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Selected stylized facts of business cycles

Selected stylized facts of business cycles

e Stylized facts = empirical regularities.

— Major objective of macroeconomics: Build models which can
explain major stylized facts

e In chapter 2: Analyze behavior of consumption and investment.

— Necessary first step: Derive stylized facts concerning the
behavior of consumption and investment.

e Procedure:

e Obtain data (In our case: Euro area data)
e Filter data (Decompose data into long-run and short-run component).

e Compute statistics concerning the behavior of macroeconomic time
series (Volatility and correlation of time series).
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Selected stylized

facts of business cycles

Selected stylized facts of business cycles

e Data for output,

consumption and investment: Original data
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Selected stylized facts of business cycles

Selected stylized facts of business cycles

e Data for output, consumption and investment: Plot of (In) levels

GNP: Original series
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Selected stylized facts of business cycles

Selected stylized facts of business cycles

e Data for output, consumption and investment: Plot of level and trend
component

GNP: Original series and trend Consumption: Original series and trenshvestment: Original series and trend
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— Observation: Variables exhibit long-run growth
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Selected stylized facts of business cycles

Selected stylized facts of business cycles

e Data for output, consumption and investment: Plot of cyclical

com ponent
GNP: Cyclical component Consumption: Cyclical component  Investment: Cyclical component
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— Observation: ?
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Selected stylized facts of business cycles

Selected stylized facts of business cycles

e Data for output, consumption and investment: Plot of cyclical
component (identical scale)

GNP: Cyclical component Consumption: Cyclical component  Investment: Cyclical component
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—> Observations:

— Consumption is less volatile than output, investment is much more
volatile than output.

—> Consumption and investment are strongly procyclical.
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Selected stylized facts of business cycles

Selected stylized facts of business cycles

e To decompose the original time series: Filtering of the original data is
necessary.
e Basic intuition:

e Denote by {yt}thl the log of a time series (such as GDP,
consumption, investment, ...) that you want to detrend.

e y; is considered to be composed of a long-run (y/) and a short-run
(y£") component as follows:

ve=yi +y (1)

— To perform empirical growth or business cycle analysis: “Filtering”
of the data is necessary to obtain either y/" or ys'.

e To filter data: Several possibilities exist.

e Most popular filter: Hodrick-Prescott filter.
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Selected stylized facts of business cycles

Selected stylized facts of business cycles

e Hodrick-Prescott (HP) filter: Intuition

e According to the Hodrick-Prescott filter, the long-run (growth or
trend) component is obtained as the solution to the following
minimization problem:

o Y () +A T (st ot) = (o o))
tli (2)

where the parameter A must be chosen by the researcher.

e The higher the value of A, the smoother the trend component becomes
(Can you see why?).

e For quarterly data, A = 1600 is chosen.
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Model setup

Model setup: Motivation

e Build up a simple macroeconomic model which allows us to analyze
the behavior of aggregate output, consumption and investment.

e Model is microfounded:
— Model household and firm behavior explicitly.

e Behavior of macro variables is obtained by aggregating across
households and firms.

— Simplifying assumptions: All households are equal, all firms are
owned by households.

— It is sufficient to solve the decisions problems of the
“representative” household /firm.
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Model setup Preferences

Model setup: Preferences

e Economy is inhabited by identical consumers.

—> Individual variables are identical to aggregate variables.

Consumers have preferences over an infinite stream of consumption
(o]

Ct: Ce+1y - = {Ct+s}5:0-

The consumer’s lifetime utility function is assumed to be

time-separable and given by:

Ve = ioﬁsU (cers) (3)

B is the individual’s subjective time discount factor. We assume that
0 < B <1 holds.

