Dynamic Macroeconomics

Problem Set 3

- 1. **Model of the centralized economy** Assume that we have an economy that can be described as follows:
 - Households and preferences
 - The economy is inhabited by one single representative consumer.
 - This consumer has preferences over an infinite stream of consumption $c_0, c_1, \ldots = \{c_t\}_{t=0}^{\infty}$.
 - The consumer's lifetime utility function is assumed to be time-separable and given by:

$$U(\{c\}_{t=0}^{\infty}) = \sum_{t=0}^{\infty} \beta^{t} u(c_{t})$$

- β is the individuals subjective time discount factor. We assume that $0<\beta<1$ holds.
- $-u(c_t)$ denotes the period utility function. We assume that it is strictly increasing and concave and is given by the following function:

$$u(c) = \frac{c^{1-\sigma}}{1-\sigma}.$$

We assume that $\sigma > 0$.

- Production
 - The production technology of the economy is given by:

$$y = f(k),$$

where y denotes the output, k the used capital and f(.) is a production function.

- We further assume that f(k) is Cobb-Douglas and thus given by:

$$f(k) = Ak^{\alpha}.$$

A denotes the level of 'knowledge'. Assume that $0 < \alpha < 1$.

- We further assume that the consumer owns the production technology, i.e. there are no firms.
- a) Derive the budget constraint of the representative consumer.
- b) Setup the inter-temporal optimization problem of the individual.

c) Setup the Lagrange function associated with the inter-temporal optimization problem and show that the first-order conditions of the optimization problem can be written as follows:

$$u'(c_t) = \beta u'(c_{t+1}) \left[1 + f'(k_{t+1}) - \delta \right]$$
(1)

and

$$c_t + k_{t+1} = f(k_t) + (1 - \delta)k_t \tag{2}$$

d) Compute the models steady state values of capital k^* and consumption c^* . Discuss how the steady state values depend upon the parameters of the model.

From now one assume that $\sigma = 1$ (so that the utility function becomes $u(c_t) = \ln c_t$) and that $\delta = 1$. Also assume that $\alpha = 0.33$, $\beta = 0.97$, A = 1.

e) Show that the optimal solution for the evolution of the capital stock is given by

$$k_{t+1} = \alpha \beta k_t^{\alpha}.$$

- f) Use the results from part e) to simulate the convergence process of the economy if it starts from a initial level of capital that is ten-percent below its steady state level.
- g) Use the results from part e) to simulate the convergence process of the economy if the discount rate increases from $\beta = 0.97$ to $\beta = 0.98$.
- 2. Hodrick-Prescott Filter This problem introduces you to one of the main tools for decomposing a time-series in a trend and a cyclical component. Suppose you are given a sequence of data y_t for t = 1, 2, ..., T. (For example, a time-series on Gross Domestic Product (GDP) for T periods). The objective is to find a trend series $\{\tau_t\}_{t=1}^T$ that solves the following problem:

$$\min_{\{\tau_t\}_{t=1}^T} \sum_{t=1}^T (y_t - \tau_t)^2 + \lambda \sum_{t=2}^{T-1} [(\tau_{t+1} - \tau_t) - (\tau_t - \tau_{t-1})]^2$$
(3)

where $\lambda \geq 0$ is a parameter.

- a) Interpret the objective function in (3). (Assume that y_t and τ_t are expressed in (natural) logarithms).
- b) Discuss what happens if $\lambda = 0$.
- c) Discuss what happens if $\lambda \to \infty$.
- d) Suppose $0 < \lambda < \infty$ and T = 4. Derive the first-order conditions for the optimal choice of $\{\tau_t\}_{t=1}^4$ and write them in matrix form.