Dynamic Macroeconomics

Problem Set 2

1. Consumption behavior in a 2-period model Consider an household who lives for two periods $(t=1,2)$. At the beginning of the first period, he is endowed with assets a_{0} and he receives an exogenously given income y_{1}. He can use these available resources $\left(y_{1}+a_{0}\right)$ for consumption c_{1} or for investment in assets a_{1}, that can be used to save for the second period. In the second period, he receives an exogenously given income y_{2} and his assets a_{1} and interest income on the assets $r_{2} a_{1}$, where r_{2} denotes the (known) interest rate at date $t=2$. He again can use the available resources for consumption c_{2} or for investment in assets a_{2}.

The household has a utility function defined over consumption pairs $\left(c_{1}, c_{2}\right)$ which is given by

$$
\begin{equation*}
u\left(c_{1}\right)+\beta u\left(c_{2}\right) \tag{1}
\end{equation*}
$$

where $u()$ is a twice continuously differentiable utility function which is strictly increasing and strictly concave. Additionally assume that $\lim _{c \rightarrow 0} u^{\prime}\left(c_{t}\right)=\infty$ and $\lim _{c \rightarrow \infty} u^{\prime}\left(c_{t}\right)=0 . \beta \in[0,1]$ is a discount factor that measures the households impatience.
a) Formulate the maximization problem of the household.
b) Argue why $a_{2}>0$ can not be optimal.
c) Argue why $c_{1}=0$ or $c_{2}=0$ can not be optimal.
d) Find the first-order conditions and interpret them.

Now assume that the utility function is given by

$$
\begin{array}{ll}
u\left(c_{t}\right)=\frac{c_{t}^{1-\sigma}-1}{1-\sigma}, & \text { if } \sigma>1 \\
u\left(c_{t}\right)=\ln c_{t}, & \text { if } \sigma=1 \tag{3}
\end{array}
$$

e) Show that this utility function satisfies the assumptions made above. Plot it for different values of σ and discuss how the shape of the function changes.
f) State and interpret the first-order conditions for this utility function. Discuss determinants of the optimal c_{2}^{*} / c_{1}^{*} ratio?
g) Solve for the optimal consumption level c_{1}^{*}. Discuss the economic intuition.
h) Suppose $r=0$ and $\beta=1$. Consider the three cases
i) $y_{1}=100, y_{2}=0$,
ii) $y_{1}=50, y_{2}=50$,
iii) $y_{1}=0, y_{2}=100$.

Provide solutions for optimal c_{1}^{*} and a_{1}^{*}. Do you find your results to be a good description of reality?
2. Borrowing constraints Consider a consumer that lives for two periods. In the first period he receives a income of 4 units and in the second period an income of 10 units. At the beginning of the first period the consumer does not own any assets (i.e. $a_{0}=0$). The interest rate at which the consumer can borrow or save is r.
a) Derive the life-time (inter-temporal) budget constraint of the consumer and explain its economic meaning.
b) Assume that the preferences of the consumer are given by $U\left(c_{1}, c_{2}\right)=\ln c_{1}+\beta \ln c_{2}$, where $\beta \in[0,1]$. Solve for the optimal consumption level in the first period. Under what condition will the consumer be a borrower in the first period?
c) Compare the expression you found for first-period consumption in part b) with a Keynesian consumption function $c_{1}=0.9 y_{1}$.
d) Suppose that the income in the first period increases by ϵ (while the income in the second period remains constant). Calculate the increase in first-period consumption (Δc_{0}) and compute the marginal propensity to consume in the first-period (given by $\Delta c_{0} / \Delta y_{0}$). Compare the results to those obtained with the Keynesian consumption function from part c).
e) Suppose that the consumer faces a liquidity constraint, which means that he can save but is unable to borrow in the first-period. Calculate optimal first-period consumption. (You may assume that $r=0$ and $\beta=1$). Compare to the results from part \mathbf{b}). [Hint: There is no need to use difficult math to answer this question].
f) Continue to assume that the consumer is liquidity constrained in the first-period. Suppose that the income in the first period increases by ϵ (while the income in the second period remains constant). Calculate the increase in first-period consumption (Δc_{0}) and compute the marginal propensity to consume in the first-period (given by $\Delta c_{0} / \Delta y_{0}$). Compare the results to those obtained with the Keynesian consumption function from part c).

