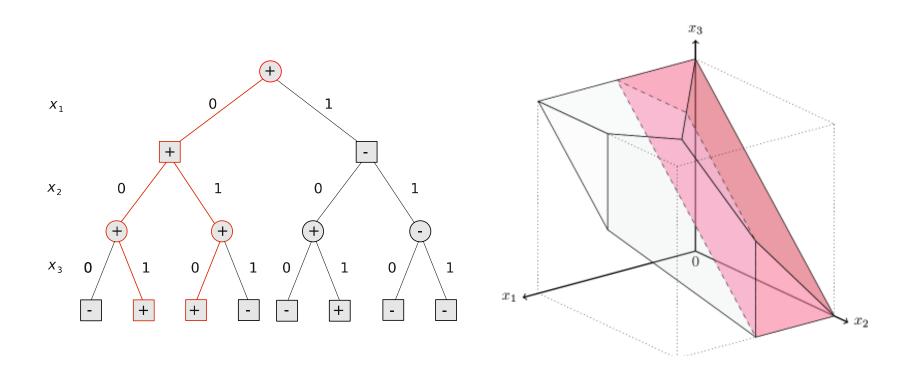
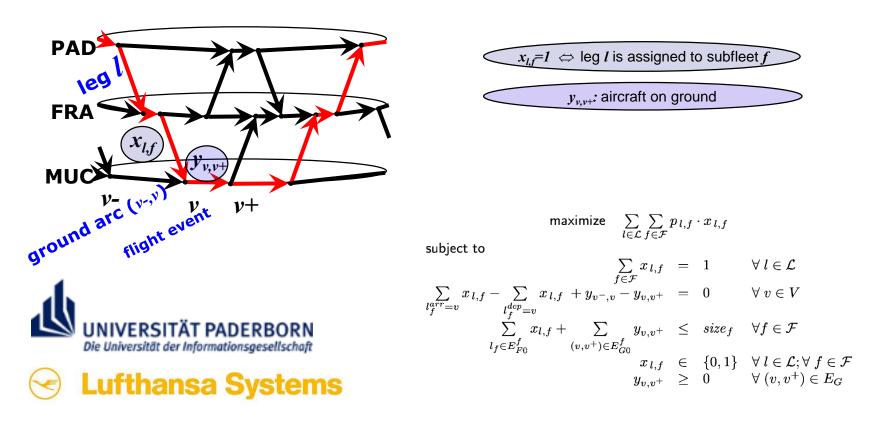
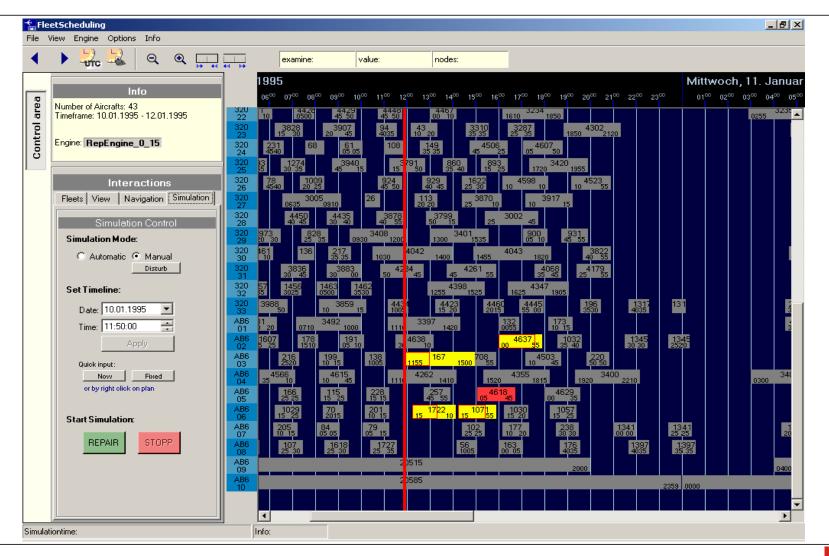
Quantified Combinatorial Optimization

