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Expected utility and risk

Expected utility and risk

• Assume an investor is offered a “lottery” with two possible pay-offs x1
or x2 which occur with probability π and 1− π, respectively.

• If we denote the (random) outcome of the lottery by W and the
expected outcome by E (W ) then we have:

πx1 + (1− π) x2 = E (W ) (1)

• The investor is said to be
risk-averse
risk-neutral
risk-loving

 if


U [E (W )] > E [U (W )]
U [E (W )] = E [U (W )]
U [E (W )] < E [U (W )]

(2)

with U [E (W )] = U [πx1 + (1− π) x2] and
E [U (W )] = π1U (x1) + (1− π)U (x2).
=⇒ Interpretation?
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Expected utility and risk

Expected utility and risk

• Consider the expression for the expected utility from playing the
lottery:

E [U (W )] (3)

• Taking a second-order Taylor approximation of this expression around
W = E (W ) yields:

E [U (W )] ≈ E [U (E (W ))] + E
{

∂ [U (E (W ))]

∂W (W − E (W ))

}
+

+E
{

∂2 [U (E (W ))]

∂W 2

(
1
2

)
(W − E (W ))2

}
=

= U (E (W )) +
1
2E (W − E (W ))2 U ′′ (E (W ))
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Expected utility and risk

Expected utility and risk

• The just derived equation shows that (Jensen’s inequality):
U [E (W )] > E [U (W )]
U [E (W )] = E [U (W )]
U [E (W )] < E [U (W )]

 ⇐⇒
U ′′(.)

<
=
>

 0 (4)

=⇒ Interpretation?
• We now consider a case in which the investor can buy one of two
assets. These two assets have the following characteristics:

• Asset 1: The return of the asset (denoted by r f ) is certain.
=⇒ Risk-free asset

• Asset 2: The return of the asset (denoted by r) is subject to
uncertainty. The expected rate of return is denoted by E (r ), the
degree of uncertainty is captured by the variance of r , denoted by
V (r ).
=⇒ Risky asset
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Expected utility and risk

Expected utility and risk

• Assuming that an investor has initial wealth W0, the expected return
on the safe asset (denoted by E

(
W f )) is given by:

E
(

W f
)
= E

[(
1+ r f

)
W0
]
=
(
1+ r f

)
W0 = W f (5)

• The expected return on the risky asset (denoted by E (W r )) is given
by:

E (W r ) = E [(1+ r )W0] = (1+ E (r ))W0 (6)

=⇒ Assuming E (r ) = r f , which asset should the investor buy?

• Answer: The investor should buy the asset which yields the higher
expected utility.
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Expected utility and risk

Expected utility and risk

• The expected utility from investing in the safe asset (denoted by
E
[
U
(
W f )]) is given by:

E
[
U
(

W f
)]

= U
(

W f
)
= U

[
E
(

W f
)]

(7)

• To evaluate the expected utility from investing in the risky asset
(denoted by E [U (W r )]) we compute a second-order Taylor
approximation of this expression around r = r f . This yields
(Remember: W f =

(
1+ r f )W0):

E [U (W r )] ≈ E
[
U
(

W f
)]

+ E
{

∂
[
U
(
W f )]

∂W

(
∂W f

∂r

)
r=r f

(
r − r f

)}
+

+E
{

∂2
[
U
(
W f )]

∂W 2
(
W 2

0
) (1

2

)(
r − r f

)2}
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Expected utility and risk

Expected utility and risk

• The latter expression can be simplified to:

E [U (W r )] ≈ E
[
U
(

W f
)]

+

(
1
2

)
W 2

0 U ′′
(

W f
)

E
{(

r − r f
)2}

= E
[
U
(

W f
)]

+

(
1
2

) (
W 2

0
)

U ′′
(

W f
)

V (r )

• If the investor is risk-averse, we thus have:

E [U (W r )] < E
[
U
(

W f
)]

(8)

=⇒ Interpretation?
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Expected utility and risk

Expected utility and risk

• The equation
E [U (W r )] < E

[
U
(

W f
)]

(9)

shows that a risk-averse investor will prefer to hold a risk-free asset
relative to a risky asset given that the expected returns of the two
assets are equal.

• We now want to examine how much compensation (in terms of
additional return, ρ) the investor must be offered to be willing to hold
the risky asset.

• In other words, we want to examine how large ρ in the following
equation must be:

E [U (W r )] = E [U ((1+ r + ρ)W0)] = E
[
U
(

W f
)]

(10)

(Please note that we now assume that the expected return of the
risky asset is: E (r ) = r f + ρ.)

