Dynamic Macroeconomics

Problem Set 5

1. Budget constraints Consider a household, who lives from period $t=0$ to $t=\infty$. At date $t=0$ he has assets a_{0} and in each period of his life, he faces a period budget constraint of the form

$$
\begin{equation*}
c_{t}+a_{t+1}=(1+r) a_{t}+y_{t}, t=0,1,2, \ldots \tag{PB}
\end{equation*}
$$

where c_{t} denotes consumption, a_{t} denotes assets, and y_{t} is income in period t. Show that you can obtain the following condition form the constraints in (PB)

$$
\begin{equation*}
\sum_{t=0}^{\infty}\left(\frac{1}{1+r}\right)^{t} c_{t}=(1+r) a_{0}+\sum_{t=0}^{\infty}\left(\frac{1}{1+r}\right)^{t} y_{t} \tag{LB}
\end{equation*}
$$

and provide an interpretation of (LB). (Also discuss any assumptions you may have to make to reach equation (LB)).
2. Euler Equation The representative household maximizes

$$
\begin{equation*}
\max _{\left\{c_{t}, a_{t+1}\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \tag{1}
\end{equation*}
$$

subject to (PB). The period utility function is given by

$$
\begin{equation*}
u\left(c_{t}\right)=c_{t}-\frac{\alpha}{2} c_{t}^{2}, \tag{2}
\end{equation*}
$$

where $\alpha>0$ is a parameter.
a) Derive the Euler equation for the consumers optimization problem.
b) Discuss determinants of the growth rate of consumption.
3. Permanent income hypothesis Consider the objective function (1), the period utility function (2) and the budget constraint (LB). Assume that $\beta(1+r)=1$.
a) Discuss the economic meaning of the assumption $\beta(1+r)=1$.
b) Use the Euler equation derived above and the lifetime budget constraint (LB) to show how consumption depends on lifetime wealth.
c) Assume income follows the process

$$
\begin{equation*}
y_{t+1}=(1-\rho) \bar{y}+\rho y_{t}+u_{t+1}, \quad 0<\rho \leq 1, \tag{3}
\end{equation*}
$$

where \bar{y} is the mean income and u_{t} a shock to income in period t. Also assume that $a_{0}=0$.
i) First suppose $y_{0}=\bar{y}$ and $u_{t}=0, t=0,1, \ldots$ Solve for savings.
ii) Then consider the case $y_{0}=\bar{y}$ and $u_{0}=1$ and $u_{t}=0, t=1,2, \ldots$. Discuss how this affects consumption and saving patterns.
4. Reading Exercise: Tax Rebates Read the article Consumer Response to Tax Rebates by Matthew D.Shapiro and Joel Slemrod (published in the American Economic Review, Vol. 93, 2003, pages 381 - 396), which you can find at www.jstor.org/stable/3132182. (You have to be connected to the University Network to access the paper). How does it relate to the questions on this problem set?