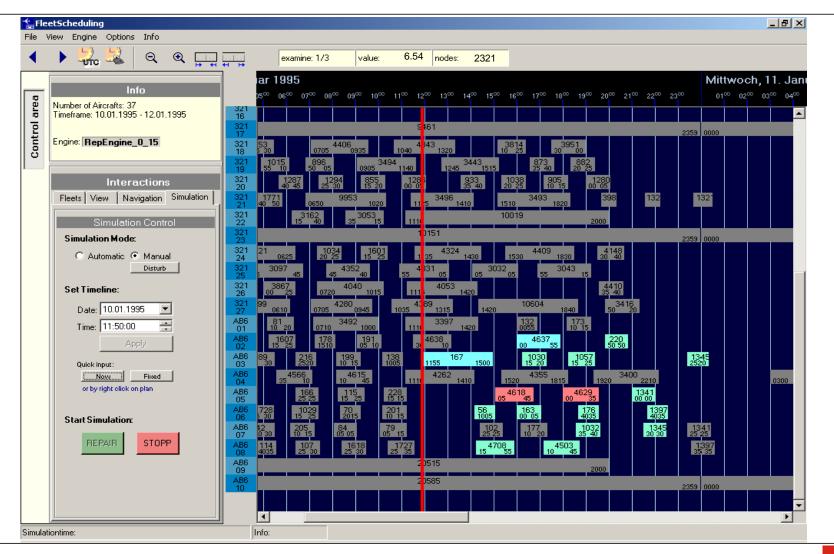
Thorsten Ederer, Ulf Lorenz, Thomas Opfer



Some years ago: Fleet Assignment and disruptions





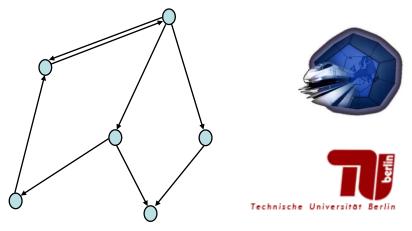


Some years ago: Railway delay management and robust planning

given: plan

12:45 Hamburg – Berlin 15:45 13:00 Hamburg – Kiel 14:30
12:45 Berlin – München 15:45 13:00 Berlin – Darmstadt 16:30

nodes (stations), arcs (tracks)



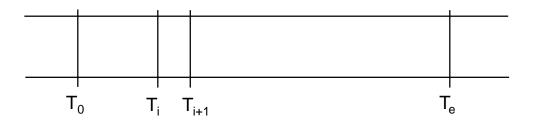
further attributes of the model: arcs have capacities, FIFO ...

- passengers follow routes (paths), weights and desired start times
- online decision problem: Should we wait for the connecting train?
- minimal travel times at arcs are uncertain

wanted: plan and policy which minimizes the sum of all travel times of all passengers.

Optimization model "Game against Nature":

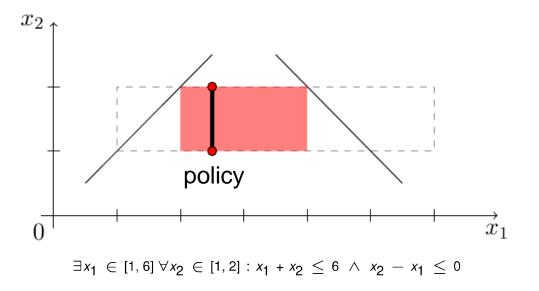
- 1. Player 1: The company optimizes its plan.
- 2. Player 2: Nature "rolls dice".
- 3. Game: from time T_0 to T_e . After each time step T_i , Nature determines some data. Then the company reacts with a recovery action.
- 4. The game is a multi-level decision process.