U (.) denotes the period utility function. We assume that it is strictly
increasing and concave.
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Model setup Preferences

Model setup: Preferences

e Period utility function: Graphical illustration:

Period utility function

— Positive marginal utility: U’(.) > 0.
= Diminishing positive marginal utility: U”(.) < 0.
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Model setup Production technology

Production technology

e Output (GDP) is produced using the following production technology:

ye=F (at: ke, ”t) (4)
with
e y;: Output
o k;: Capital input
e ng: Labor input

e a;: Level of technology, knowledge, efficiency of work
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Model setup Production technology

Production technology

e Assumptions concerning the production function (continued):

e Constant returns to scale:

F(a, ¢k, pn) = ¢pF(a, k,n) forall¢p >0 (5)

e Positive, but declining marginal products of capital and labor

oF (e) 0°F (o) OF (e) 0°F (o) 0%F (o)
>
ok 0k <05, 205 <0520 (0
e Both production factors are necessary
F(a,0,n) =0 and F(a, k,0) =0 )
e Inada conditions are satisfied:
) F(e) . J0F(e) . OF(e) ) F(e)
kILnO ok = % k:noo ok O, n@O on =% nl—>m0° on 0
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Model setup Production technology

Production technology

e For the moment, we assume that n; is constant:

ng =1 (9)

e Then:
Yt = F (at, kt, 1) = F (at, kt) (10)

e Graphical illustration of the production function (a = 1):

JF yFK
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Model setup Budget constraint

Budget constraint

e Period t's budget constraint is given by:
Ye=Ct+ it (11)
— Budget constraint of a closed economy without government.

e Moreover, the household faces the following condition concerning the
evolution of the capital stock:

kt+1 — kt + it - 5kt <:> it’ — kt+1 - (1 - (5) kt (12)

e Combining the two above equations, the household's budget
constraint can be rewritten as (suppressing the a; in the production
function):

¢t + ker1 = F(ke) + (1 —6)ke (13)

e |n fact we assume a; = 1 for the moment.

University of Siegen Dynamic Macroeconomics 17 / 60



The maximization problem

The maximization problem

e The household maximizes lifetime utility given the resource constraint:
= Dynamic (constrained) intertemporal optimization problem.

e The intertemporal optimization problem is given by:

[
max Vi = *U(c 14
Ct:CtalyeeiKet1,Ket2,ee0 ‘ ;)ﬁ ( t+S) ( )

s.t.
Ct+s + kt+s+1 = F(kt+s) -+ (]_ — 5)kt+51 Vs >0 (15)

e Solution approaches:
e Transform constrained into unconstrained maximization problem.
e Lagrange approach.
e Dynamic programming.
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Model solution The two-period case

Model solution: The two-period case

e To illustrate the basic intuition of the model we first solve it for the
simple two-period case.

e In this case, the household’s maximization problem is given by:

Ct,Ce+1,Ket1,Ke 2

1
max Vi = Z B°U (ctss) = U(ct) + BU (ce+1)  (16)

0
s.t.
¢t + kt+1 = F(kt) + (1 — (S)kt (17)
Ce1+ keyo = Flkes1) + (1 —0)kesa (18)

e To solve the model we employ two different approaches:

e Approach 1: Transform constrained into unconstrained maximization
problem and solve the unconstrained problem.

e Approach 2: Lagrange approach.
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Model solution The two-period case

Model solution: The two-period case

e Solution approach 1: Transform constrained into unconstrained
maximization problem and solve the unconstrained problem:

e Solving the two budget constraint for consumption yields:
Ct = F(kt) + (1 — 5)/(1» — kt+1 (19)
o1 = Flhera) + (1= 0) ke — ke (20)

e Since the household no longer lives in period t 4 2 it will disinvest its
complete capital stock in period t + 1 and consume it. That is, we
have:

kt+2 = O (21)

e Period’'s t + 1 budget constraint then becomes:
Ct4+1 = F(kt+1) + (1 - (S)kt+1 (22)
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Model solution The two-period case

Model solution: The two-period case

e Solution approach 1 (continued):

e Plugging the transformed budget constraints into the objective
function yields:

max V; = U (ct) + BU (ce41) =

ke+1

= U (F(ke) + (1= 6)ke — keq1) + BU (F(ker1) + (1= 0)keta)

d

<

e The first-order condition is given by (Notation: U’(.) =

c):

U' () (—1) + BU (ces1) [F/ (ke1) +1—6] =0 < (23)
U'(ce) = B [F (kesa) +1—6] U (cern)

Q|

— Intertemporal Euler equation
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Model solution The two-period case

Model solution: The two-period case

e Solution approach 1 (continued):

e Intuition for intertemporal Euler equation:

e Assume that consumption is reduced by a small amount (denoted by
Ac) in Period t.

