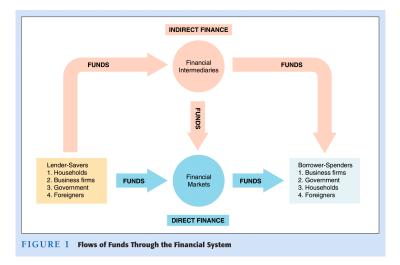
Dynamic Macroeconomics Chapter 12: Financial markets

University of Siegen


2 The bond market The bond market: Introduction The bond market: The term structure of interest rates

• Objective of financial markets:

 \implies Perform the essential function of channeling funds from economic players that have saved surplus funds to those that have a shortage of funds

 \implies Promote economic efficiency by producing an efficient allocation of capital which increases production (they allow funds to flow to people with the best investment opportunities)

 \Longrightarrow Directly improve the well-being of consumers by allowing them to time purchases better

Source: Mishkin (2009)

University of Siegen

- Structure of financial markets (categorization based on essential features of individual markets):
 - Debt and equity markets
 - Primary and secondary markets
 - Money and capital markets
- Debt and equity markets:
 - Direct funding is possible in two ways: By issuing a debt instrument or equities
 - Debt: Debt can be short-term (maturity is less than a year) or long-term (maturity is more than ten years)
 - Most common debt instruments:
 - Bonds
 - Mortgages
 - Equity: In the broadest sense, equity means ownership.

- Structure of financial markets (continued):
 - Primary and secondary markets:
 - A primary market is a financial market in which new issues of a security are sold to initial buyers.
 - A secondary market is a financial market in which previously issued stocks are traded.
 - Money and capital markets:
 - Money markets deal in short-term debt instruments.
 - Capital markets deal in longer-term debt and equity instruments.

• Major money market instruments

	Amount Outstanding (\$ billions, end of year)					
Type of Instrument	1980	1990	2000	2008		
U.S. Treasury bills	216	527	647	1060		
Negotiable bank certificates of						
deposit (large denominations)	317	543	1053	2385		
Commercial paper	122	557	1619	1732		
Federal funds and Security						
repurchase agreements	64	387.9	768.2	2118.1		
Sources: Federal Reserve Flow of Funds Accounts; Federal Reserve Bulletin; Economic Report of the President.						

Source: Mishkin (2009)

- negotiable bank certificate of deposit (CD): a debt instrument sold by a bank to depositors that pays annual interest of a given amount and at maturity pays back the original purchase price
- US Treasury Bill: a short-term debt instrument issued in 1, 3 and 6 month maturities to finance the federal government
- commercial paper: a short-term debt instrument issued by large banks and well-known corporations
- repurchase agreement: short-term loans (maturity less than 2 weeks) for which Treasury bills serve as collateral
- Federal Funds: overnight loans between banks of their deposits at the Federal Reserve

• Major capital market instruments

	Amount Outstanding (\$ billions, end of year)					
Type of Instrument	1980	1990	2000	2008		
Corporate stocks (market value)	1,601	4,146	17,627	19,648		
Residential mortgages	1,106	2,886	5,463	12,033		
Corporate bonds	366	1,008	2,230	3,703		
U.S. government securities (marketable long-term)	407	1,653	2,184	3,621		
U.S. government agency securities	193	435	1,616	8,073		
State and local government bonds	310	870	1,192	2,225		
Bank commercial loans	459	818	1,091	1,605		
Consumer loans	355	813	536	871		
Commercial and farm mortgages	352	829	1,214	2,526		
Sources: Federal Reserve Flow of Funds Accounts; Federal Reserve Bulletin. 2008, 3rd Quarter.						