University of Siegen Dynamic Macroeconomics 9 / 29



Expected utility and risk

Expected utility and risk

• A second-order Taylor approximation of the term
E [U (W r )] = E [U ((1+ r )W0)] around r = r f + ρ yields:

E [U ((1+ r )W0)] ≈ E
[
U
((

1+ r f + ρ
)

W0
)]

+

+

(
1
2

) (
W 2

0
)

U ′′ (.)E
{(

r − r f − ρ
)2}

• A first-order Taylor approximation of E
[
U
((
1+ r f + ρ

)
W0
)]

around ρ = 0 yields:

E [U ((1+ r r + ρ)W0)] ≈ E
[
U
((

1+ r f
)

W0
)]

+ (11)

+U ′ (.)W0 (ρ− 0)
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Expected utility and risk

Expected utility and risk

• For E [U (W r )] we then obtain:

E [U (W r )] ≈ E
[
U
(

W f
)]

+ U ′ (.)W0ρ +

+

(
1
2

) (
W 2

0
)

U ′′ (.)E
{(

r − r f − ρ
)2}

• Then E [U (W r )] = E
[
U
(
W f )] if:

ρ = −W0U ′′
U ′

V (r )
2 (12)

=⇒ Interpretation?
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Market efficiency

Market efficiency

• Definition of market efficiency (Wickens, 2011):
A market is said to be efficient if there are no unexploited
arbitrage opportunities.

• An arbitrage portfolio is a self-financing portfolio with a zero or
negative cost that has a positive payoff.

=⇒ If unexploited arbitrage opportunities exist the investor gets
something for nothing.

• Implication: For any risky asset i with return ri ,t+1 the absence of
arbitrage opportunities implies:

Etri ,t+1 = r f
t + ρi ,t (13)

where ρi ,t denotes the risk premium of asset i .
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Asset pricing and contingent claims

Asset pricing and contingent claims

• Basic principle in asset pricing: The value of any investment is found
by computing the value today (present value) of all cash flows the
investment will generate over its lifetime.

• Problem: Future payoffs depend on unknown future economic
conditions.
=⇒ There is a high degree of uncertainty about future payoffs.
=⇒ To price assets: Modeling of uncertainty necessary.

• Approach to model uncertainty:
• We assume that in each period one out of s = 1, 2, . . . , S possible

states of nature can occur.
• The probability that state s occurs is denoted by π(s). Since exactly

one state of nature s occurs in each period we have:
S
∑
s=1

π(s) = 1 (14)
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Asset pricing and contingent claims

Asset pricing and contingent claims

• Specification of the asset market:

• There are s = 1, 2, . . . , S different types of assets.
• An asset of type s pays off one euro if state s occurs and zero

otherwise.
=⇒ State-contingent claim.
=⇒ If one state-contingent claim exists for each possible state of
nature we have complete markets.

• The price of state-contingent claim s is denoted by q (s).
• The vector q = [q (1) q (2) . . . q (S)]′ is denoted as state-price

vector.
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Asset pricing and contingent claims

Asset pricing and contingent claims

• Pricing of non-state contingent assets:

• Assume we have an asset that pays off x (s) euros in state s (for
s = 1, 2, . . . , S).

• Note that a portfolio which contains x (s) units of the state-contingent
claim s has the same pay-off as the asset that provides a pay-off x (s)
in each state of nature.
=⇒ The prices of the asset and the portfolio must be equal.

• Assuming that the prices of the state-contingent claims are given we
therefore have that the price of the asset, denoted by p, must satisfy:

p =
S
∑
s=1

q (s) x (s) (15)
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Asset pricing and contingent claims

Asset pricing and contingent claims

• Pricing of non-state contingent assets (continued):

• The “pricing formula” of the last page can be reformulated as follows:

p =
S
∑
s=1

q (s) x (s) =
S
∑
s=1

π (s) q (s)
π (s)

x (s) (16)

=
S
∑
s=1

π (s)m (s) x (s) = E (mx)

=⇒ m (s): Stochastic discount factor of 1 euro in state s.
=⇒ Interpretation?

• Now: Express this equation in terms of returns instead of the asset
price (→ stochastic discount factor representation of returns)
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Asset pricing and contingent claims

Asset pricing and contingent claims

• Deriving an expression for the risk premium:
• Dividing equation (15) by p and defining 1+ r (s) = x(s)/p yields:

p =
S
∑
s=1

q (s) x (s)⇐⇒ 1 =
S
∑
s=1

q (s) x (s)
p =

S
∑
s=1

q (s) (1+ r (s))

=
S
∑
s=1

π (s) q (s)
π (s) (

1+ r (s)) =

= E [m (1+ r )] (17)
• For the risk− free asset (with a rate of return of r f ) we obtain (since

1+ r f = x/pf ):

1 =
S
∑
s=1

π (s)m (s)
(
1+ r f

)
= E (m)

(
1+ r f

)
⇐⇒ (18)

⇐⇒ 1 =
x
pf E (m)⇐⇒ pf = xE (m)
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Asset pricing and contingent claims