= Utility in period t is reduced by: U’ (c;) Ac.
® The amount Ac is invested in capital. In period t 4 1 this investment
leads to additional output of F’ (k1) Ac.

e Moreover, the household can transform the amount of consumption
invested in period t back into consumption goods in period t + 1.
Since a proportion ¢ of Ac is lost through appreciation this leads to an
increase in consumption by (1 —¢) Ac in period t + 1.

e Overall, the household can increase consumption by F’ (kyy1)+1—6
in period t + 1 which in turn leads to an increase in period’s t + 1
Utlllty by [F/ [kt+1] +1-— 5] Ul (Ct+1).
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Model solution The two-period case

Model solution: The two-period case

e Solution approach 1 (continued):

e Intuition for intertemporal Euler equation (continued):

e From today's perspective the utility gain tomorrow is “worth":
BIF [kesa] +1=0] U’ (ceqa)-

e In the optimum, the utility loss from saving more today must be equal
to the discounted utility gain tomorrow (why?). Thus, we must have:

U'(ct) = B [F' (key1) +1=6] U (cer1) (24)

e Interpretation of the term F’ (ky+1) +1—¢6:

e Assume you invest one unit of consumption in period 0. Then, your
consumption in period 1 increases by:

F/(kee1) +1—0 (25)
= F’ (key1) + 1 — & represents the gross real interest rate.
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Model solution The two-period case

Model solution: The two-period case

e Solution approach 1 (continued):

e Implications of the Euler equation (1):
e Assume that the subjective discount factor (B) is equal to the market
discount factor (m)
e Then, the Euler equation becomes:
U'(ct) = B[F' (kes1) +1=0] U (cev1) <= U (cr) = U’ (ce1)
(26)
= Consumption in the two periods would be equal:

Ct = Ceq1 (27)

—> Perfect consumption smoothing
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Model solution The two-period case

Model solution: The two-period case

e Solution approach 1 (continued):

e Why do households want to smooth consumption?
o |llustrative example:
e Household has log-utility function (U (ct) = Inct).
Household lives for two periods.
There is no discounting: f = 1.
Household can choose between two consumption patterns:
— Pattern 1: ¢; =9, ¢t41 = 1.
— Pattern 2 (smooth pattern): ¢; =5, ¢t+1 = 5.
= Which consumption pattern do households prefer?

e Lifetime utility from pattern 1:

VE=1n(9)+1In(1) =22 (28)
e Lifetime utility from pattern 2:
VZ=1In(5)+1In(5) ~32>22=V} (29)

= Households prefer (lifetime-maximizing) smooth pattern 2.
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Model solution The two-period case

Model solution: The two-period case

e Solution approach 1 (continued):

e Implications of the Euler equation (2):

e How does B (= subjective discount factor) influence the consumption
pattern over time?

= For illustrative purposes, we assume that U (¢;) = In¢;
(U (e) = 2).
e From the Euler equation:
Ul (Ct) = ’B I:Fl (kl’+1) + 1 - 5] U/ (Ct+1)
we get:
1

— =B[F (k +1-9¢
Ct 'B[ (tH) ]Ct+1

< cp1 =B [F (kes1) +1—6] e

= A higher value of  (everything else held constant) implies that
Ct+1 is relatively higher compared to c;.

University of Siegen Dynamic Macroeconomics 26 / 60



Model solution The two-period case

Model solution: The two-period case

e Solution approach 1: (continued):

e Implications of the Euler equation (2):

e How does F’ (kt+1) (= marginal product of next period's capital
stock) influence the consumption pattern over time?
= For illustration purposes, we again assume that U (ct) = Inc;
(U (e) = 2).

e From above we know that the dynamics of c is then given by:

cer1=PB[F (key1) +1—6] e (30)
= A higher value of F’ (ks11) implies (everything else held

constant) that c¢+1 is relatively higher compared to ¢; (=
intertemporal substitution effect).
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Model solution The two-period case

Model solution: The two-period case

e Solution approach 2: Lagrange approach:

e The household’'s maximization problem is given by:

max Z B°U (crrs) = U(ce) +BU (ce1)  (31)
Ctth+1,kt+1,kt+2
s.t.
Ct+kt+1 = F(kt)—i-(].—&)kt (32)
ct+1 = Flker1) + (1= 0)ketr (33)

where we have used that
keyo =0 (34)
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Model solution The two-period case