Source: Mishkin (2009)

- stocks: equity claims on the net income and assets of a corporation
- mortgages: loans to households or firms to purchase land, housing or other real structures in which the structure or land itself serves as collateral for the loans
- corporate bonds: long-term bonds issued by corporations with very strong credit ratings
- US government securities: long-term debt instruments issued by the Treasury to finance the deficits of the federal government

- US government agencies securities: long-term bonds issued by various government agencies to finance mortgages, farm loans, power generating equipment etc.
- state and local government bonds: long-term debt instruments issued by state and local government to finance expenditures on schools, roads and other large programs
- consumer and bank commercial loans: made principally by banks but also by finance companies

The bond market: Introduction

- Credit market instruments:
 - Simple loans: Lender provides the borrower with an amount of funds, which must be repaid to the lender at the maturity date together with an interest rate payment
 - Fixed payment loan: Lender provides the borrower with an amount of funds, which has to be repaid by making the same payment (interest and part of the principal) every period
 - Coupon bond: Pays the owner a fixed interest payment (coupon payment) every year until the maturity date, when a specified final amount (face value) has to be repaid
 - Discount bond (Zero-coupon bond): Bought at a price below its face value, at the maturity the face value is repaid
- Yield to maturity: Interest rate that equates the present value of cash flow payments received from a debt instrument with its value today

- Consider a coupon bond with the following characteristics:
 - *n*: number of years until maturity
 - $P_{n,t}$: price of the coupon bond
 - c: yearly coupon payment
 - F = 1: face value of the bond
 - $R_{n,t}^c$: nominal discount rate for the income stream on a bond with coupon c; yield to maturity

• The price of this coupon bond is given by:

$$P_{n,t} = \frac{c}{1+R_{n,t}^{c}} + \frac{c}{\left(1+R_{n,t}^{c}\right)^{2}} + \dots + \frac{1+c}{\left(1+R_{n,t}^{c}\right)^{n}} \qquad (1)$$

$$= c \sum_{i=1}^{n} \frac{1}{\left(1+R_{n,t}^{c}\right)^{i}} + \frac{1}{\left(1+R_{n,t}^{c}\right)^{n}}$$

$$= \frac{1}{1+R_{n,t}^{c}} c \sum_{i=0}^{n-1} \frac{1}{\left(1+R_{n,t}^{c}\right)^{i}} + \frac{1}{\left(1+R_{n,t}^{c}\right)^{n}}$$

$$= \frac{c}{1+R_{n,t}^{c}} \frac{1-\frac{1}{\left(1+R_{n,t}^{c}\right)^{n}}}{1-\frac{1}{\left(1+R_{n,t}^{c}\right)^{n}}} + \frac{1}{\left(1+R_{n,t}^{c}\right)^{n}}$$

$$= \frac{c}{R_{n,t}^{c}} \left(1-\frac{1}{\left(1+R_{n,t}^{c}\right)^{n}}\right) + \frac{1}{\left(1+R_{n,t}^{c}\right)^{n}}$$

• For a zero-coupon bond (c = 0) we obtain:

$$P_{n,t} = \frac{c}{R_{n,t}^{c}} \left(1 - \frac{1}{\left(1 + R_{n,t}^{c}\right)^{n}} \right) + \frac{1}{\left(1 + R_{n,t}^{c}\right)^{n}}$$
(2)
$$= \frac{1}{\left(1 + R_{n,t}^{c}\right)^{n}} = \frac{1}{\left(1 + R_{n,t}^{0}\right)^{n}}$$

- An *n*-period coupon bond can be considered as a collection of *n*−1 zero-coupon bonds (due in periods 1, 2, ..., *n*−1) with face value *c* and one zero-coupon bond with face value 1 + *c* (due in period *n*).
- Then, we can write:

$$P_{n,t} = \frac{c}{1+R_{1,t}^{0}} + \frac{c}{\left(1+R_{2,t}^{0}\right)^{2}} + \ldots + \frac{1+c}{\left(1+R_{n,t}^{0}\right)^{n}}$$
(3)

- To compute the yields to maturities of the involved zero-coupon bonds (denoted by R⁰_{i,t} with i = 1, 2, ..., n) we proceed as follows:
 - If the holding period is only one period we have:

$$P_{1,t} = \frac{1+c}{1+R_{1,t}^0} \tag{4}$$

 \implies Equation determines $R_{1,t}^0$

• If the holding period is two periods we have:

$$P_{2,t} = \frac{c}{1 + R_{1,t}^0} + \frac{1 + c}{\left(1 + R_{2,t}^0\right)^2}$$
(5)

 \implies Equation determines $R_{2,t}^0$

• Repeating these steps allows to solve for the remaining zero-coupon interest rates.