Quantified Linear Programs ¹⁾

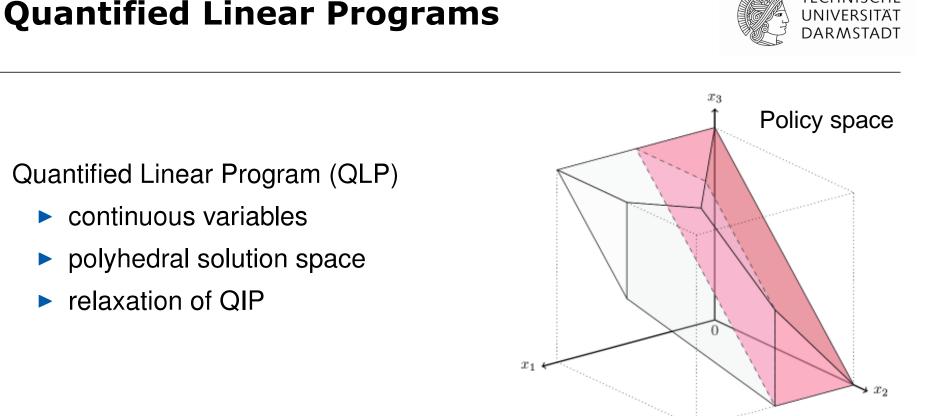
$$\exists x_1 \in [0, 1] \ \forall x_2 \in [0, 1] \ \exists x_3 \in [0, 1] : \\ \begin{pmatrix} 0 & -1 & -1 \\ -1 & 1 & 1 \\ 2 & 2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \leq \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$$

> The union of all games of all winning policies for the existential player forms a polytope.



1) K. Subramani. Analyzing selected quantified integer programs. Springer, LNAI 3097, pages 342–356, 2004.

05. September 2013 | Ederer, Lorenz, Opfer | Quantified Combinatorial Optimization



There is a winning policy for the existential player against the universal player if and only if

there is a wining policy against the universal player when he is limited to {0,1}
If the number of quantifier-alternations is constant the vertices of the polytope of winning policies can be described with polynomially many bits.

8

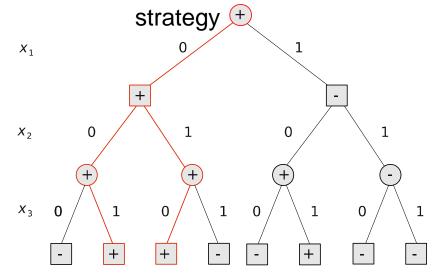
TECHNISCHE

Quantified Linear Integer Programs

$$\exists x_1 \in [0, 1] \ \forall x_2 \in [0, 1] \ \exists x_3 \in [0, 1] \ , \text{ x integer:} \\ \begin{pmatrix} 0 & -1 & -1 \\ -1 & 1 & 1 \\ 2 & 2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \leq \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$$

Quantified Integer Program (QIP)

- integral variables
- can be visualized as a game-tree, strategy
- PSPACE-complete



A minmax-objective can be added: E.g.: The existential player tries to minimize $3x_1 + 2x_2 - x_4$ against all odds.

Quantified Jobshop

Mach Pape	
	Table 1: Jobshop model notation.
J M T O $s_{j,m}$ $d_{j,m}$ $\delta_{j,m}$ $e_{j,m}$ \overline{e} m	set of jobs set of machines set of tasks, $T \subseteq J \times M$ taskorder, $O \subseteq T \times T$ start time (integer) of task (j,m) duration of task (j,m) additional duration of task (j,m) in case of delay earliness of task (j,m) , i.e., $e = \max\{d^1 - d^2, 0\}$ mean earliness makespan
r _{u,j,m} r̃ _b W	indicator of unary encoding of retarded task indicator of binary encoding retarded task wrapping indicator for binary to unary translation

Table 2: Jobshop tasks.

job	machine	duration	extra
Paper1	Blue	45	5
Paper1	Yellow	10	0
Paper2	Blue	20	5
Paper2	Green	10	10
Paper2	Yellow	34	0
Paper3	Blue	12	0
Paper3	Green	17	0
Paper3	Yellow	28	20

Table 3: Jobshop order.

prior	task	later task			
Paper1	Blue	Paper1	Yellow		
Paper2	Green	Paper2	Blue		
Paper2	Blue	Paper2	Yellow		
Paper3	Yellow	Paper3	Blue		
Paper3	Blue	Paper3	Green		