Model solution: The two-period case

e Solution approach 2 (continued):

e The associated Lagrange function is given by:

L = Ulee)+BU(cer1) + (35)
+A¢ [F(k) ( 5)kt_Ct—kt+1]+
FAe+1 [F(kes1) + (1= 0)kev1 — ceya]

1
= Y {B°U(ctrs) + Aes [Flkeys) + (1= 8)kes — Ceys — kegsta]}

s=0

with kt+2 =0
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Model solution The two-period case

Model solution: The two-period case

e Solution approach 2 (continued):

e The first-order conditions of the maximization problem are given by:
e With respect to ¢;:
oL | / 0
¥:0<:>U(Ct)—At:O<:>ﬁU(Ct):)\t (36)
t
e With respect to ct41:

oL

|
3 :0<:>‘BU/ (Ct+1)_)\t+1 =0<:>IBIU/ (Ct+1) = Aty
Ct+1

(37)

e With respect to kit1:

oL
20— —Ae+A [Fllke)+(1=68)] =0 (38)
Oke11

= Ar=Ar1 [F(key1) + (1 - 0)]
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Model solution The two-period case

Model solution: The two-period case

e Solution approach 2 (continued):

e First-order conditions of the maximization problem (continued):
o With respect to A;:

oL

ﬁéo < F(ke)+(1—08)kt —ct — kg1 =0 (39)
t

< Ct+kt+1 = F(kt)+(175)kt

e With respect to Ay1:

L |
20 <= Flkes1)+(1—06)key1 —cr1 =0  (40)
OAti1

< o1 = Flker1) + (1= 0)ketn

e Using equations (36) and (37) to replace A¢ and A¢41 in equation (38)
we obtain the intertemporal Euler equation:

U (ct) = B [F' (ker1) + 1= 6] U (ce41) (41)
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Model solution The infinite-horizon case

Model solution: The infinite-horizon case

e In the infinite-horizon case, the household's maximization problem is

given by:
max Ve=)_ B°U (cess) (42)
CtrCrilreeiKetr 1, Ke g2, =0
s.t.
Ctts + kitst1 = Flkers) + (1 —6)kets, Vs >0 (43)

e To solve the model we employ the Lagrange approach.

e The Lagrange function is given by:

L = ;0 {B°U (cts) + Aigs [Fkegs) + (1 = O)keqs — Ceys — ketst1]}

= Maximize with respect to {c¢+s, kt4s+1, At+s; s > 0}
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Model solution The infinite-horizon case

Model solution: The infinite-horizon case

e The first-order condition with respect to c;ys is given by:
oL

JCtis

=0& ‘BSU/(Ct+s) = Atys (44)

e The first-order condition with respect to k¢isi1 is given by:
oL
akl‘—s—s—&-l

=06 Arps = Atysta [F,(kt+s+1> +1— (5} (45)

e The first-order condition with respect to A;ys is given by:
oL
a/\t—&-s

=05 Cros+ kepsr1 = Flkers) + (1 —0)keys (46)

e Additionally, the following transversality condition must be satisfied:

Jim Aryskersin = lim B°U'(crys)kersy1 =0 (47)
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Model solution The infinite-horizon case

Model solution: The infinite-horizon case

e Putting together the two first-order conditions yields:

U (ce) =B [F (ker1) +1=6] U (cey1) <= (48)

;BU/<Ct+1) _ 1
Ulc) 1+ Flkep1) -0

— Intertemporal Euler equation.

e Alternative interpretation: In the optimum, the marginal rate of
substitution between consumption today and tomorrow must be equal
to the physical rate of transformation.
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Model solution The infinite-horizon case

Model solution: The infinite-horizon case

e An equilibrium/The optimum of the model is characterized by the
following:

e Consumption levels ¢4 and capital stock choices k4541 must solve
the following coupled system of non-linear difference equations

U'(cers) = BU' (cerst1) [1+ F'(kepsi1) — 9] (49)
and

Ct+s + kerst1 = F(keys) + (1 — 0)kess (50)

— The two equation constitute a system of two nonlinear difference
equations in ¢ and k.

e The boundary (nonnegativity) conditions, the given initial conditions
ko and the transversality condition must be satisfied.
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Model solution: Long-run equilibrium/Steady state

Model solution: Long-run equilibrium

e In the long-run equilibrium/steady state we have:

Gt =¢Cy1=cC" (51)

and
kt - kt+1 - k* (52)

e For the first-order conditions (equations (49) and (50)) we then
obtain:

U'(c*) = BU'(c*) [1+ F'(k*) = §] (53)

and
c+k*=F(k*)+ (1—0)k" (54)

University of Siegen Dynamic Macroeconomics 36 / 60



Model solution: Long-run equilibrium/Steady state

Model solution: Long-run equilibrium

e This can be simplified to:

1=pB[1+F (k") =0 (55)

and

c* = F(k*) —0k* (56)
e The only unknown variable in the first equation is k*.

e To obtain the steady-state value of k we thus can simply solve the
first equation for k.

e The solution is given by:

F’(k*)z;;—u(s«:»k*zﬁl (;—1+5> (57)
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Model solution: Long-run equilibrium/Steady state

Model solution: Long-run equilibrium

e Thus,

e a higher degree of patience (a higher value of B) corresponds to a
higher value of k and

e a higher depreciation rate corresponds to a lower steady-state level of
k.

e Please note that the steady-state capital stock is independent of
consumption.

e The steady-state level of c* is then given by:

¢ = F(K") — ok (58)
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Model solution: Model dynamics (graphical solution)

Model solution: Model dynamics (graphical solution)

e As shown above the dynamics of the model is determined by the two
difference equations:

U'(cers) = BU' (crrss1) [1+ F'(keysi1) — 6] (59)
and
Cros T kerst1 = Flkess) + (1 — 0)kets (60)
e To obtain a concrete solution we make specific assumptions

concerning the utility and the production function.
e We assume that the consumer's period utility function is given by:

U(ct) = In(ce) (61)

e The production technology of the economy is Cobb-Douglas and thus
given by:
ye = F(ke) = ki with0 <a <1 (62)
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Model solution: Model dynamics (graphical solution)

Model solution: Model dynamics (graphical solution)

e The two first-order conditions then become:

U'lcers) = BU'(cetst1) [1 + F'(kttst1) — 5](63)

1 1
= P [1+akiisg —d] <=
Ct+s Ctts+1
Ctrst1 = PBlAakis—0]cis <
Ctist1— Ctts = ACtysr1 = P [1 + Dék?:slﬂ — 5} Ct4s = Ci4s <
Ctts+1 — Ct4s — ACt+5+1 = {ﬁ [1 + [Xk?;SlJrl — 5] — 1} Ct+s
and
Cos+ keysy1 = Flkers) + (1= 0)keys = (64)
kits+1 — kits = Dkeysi1 = F<kt+s) — Okt ys — Ct+s
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Model solution: Model dynamics (graphical solution)

Model solution: Model dynamics (graphical solution)

e To illustrate the dynamics of the model we can use a phase diagram.
e To construct such a diagram we proceed as follows:
e First, set the left-hand side of the Euler equation equal to zero and
solve for the right-hand side for c;1s. This yields:

{Bl1+aklli—0] —1}crys =0 (65)

1

I—a
14
k =k = ——m—
t+s+1 (é—l—f—é)

— Plot this “function” in a c-k diagram.

e Secondly, set the left-hand side of the budget constraint equal to zero
and solve for the right-hand side for c¢t4s. This yields:

F(kt+s) — Oktys — Ctis = 0 (66)
Ct+s = F(kt-‘rs) — Oktts
— Plot this “function” in a c-k diagram.
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Model solution: Model dynamics (graphical solution)

Model solution: Model dynamics (graphical solution)

e Construction of a phase diagram (continued):

e The intersection of both steady-state relations defines the steady state
of the system. At this steady state, all first-order conditions of
households and firms as well as the budget and resource constraints are
satisfied.

e To characterize the dynamics around steady state, consider the
dynamics of capital if consumption is below/above the level that would
stabilize k, i.e., below/above the steady-state budget constraint:

= A low/high level of ¢; implies that k; is increasing/falling.

e Next, consider the dynamics of ¢; if k; is below/above the level that
would stabilize consumption, i.e., “below/above the steady-state Euler
equation:”

= A low/high level of k; implies that ¢; is increasing/falling.

e Indicate the just derived dynamics of ¢; and k; apart from the
zero-movement lines with corresponding arrows.
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Model solution: Model dynamics (graphical solution)

Model solution: Model dynamics (graphical solution)

e Phase diagram for model solution:

Acy,4=0

. |

Ak =0

fay k
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Model simulation and discussion

Model simulation and discussion

e To draw quantitative implications the model is simulated.

e Unfortunately, the system of the two nonlinear difference equations in
¢ and k which characterize the dynamics of the economy in the
optimum does not have an analytical solution.

