Dynamic Macroeconomics

Problem Set 7

1. Risk aversion Consider the following utility functions

$$
\begin{align*}
& U(W)=\frac{W^{1-\sigma}-1}{1-\sigma} \tag{CRRA}\\
& U(W)=\log (W) \tag{CRRA}\\
& U(W)=-e^{-\rho W} \tag{CARA}
\end{align*}
$$

where W is (financial) wealth.
(a) Compute the coefficients of absolute risk aversion

$$
\begin{equation*}
\operatorname{ARA}(W)=-\frac{U^{\prime \prime}(W)}{U^{\prime}(W)} \tag{1}
\end{equation*}
$$

and the coefficient of relative risk aversion

$$
\begin{equation*}
\operatorname{RRA}(W)=-\frac{U^{\prime \prime}(W)}{U^{\prime}(W)} W \tag{2}
\end{equation*}
$$

of each function.
(b) Choose some parameter value $0<\alpha, \beta, \gamma, \sigma, \rho<1$ and plot the functions.
(c) Which property of the utility functions ensures that the agent is risk avers? Why do we use the ARA and the RRA measures instead?
2. Certainty equivalent and risk aversion The utility function of an agent is of the form

$$
\begin{equation*}
U(W)=\sqrt{W} \tag{3}
\end{equation*}
$$

(a) Show that the agent is risk averse by calculating either the coefficient of relative risk aversion or the coefficient of absolute risk aversion. Consider $W \geq 0$.
(b) What is the certainty equivalent? Assume that the agent faces a lottery with the following discrete probability distribution

$$
\begin{array}{r}
P(W=4)=P(W=16)=0.5 \\
P(W \neq 4 \wedge W \neq 16)=0 .
\end{array}
$$

Compute the certainty equivalent C given the distribution and the utility function. Show that the agent is risk averse using the certainty equivalent.
3. Asset pricing Consider an agent with the following maximization problem.

$$
\begin{equation*}
\max _{c_{t}, c_{t+1}, a} U\left(c_{t}\right)+\beta E_{t} U\left(c_{t+1}\right) \tag{4}
\end{equation*}
$$

subject to

$$
\begin{aligned}
c_{t}+p_{t} a & =y_{t} \\
c_{t+1} & =y_{t+1}+\left(p_{t+1}+d_{t+1}\right) a
\end{aligned}
$$

Where c denotes consumption, p the price of the asset a, y is income, and d denote dividends from investing in the asset a. We define $x \equiv p+d$ to be the gross return of asset a.
Period utility is given by

$$
U\left(c_{t}\right)=\frac{c_{t}^{1-\gamma}-1}{1-\gamma}
$$

with $\beta>0$ and $\gamma>0$. Furthermore, assume that consumption growth is log-normally distributed, i.e.

$$
\log \left(\frac{c_{t+1}}{c_{t}}\right) \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

Note that the expected value $E\left(z^{\alpha}\right)$ of a \log normally distributed variable z is

$$
E\left(z^{\alpha}\right)=e^{\alpha \mu+\frac{\alpha^{2}}{2} \sigma^{2}}
$$

where $\log z \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
(a) Compute the first order condition.
(b) Assume that the agent invests in a risk-less asset which has a price $p_{t}=q_{t}$. Use the consumption CAPM approach in order to derive an expression for the price q_{t} of the risk-less asset. Derive also an expression for $\log q_{t}$.