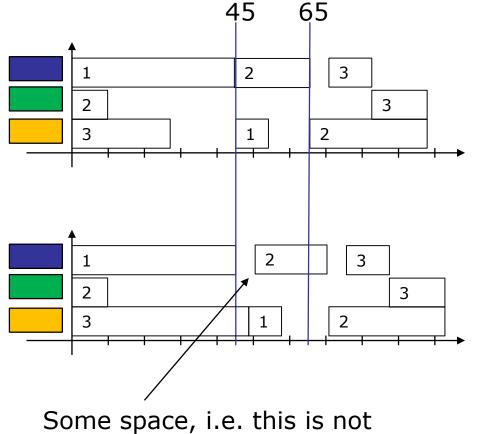
Quantified Jobshop

05. September 2013 | Ederer, Lorenz, Opfer | Quantified Combinatorial Optimization

Quantified Jobshop

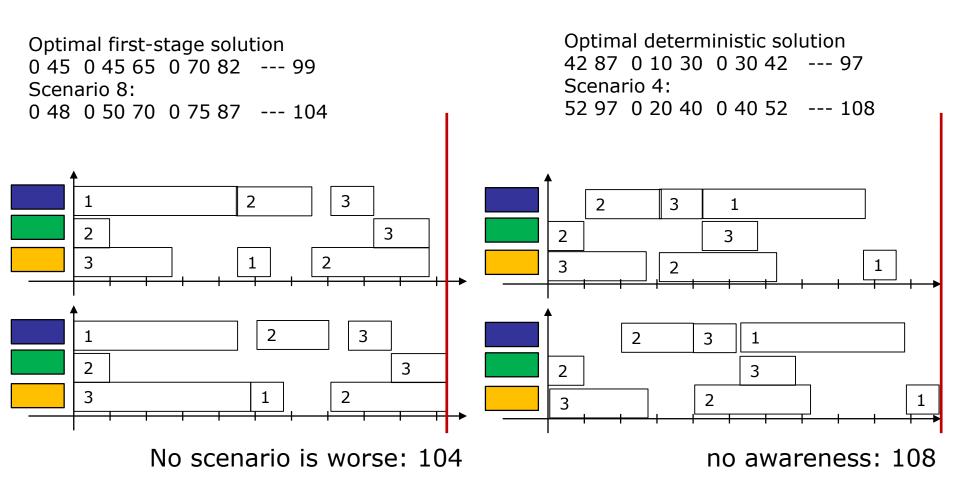
Table 4: Solution of the Jobshop Example.

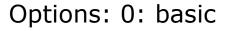
sc.	1 B	1 Y :			time 2Y		3B	3G	m.s.
	first stage solution								
	0	45	0	45	65	0	70	82	99
1	0	50	0	50	70	0	70	82	104
2	0	45	0	45	65	0	65	82	99
3	0	45	0	45	70	0	70	82	104
4	0	45	0	45	65	0	65	82	99
5	0	45	0	45	65	0	65	82	99
6	0	45	0	45	65	0	65	82	99
7	0	45	0	45	65	0	70	82	99
8	0	48	0	50	70	0	75	87	104



The worst case scenario.

Quantified Jobshop





1: big wheels

2: no roof

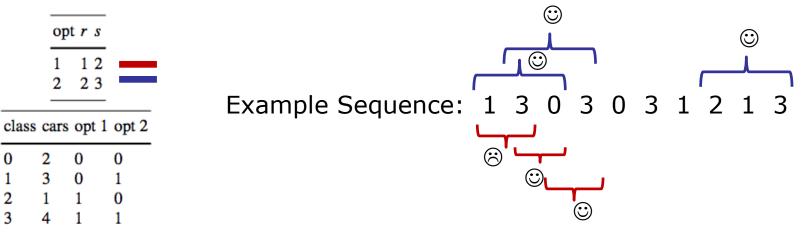
Table 5: Car Instance.

0

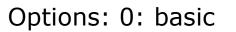
1

2

3



Minimize the violated rules





2: no roof

Table 5: Car Instance.	Example Sequence: 1 3 0 3 0 3 1 2 1 3
opt r s	Disruption:
$\begin{array}{c} 1 & 1 & 2 \\ 2 & 2 & 3 \end{array}$	Example Sequence: 1 0 3 0 3 1 3 2 1 3
$\begin{array}{c} 0 \\ 0 \\ 1 \\ 3 \\ 0 \\ 1 \\ 3 \\ 0 \\ 1 \\ 0 \\ 0$	Recover-Action:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Example Sequence: 1 0 3 0 3 1 3 1 3 2

Options: 0: basic

Table 6: Notation of the car sequencing model.