 If one buys a n-period bond today (t) and sells it in the next period (t+1) the rate of return is given by:

$$1 + h_{n,t+1} = \frac{P_{n-1,t+1}}{P_{n,t}} = \frac{\frac{1}{(1 + R_{n-1,t+1}^0)^{n-1}}}{\frac{1}{(1 + R_{n,t}^0)^n}}$$
(6)

• Taking logs of this equation, observing that $\ln (1 + a) \approx a$ (for small values of *a*) and using $p_{n,t} = \ln P_{n,t}$ one can write:

$$h_{n,t+1} \approx p_{n-1,t+1} - p_{n,t} = nR_{n,t} - (n-1)R_{n-1,t+1}$$
(7)

• Given that no-arbitrage opportunities exist the expected return $h_{n,t+1}$ must be equal to the interest rate on a risk-free bond s_t plus a risk premium $\rho_{n,t}$ on an *n*-period bond, i.e., we must have:

$$\mathcal{E}_t h_{n,t+1} = s_t + \rho_{n,t} \tag{8}$$

17 / 21

• Combining the two expression for $h_{n,t+1}$ we can write:

$$h_{n,t+1} = nR_{n,t} - (n-1) E_t R_{n-1,t+1} = s_t + \rho_{n,t} \iff (9)$$
$$(n-1) (E_t R_{n-1,t+1} - R_{n,t}) = (R_{n,t} - s_t) + \rho_{n,t}$$

where $(R_{n,t} - s_t)$ denotes the term spread.

• Solving this equation for $R_{n,t}$ yields:

$$R_{n,t} = \frac{n-1}{n} E_t R_{n-1,t+1} + \frac{1}{n} \left(s_t + \rho_{n,t} \right)$$
(10)

• For $R_{n-1,t+1}$ we obtain:

$$R_{n-1,t+1} = \frac{n-1}{n} E_{t+1} R_{n-2,t+2} + \frac{1}{n} \left(s_{t+1} + \rho_{n-1,t+1} \right)$$
(11)

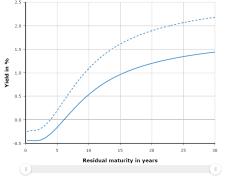
 Plugging the so obtained expression for R_{n-1,t+1} into the equation for R_{n,t} and repeating these two steps for R_{n-2,t+2}, ... we obtain:

$$R_{n,t} = \frac{1}{n} \sum_{i=0}^{n-1} E_t \left(s_{t+i} + \rho_{n-i,t+i} \right)$$
(12)

 \implies Interpretation?

• The nominal interest rate on the risk-free bond is given by:

$$s_t = r_t + E_t \pi_{t+1} \tag{13}$$


(Fisher equation).

• Plugging this expression into the just derived equation for $R_{n,t}$ yields:

$$R_{n,t} = \frac{1}{n} \sum_{i=0}^{n-1} E_t \left(r_{t+i} + E_t \pi_{t+1+i} + \rho_{n-i,t+i} \right)$$
(14)

- Yield curve: A plot of the yield on bonds with differing terms to maturity but the same risk, liquidity and tax considerations is called a yield curve.
- A yield curve can be
 - upward-sloping, i.e. long-term rates are above short-term rates
 - flat, i.e. short- and long-term rates are the same
 - downward-sloping (inverted), i.e. long-term rates are below short-term rates or
 - shaped more complicated (very rare)

• Yield Curve Euro Area January 22nd, 2016

Dashed lines indicate the spot rate based on all government bonds; solid lines on AAA-rated bonds only.

Source: Website of the ECB