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Some years ago: Fleet Assignment and disruptions

xl,f=1  leg l is assigned to subfleet f 

yv,v+: aircraft on ground
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given:         plan                                          nodes (stations), arcs (tracks)

12:45 Hamburg – Berlin 15:45

13:00 Hamburg – Kiel    14:30

...

12:45 Berlin – München 15:45

13:00 Berlin – Darmstadt 16:30

...

further attributes of the model: 
arcs have capacities, FIFO ...
- passengers follow routes (paths), weights and desired start times
- online decision problem: Should we wait for the connecting train?
- minimal travel times at arcs are uncertain

wanted: plan and policy which minimizes the sum of all travel times of all passengers. 

Some years ago: Railway delay management and 
robust planning

Motivation
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Optimization model „Game against Nature":

1. Player 1: The company — optimizes its plan.

2. Player 2: Nature — „rolls dice". 

3. Game: from time T0 to Te. After each time step Ti, Nature 
determines some data. Then the company reacts with a 
recovery action.  

4. The game is a multi-level decision process.

T0 Ti Ti+1
Te

Motivation
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1)  K. Subramani. Analyzing selected quantified integer programs. Springer, LNAI 3097, pages 342–356, 2004.

 The union of all games of all winning policies for the existential player forms a polytope. 

policy

Quantified Linear Programs 1)
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Complexity is unknown in general. For 

special cases:

  

$...$"..."ÎP

  

"..."$...$ coNPc,

Policy space

 There is a winning policy for the existential player against the universal player
if and only if

there is a wining policy against the universal player when he is limited to {0,1}
 If the number of quantifier-alternations is constant the vertices of the polytope

of winning policies can be described with polynomially many bits.

Quantified Linear Programs
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, strategy

strategy

A minmax-objective can be added:

E.g.: The existential player tries to minimize 3x1 + 2x2 – x4 against all odds.

, x integer:

Quantified Linear Integer Programs
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Machines
Papers      1, 2, 3

Quantified Jobshop
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bin. encoding
of scenario index
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Quantified Jobshop
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Some space, i.e. this is not
The worst case scenario.

45     65

Quantified Jobshop
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Optimal deterministic solution
42 87  0 10 30  0 30 42   --- 97
Scenario 4:
52 97  0 20 40  0 40 52   --- 108
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Optimal first-stage solution
0 45  0 45 65  0 70 82   --- 99
Scenario 8:
0 48  0 50 70  0 75 87   --- 104

No scenario is worse: 104 no awareness: 108

Quantified Jobshop
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Options: 0: basic 1: big wheels 2: no roof

Example Sequence:  1  3  0  3  0  3  1  2  1  3   

Minimize the violated rules


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Quantified Carsequencing
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Options: 0: basic 1: big wheels 2: no roof

Example Sequence:  1  3  0  3  0  3  1  2  1  3   

Disruption:

Example Sequence:  1  0  3  0  3  1  3  2  1  3   

Recover-Action:

Example Sequence:  1  0  3  0  3  1  3  1  3   2   

Quantified Carsequencing
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Options: 0: basic 1: big wheels 2: no roof

mu

mb

Quantified Carsequencing
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Quantified Carsequencing
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Quantified Carsequencing
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yi,t-1=1  xi,j,t darf       xi,j,t = 1! 

0 sein

yi,t-1=0  xi,j,t darf        xi,j,t darf 

0 sein           0 sein

yi,t=0 yi,t=1

txi,j,t-Rj,i

xi,j,t 0 0 1 0 0  0

qi,t Production quantity of item Pi by task i in period t

sp,t Inventory for item p at end of period t

bp,t Backlog of item p at end of period t

op,t Shortfall quantity of item p in period t (no backlog)

xi,j,t Binary variable which indicates whether a setup 

change from task i to j occurs in (at the

beginning of) period t (xi,j,t=1) or not (xi,j,t=0)

yi,t Binary variable which indicates whether machine 

Mi is set up for task i at the beginning of

(during) period t (yi,t=1) or not (yi,t=0)

P      Set of items

M     Set of machines

I       Set of tasks

T      Number of periods (1...T)

Mi Machine needed by task i

Pi Item produced by task i
Ii = { j ∈ I : Mj = Mi, j ≠ i }. Set of tasks that concur with task i for the same machine.

Sp Nonnegative holding costs for one unit of item p one period in inventory.

Bp Nonnegative cost for backlogging one unit of item p for one period

Op Stockout cost for not fulfilling the (external) demand of one unit of item p

Xi,j Nonnegative setup costs for switching from task i to j (on machine Mi = Mj)

Qi Production cost for one unit of item Pi with task i

Dp,t External demand for item p in period t

Ap,q Gozinto-factor. Zero if item q is not immediate successor of item p.

Otherwise: quantity of item p directly needed to produce one item of q.

p,i (Integral) number of periods for „transporting“ item p to machine Mi (for task i)

Ci,t (Maximum) production quantity of item Pi with task i during period t

Ti,j (Fractional) number of periods for switching from task i to j

Ri,j = Ti,j. Number of periods excusively used for switching from task i to j

Rf
i,j = Ti,j – Ri,j. Fraction of the (Ri,j+1)th period after switching from task i to j 

used for switching