0	set of options	S	set of stages (duplicates of the origi-
С	set of classes, $C \subseteq \mathcal{P}(O)$		nal variables after each move)
Т	set of timesteps (T) equals number of	σ	stage index: 1 pre-scheduling, 2 state
	models)		after delay, 3 re-scheduling
T^k	set of intervals (by first timestep) for	F	ordered set of possible delays, $F =$
	option k, $T^k = \{1,, T - s_k + 1\}$		$\{(t,t') \in T \times T, t < t'\}$
$r_k: s_k$	at most r_k out of s_k successively se-	U	unary encoding vector of F
	quenced models may require option k	m	indicator of unary encoding for the
D_c	demand of models of class c	u	delay from timestep t to $t', (t, t') \in U$
$A_{k,c}$	indicator, if models of class c require	В	binary encoding of possible delays
.,.	option k	$\widetilde{\mathbf{m}}_{\mathbf{h}}$	indicator of binary encoding for the
$x_{t,c}$	indicator, if a model of class c is pro-	b	delay, $b \in B$
- ,-	duced at timestep t	w	wrapping indicator for binary to
y_{k,t_0}	indicator, if the sequencing rule $r_k : s_k$		unary translation
	beginning at timestep t_0 is satisfied		-

$$\min \sum_{k \in O} \sum_{t_0 \in T^k} y_{k,t_0}^1 \quad \text{s.t.} \quad \exists x^1 \ y^1 \ \forall \ \tilde{m} \ \exists \ m \ w, \ x^2 \ y^2, \ a, \ x^3 \ y^3 :$$
(14)
$$\sum_{t \in T} x_{t,c}^s = D_c \quad \forall \ c \in C, \ s \in S$$
(15)
$$\sum_{t \in T} x_{t,c}^s = 1 \quad \forall \ t \in T, \ s \in S$$
(16)
$$\sum_{t = t_0}^{t_0 + s_k} \sum_{c \in C} A_{k,c} \cdot x_{t,c}^s \le r_k + M \cdot y_{k,t_0}^s \quad \forall \ k \in O, \ t_0 \in T^k, \ s \in S$$
(17)
$$\sum_{u \in U} u \cdot m_u = \sum_{b \in B} 2^b \cdot \tilde{m}_b - |F| \cdot w \quad \land \ \sum_{u \in U} m_u \le 1$$
(18)
$$|x_{t,c}^2 - x_{t,c}^1| \le \sum_{\substack{u \in U \\ (t_i, t_j) = F_u \\ t_i < t < t_j}} m_u \quad \forall \ c \in C, \ t \in T$$
(19)

further stage-connecting constraints ... (20)