Asset pricing and contingent claims

• Deriving an expression for the risk premium (continued):
• The expectational term E [m (1+ r )] (equation (17) can be written as

follows:

E [m (1+ r )] = E (m)E (1+ r ) + Cov (m, 1+ r ) (19)

(Remember: Cov (X , Y ) = E (XY )− E (X )E (Y ))

• Then equation (17) can be written as:
1 = E [m (1+ r )] = E (m)E (1+ r ) + Cov (m, 1+ r )⇐⇒ (20)

E (1+ r ) = 1
E (m)

− Cov (m, 1+ r )
E (m)

• Using the expression for E (m) derived for the risk-free asset
(E (m) = 1

(1+r f )
) we can write:

E (1+ r ) = 1
1

(1+r f )

− Cov (m, 1+ r )
1

(1+r f )

(21)
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Asset pricing and contingent claims

Asset pricing and contingent claims

• Deriving an expression for the risk premium (continued):

• The just derived equation can be rearranged as follows:
E (1+ r ) =

(
1+ r f

)
−
(
1+ r f

)
Cov (m, 1+ r )⇐⇒ (22)

⇐⇒ E (r ) = r f −
(
1+ r f

)
Cov (m, 1+ r )

=⇒ Interpretation?
• From the equation

Et ri ,t+1 = r f
t + ρi ,t (23)

we see that the risk premium for the risky asset is given by:

ρ = −
(
1+ r f

)
Cov (m, 1+ r ) (24)

• ρ > 0 when Cov(m, 1+ r ) = Cov(m, r ) < 0 =⇒ Interpretation?
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General equilibrium asset pricing

General equilibrium asset pricing

• Basic idea: Prices of financial assets and real variables are determined
jointly.

• Model setup:
• Two-period model.
• Economy is inhabited by one representative household.
• Period t’s income (denoted by y) is certain, period t + 1’s income is

uncertain.
• Period t + 1’s income depends on the state of nature in that period

(denoted by s) and is given by: y (s).
• Future income/consumption is discounted at rate q (s).
• The household’s lifetime utility function is given by:

V = U (ct) + βEtU (ct+1) (25)
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General equilibrium asset pricing

General equilibrium asset pricing

• Optimization problem of the household:
• The household maximizes expected lifetime utility, i.e., the objective

function of the household is given by:

max
c,c(s)S

s=1

V = U (ct) + βEtU (ct+1) ≡ U (c) + β
S
∑
s=1

π(s)U (c (s))

(26)

where S denotes the number of possible states of nature in period
t + 1, π (s) denotes the probability that state s will occur and the
period utility function U(.) is strictly concave in c.

• The household’s intertemporal budget constraint is given by:

c +
S
∑
s=1

q (s) c (s) = y +
S
∑
s=1

q (s) y (s), (27)

where q (s) denotes the state price for contingent claims that are used
to value future consumption and income in state s.
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General equilibrium asset pricing

General equilibrium asset pricing
• Optimization problem of the household (continued):

• The Lagrangian of the household is given by:

L = U (c) + β
S
∑
s=1

π(s)U [c (s)] + (28)

+λ

[
y +

S
∑
s=1

q (s) y (s)− c −
S
∑
s=1

q (s) c (s)
]

• Model solution:
• The first-order conditions are given by:

∂L
∂c = U ′ (c)− λ

!
= 0⇐⇒ U ′ (c) = λ (29)

∂L
∂c (s)

= βπ (s)U ′ (c (s))− λq (s) !
= 0⇐⇒ β

π (s)
q (s)

U ′ (c (s)) = λ

∂L
∂λ

= y +
S
∑
s=1

q (s) y (s)− c −
S
∑
s=1

q (s) c (s) !
= 0
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General equilibrium asset pricing

General equilibrium asset pricing

• Model solution (continued):
• Combining the first two first-order conditions yields:

U ′ (c) = β
π (s)
q (s)

U ′ (c (s))⇐⇒ q (s) = βπ (s) U ′ (c (s))
U ′ (c)

(30)

• Above, we defined the stochastic discount factor m (s) as:

m (s) = q (s)
π (s)

⇐⇒ q (s) = m (s)π (s) (31)

• Using this expression and the result for the combined two first-order
conditions we obtain:

q (s) = βπ (s) U ′ (c (s))
U ′ (c)

⇐⇒ m (s) = β
U ′ (c (s))

U ′ (c)
(32)

=⇒ Interpretation?
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General equilibrium asset pricing

General equilibrium asset pricing
• Implications:

• Above, we showed that the price of an asset which has the payoff x (s)
in state s (with s = 1, 2, . . . , S) is given by:

p =
S
∑
s=1

π (s)m (s) x (s) (33)