— To simulate the model the nonlinear difference equations are
linearly approximated around the long-run equilibrium.

e Basic procedure:
e First, compute the long-run steady state.

e Secondly, log-linearize the system around the steady-state (All variables
are expressed in terms of percentage deviations from the steady state).

e Thirdly, calibrate the model (i.e. determine values for the model
parameters.)

e Forthly, simulate the model and compare its dynamic properties with
those found in the data.
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Model simulation and discussion

Model simulation and discussion

e Model setup:
e The consumer’s period utility function is given by:

Uce) =In(cr) (67)

e The production technology of the economy is Cobb-Douglas and thus
given by:
Yt = atF(kt) = atk{f‘ (68)

e We assume that 0 < & < 1.
e (Log) Total factor productivity is random and follows an AR(1) process
In(a¢11) = pln(ar) + g1 (69)

where 0 < p < 1 and &441 is Gaussian white noise with initial
realization ag given.
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Model simulation and discussion

Model simulation and discussion

e Calibration:

e We assume that the parameters take the following values:

x =033 (70)
5 =0.04 (71)
B =0.99 (72)
p =095 (73)
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Model simulation and discussion

e Effects of a one-time increase in total factor productivity:

Total factor productivity Output Investment
1 1 3
0.8 0.8 2
0.6 0.6
1
0.4 0.4
02 02 0
0 0 -1
0 50 100 O 50 100 O 50 100
Consumption Employment Capital stock
0.8 1 0.8
0.6 05 0.6
0.4 0 0.4
0.2 -05 0.2
0 -1 0
0 50 100 0 50 100 0 50 100

=—> Positive effect on output, consumption and investment.
= Investment reacts stronger than consumption.
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Model simulation and discussion

Model simulation and discussion

e Model simulation over 500 periods:

Total factor productivity Output Investment
10 20
5 10
0 0 MM 0
-5 -10
-5 -10 -20
0 500 [ 500 500
Cc i it Capital stock
4 1 5
2 0.5
0 0 0
-2 -0.5
-4 -1 -5
0 500 0 500 0 500

= Positive comovements: corr(y, c) ~ 0.73, corr(y, i) ~ 0.71

— Relative volatilities: % ~ 0.77, % ~ 2.01
y y
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Labor in the basic model

Labor in the basic model

e Thus far, we assumed that the household supplies a fixed amount of
labor, n:, in every period.

e More specifically, we assumed that the overall amount of time in a
given period is 1 and that

nyg = 1 (74)
e In this subsection, we model the labor supply decision explicitly.

e To this end, we include labor (leisure) both into the period-utility
function and the production function.

e The period-utility function is now given by:

U() = U (Ct, /1_-) (75)
where [; denotes leisure time.
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Labor in the basic model

Labor in the basic model

e We continue to assume that the overall amount of time is normalized
to 1.

e Then we have:

n¢ + /t = 1 (76)
e We assume that the period-utilitiy function satisfies the following
conditions:
aU(c, !
éz) = Ud(c, ) >0, Ueelc, 1) <0 (77)
and
U/(C, /) > 0, U//(C, /) < 0, UC/<C, /) =0 (78)
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Labor in the basic model

Labor in the basic model

e Output (GDP) is produced using the following production technology:
ye = F (a¢, ke, ne) (79)

e The production function is assumed to satisfy all the conditions
stated above.

e For simplicity of notation we assume a; = 1.
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Labor in the basic model

Labor in the basic model

e The household’'s maximization problem is given by:

ct,ctﬂ,...;kHTfiz,...;/t,/m,,.. Vi = s;)ﬁsu (Ctrsitss) (80)

s.t.
Cr+s + kttst1 = Fkeys, Neys) + (L —0)keys, Vs >0 (81)

and

n¢ + lt =1 (82)

e To solve the model we employ the Lagrange approach.
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Labor in the basic model

Labor in the basic model

e The Lagrange function is given by:

L = Z {ﬁsU (Ct+Sv /t+s) + Atgs [F(kt+s: nt+s) + (1 — (S)kt+s — Ct+s
s=0
—kttst1] + Hers [1— neps — leys] }

—> Maximize with respect to
{ctes lers Nevs, Keysi1, Arrs, Pers: s > 0}

University of Siegen Dynamic Macroeconomics 53 / 60



Labor in the basic model

Labor in the basic model

e The first-order condition with respect to c; s is given by:

oL

OCtis

=0« ‘BS U. (Ct+s: /t+s) = At+s (83)

e The first-order condition with respect to ;4 is given by:

oL
a/t+s

=0 B°U (Ctes hers) = pers (84)

e The first-order condition with respect to n;;s is given by:

oL

ONtys

=0« )\t+an (ktJrSy nt+s) = Ut+s (85)
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Labor in the basic model

e The first-order condition with respect to ksisi1 is given by:

oL
akt+s+1

=0 Atys = Argsir [Fk(kt+s+1, ”t+s+1) +1- 5] (86)

e The first-order condition with respect to A;,s is given by:

oL
a/\H—s

=0 Crys+ kevsr1 = Fkeys, ners) + (1 —0)keys  (87)

e The first-order condition with respect to ¢4 is given by:

oL
a,ut—i-s

=0<& Neys + It+s =1 (88)
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Labor in the basic model

Labor in the basic model

e Combining the first-order condition with respect to consumption
(equation (83)) with the first-order condition with respect to capital
(equation (86)) yields:

Ue (Ctts, lers) = B [Fi (Kttst+1, Nevst1) +1— 0] Uc (ceastt, lerst1)
,BUC(CH-S-H: /t+s+1) _ 1
Uc(Ctss, lets) 1+ Fi(ketrst1, Negpsp1) — 0

— Intertemporal Euler equation.
e Combining equations (83), (84) and (85) yields:

BoUi (cess, lers) = B°Uc (Cers, levs) Fn (Kevs, Ness) < (89)
UI (Ct+51 lt+s) - Fn (kt+s| nt+s) Uc (Ct+51 /t+s)

= Interpretation?
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Labor in the basic model

e Example:

e The consumer’s period utility function is given by:

Ulct,lt) =In(ce) + blinty (90)

e The production technology of the economy is Cobb-Douglas and given
by:
Yt = F (at, kt, nt) = atk?nl_a (91)

e We assume that 0 < a0 < 1.
e The first derivatives of the utility function are given by:

1 b
Ue (ct, lt) = = and U, (¢t ) = — (92)

t /t

e The first derivatives of the production function are given by:

Fi (as, ke, ne) = aack® 1nl=* and Fp (ar, ke, ne) = (1 — &) ack®n;®
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Labor in the basic model

e Example (... continued):
e For the optimality condition

U (Ct+5y /t+s>

-h Kt : 94
UC (Ct—‘,—s, It+5) n (atJrS t+s nt+5) ( )
we then get:
bet B be,
L m(l-a)akingt e = o0
I ( )at t Ny t (1f0¢) atkttxnt—oc ( )
e Using n; = 1 — I; we obtain:
b b
1—ns = Ct @ntzl_# ()

(l—lx) atk{f‘n;“ (1-0{) atkg‘n;“

= Interpretation? Exercise: Calculate the result for the other
optimality condition.
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Labor in the basic model

e An equilibrium/The optimum of the model (assuming general
functional forms) is characterized by the following:

e Consumption levels c¢4s, leisure (It1s) and labor (ns4+s) decisions and
capital stock choices k451 must satisfy the following system of
equations

Uc(ctys, lers) = BUc(Ctrst1, levst1) [T+ Fr(kerst1, Nersi1) — 0]

U (CtJrSv /t+s)

= F, (kixs, n
Uc (Ct+5x /t+S) " ( e t+5)

Ctis + kevst1 = Flkers) + (1 —0)kets
and
n+1hL=1 (97)
= The first and third equation represent two nonlinear difference

equations in ¢ and k, the second and forth equations are
“intra-temporal” equations.
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Labor in the basic model

e An equilibrium/The optimum of the model is characterized by the
following (... continued):

e The boundary (nonnegativity) conditions, the given initial conditions
ko and the transversality condition must be satisfied.
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