TECHNISCHE UNIVERSITÄT DARMSTADT

Scenario	Mal.	Ans.	Production Sequence	Scenario	Mal.	Ans.	Production Sequence
first stage solution:		tion:	1, 3, 0, 3, 0, 3, 1, 2, 1, 3	first stage solution:		tion:	1, 3, 0, 3, 0, 3, 1, 2, 1, 3
1	_	(4, 5)	1, 3, 0, 3, 3, 0, 1, 2, 1, 3	24	(2, 8)	_	1, 3, 3, 0, 3, 1, 2, 1, 0, 3
2	(0, 1)	(2, 7)	3, 1, 3, 0, 3, 1, 2, 0, 1, 3	25	(2, 9)	_	1, 3, 3, 0, 3, 1, 2, 1, 3, 0
3	(0, 2)	_	3, 0, 1, 3, 0, 3, 1, 2, 1, 3	26	(3, 4)	_	1, 3, 0, 0, 3, 3, 1, 2, 1, 3
4	(0, 3)	_	3, 0, 3, 1, 0, 3, 1, 2, 1, 3	27	(3, 5)	_	1, 3, 0, 0, 3, 3, 1, 2, 1, 3
5	(0, 4)	_	3, 0, 3, 0, 1, 3, 1, 2, 1, 3	28	(3, 6)	_	1, 3, 0, 0, 3, 1, 3, 2, 1, 3
6	(0, 5)	(6, 8)	3, 0, 3, 0, 3, 1, 2, 1, 1, 3	29	(3, 7)	_	1, 3, 0, 0, 3, 1, 2, 3, 1, 3
7	(0, 6)	(7, 8)	3, 0, 3, 0, 3, 1, 1, 1, 2, 3	30	(3, 8)	_	1, 3, 0, 0, 3, 1, 2, 1, 3, 3
8	(0, 7)	(8, 9)	3, 0, 3, 0, 3, 1, 2, 1, 3, 1	31	(3, 9)	_	1, 3, 0, 0, 3, 1, 2, 1, 3, 3
9	(0, 8)	_	3, 0, 3, 0, 3, 1, 2, 1, 1, 3	32	(4, 5)	_	1, 3, 0, 3, 3, 0, 1, 2, 1, 3
10	(0, 9)	_	3, 0, 3, 0, 3, 1, 2, 1, 3, 1	33	(4, 6)	_	1, 3, 0, 3, 3, 1, 0, 2, 1, 3
11	(1, 2)	_	1, 0, 3, 3, 0, 3, 1, 2, 1, 3	34	(4, 7)	(8, 9)	1, 3, 0, 3, 3, 1, 2, 0, 3, 1
12	(1, 3)	_	1, 0, 3, 3, 0, 3, 1, 2, 1, 3	35	(4, 8)	_	1, 3, 0, 3, 3, 1, 2, 1, 0, 3
13	(1, 4)	_	1, 0, 3, 0, 3, 3, 1, 2, 1, 3	36	(4, 9)	_	1, 3, 0, 3, 3, 1, 2, 1, 3, 0
14	(1, 5)	_	1, 0, 3, 0, 3, 3, 1, 2, 1, 3	37	(5, 6)	(7, 9)	1, 3, 0, 3, 0, 1, 3, 1, 3, 2
15	(1, 6)	_	1, 0, 3, 0, 3, 1, 3, 2, 1, 3	38	(5,7)	_	1, 3, 0, 3, 0, 1, 2, 3, 1, 3
16	(1, 7)	_	1, 0, 3, 0, 3, 1, 2, 3, 1, 3	39	(5, 8)	_	1, 3, 0, 3, 0, 1, 2, 1, 3, 3
17	(1, 8)	_	1, 0, 3, 0, 3, 1, 2, 1, 3, 3	40	(5, 9)	_	1, 3, 0, 3, 0, 1, 2, 1, 3, 3
18	(1, 9)	_	1, 0, 3, 0, 3, 1, 2, 1, 3, 3	41	(6,7)	(8, 9)	1, 3, 0, 3, 0, 3, 2, 1, 3, 1
19	(2, 3)	(4, 9)	1, 3, 3, 0, 3, 1, 2, 1, 3, 0	42	(6, 8)	_	1, 3, 0, 3, 0, 3, 2, 1, 1, 3
20	(2, 4)	_	1, 3, 3, 0, 0, 3, 1, 2, 1, 3	43	(6, 9)	_	1, 3, 0, 3, 0, 3, 2, 1, 3, 1
21	(2, 5)	_	1, 3, 3, 0, 3, 0, 1, 2, 1, 3	44	(7, 8)	_	1, 3, 0, 3, 0, 3, 1, 1, 2, 3
22	(2, 6)	_	1, 3, 3, 0, 3, 1, 0, 2, 1, 3	45	(7,9)	_	1, 3, 0, 3, 0, 3, 1, 1, 3, 2
23	(2, 7)	-	1, 3, 3, 0, 3, 1, 2, 0, 1, 3	46	(8, 9)	-	1, 3, 0, 3, 0, 3, 1, 2, 3, 1

Table 7: Solution of the Car Sequencing Example.

05. September 2013 | Ederer, Lorenz, Opfer | Quantified Combinatorial Optimization