• The price of tomorrow’s output y (s) is thus given by (using the result
for the stochastic discount factor derived above):

p =
S
∑
s=1

π (s)m (s) y (s) =
S
∑
s=1

π (s) βU ′ (c (s))
U ′ (c)

y (s) (34)

• Dividing by p (and remembering that y(s)/p = 1+ r (s) we obtain:

1 =
S

∑
s=1

π (s) βU ′ (c (s))
U ′ (c) [1+ r (s)]⇐⇒

1 = Et

{
βU ′ (ct+1)

U ′ (ct)
[1+ rt+1]

}
⇐⇒ U ′ (ct) = βEt

{
U ′ (ct+1) [1+ rt+1]

}
=⇒ Interpretation?
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General equilibrium asset pricing

General equilibrium asset pricing

• Implications (continued):
• Since

Et

{[
βU ′ (ct+1)

U ′ (ct)

]
[1+ rt+1]

}
= Et

{
βU ′ (ct+1)

U ′ (ct)

}
Et {[1+ rt+1]}+

+Cov
{[

βU ′ (ct+1)

U ′ (ct)

]
, [1+ rt+1]

}
we can write

1 = Et

{
βU ′ (ct+1)

U ′ (ct)
[1+ rt+1]

}
= Et

{
βU ′ (ct+1)

U ′ (ct)

}
Et {[1+ rt+1]}+ Cov

{[
βU ′ (ct+1)

U ′ (ct)

]
, [1+ rt+1]

}
.
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General equilibrium asset pricing

General equilibrium asset pricing

• Implications (continued):
• If future return was certain (rt+1 = r f

t ) we would have that

Cov
{[

βU ′ (ct+1)

U ′ (ct)

] [
1+ r f

t

]}
= 0 (35)

and therefore

1 = Et

{
βU ′ (ct+1)

U ′ (ct)

}
Et
{[

1+ r f
t

]}
(36)

⇐⇒ 1[
1+ r f

t
] = Et

{
βU ′ (ct+1)

U ′ (ct)

}
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General equilibrium asset pricing

General equilibrium asset pricing

• Implications (continued):
• Combining the expression for the risk-free asset and the risky asset we

obtain:

1 = Et

{
βU ′ (ct+1)

U ′ (ct)

}
Et {[1+ rt+1]}+ Cov

{[
βU ′ (ct+1)

U ′ (ct)

]
, [1+ rt+1]

}
Et

{
βU ′ (ct+1)

U ′ (ct)

}
Et {[1+ rt+1]} = 1− Cov

{[
βU ′ (ct+1)

U ′ (ct)

]
, [1+ rt+1]

}
1[

1+ r f
t
]Et {[1+ rt+1]} = 1− Cov

{[
βU ′ (ct+1)

U ′ (ct)

]
, [1+ rt+1]

}
Et {[1+ rt+1]} =

[
1+ r f

t

]
−
[
1+ r f

t

]
Cov

{[
βU ′ (ct+1)

U ′ (ct)

]
, [1+ rt+1]

}
=⇒ Consumption-based capital asset-pricing model (C-CAPM)
=⇒ Interpretation?
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General equilibrium asset pricing

General equilibrium asset pricing

• Implications (continued):
• Taking a Taylor approximation of the marginal utility in period t + 1

around ct+1 = ct we obtain:

U ′ (ct+1) ≈ U ′ (ct) + U ′′ (ct) (ct+1 − ct) = U ′ (ct) + U ′′ (ct)∆ct+1

• For the term βU ′(ct+1)
U ′(ct )

we then obtain:

βU ′ (ct+1)

U ′ (ct)
= β

U ′ (ct) + U ′′ (ct)∆ct+1
U ′ (ct)

= β

[
1+ U ′′ (ct)∆ct+1

U ′ (ct)

]
= β

[
1+ ctU ′′ (ct)

U ′ (ct)

∆ct+1
ct

]
= β

[
1− σt

∆ct+1
ct

]
=⇒ Interpretation of σt?
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General equilibrium asset pricing

General equilibrium asset pricing

• Implications (continued):
• Then the expression for the expected rate of return from the previous

slide can be written as:

Et [1+ rt+1] =
[
1+ r f

t

]
−
[
1+ r f

t

]
Cov

{[
βU ′ (ct+1)

U ′ (ct)

]
, [1+ rt+1]

}
Et [rt+1] = r f

t −
[
1+ r f

t

]
Cov

{
β

[
1− σt

∆ct+1
ct

]
, [1+ rt+1]

}
= r f

t +
[
1+ r f

t

]
βσtCov

{[
∆ct+1

ct

]
, rt+1

}
=⇒ Interpretation?
(Note: If a is a scalar and X and Y are random variables we have

Cov (a + X , Y ) = E ((a + X )Y )− E (a + X )E (Y ) = (37)
= E (aY ) + E (XY )− (E (a)E (Y ) + E (X )E (Y )) = Cov (X , Y ))
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