Dynamic Macroeconomics

Chapter 2: The centralized economy

University of Siegen

Overview

(1) Selected stylized facts of business cycles
(2) Model setup

Preferences
Production technology
Budget constraint
(3) The maximization problem
(4) Model solution

The two-period case
The infinite-horizon case
(5) Model solution: Long-run equilibrium/Steady state
(6) Model solution: Model dynamics (graphical solution)
(7) Model simulation and discussion

8 Labor in the basic model

Selected stylized facts of business cycles

- Stylized facts =empirical regularities.
\Longrightarrow Major objective of macroeconomics: Build models which can explain major stylized facts
- In chapter 2: Analyze behavior of consumption and investment.
\Longrightarrow Necessary first step: Derive stylized facts concerning the behavior of consumption and investment.
- Procedure:
- Obtain data (In our case: Euro area data)
- Filter data (Decompose data into long-run and short-run component).
- Compute statistics concerning the behavior of macroeconomic time series (Volatility and correlation of time series).

Selected stylized facts of business cycles

- Data for output, consumption and investment: Original data

Selected stylized facts of business cycles

- Data for output, consumption and investment: Plot of (In) levels

Selected stylized facts of business cycles

- Data for output, consumption and investment: Plot of level and trend component

\Longrightarrow Observation: Variables exhibit long-run growth

Selected stylized facts of business cycles

- Data for output, consumption and investment: Plot of cyclical component

\Longrightarrow Observation: ?

Selected stylized facts of business cycles

- Data for output, consumption and investment: Plot of cyclical component (identical scale)

\Longrightarrow Observations:

\Longrightarrow Consumption is less volatile than output, investment is much more volatile than output.
\Longrightarrow Consumption and investment are strongly procyclical.

Selected stylized facts of business cycles

- To decompose the original time series: Filtering of the original data is necessary.
- Basic intuition:
- Denote by $\left\{y_{t}\right\}_{t=1}^{T}$ the log of a time series (such as GDP, consumption, investment, ...) that you want to detrend.
- y_{t} is considered to be composed of a long-run $\left(y_{t}^{l r}\right)$ and a short-run ($y_{t}^{s r}$) component as follows:

$$
\begin{equation*}
y_{t}=y_{t}^{l r}+y_{t}^{s r} \tag{1}
\end{equation*}
$$

\Longrightarrow To perform empirical growth or business cycle analysis: "Filtering" of the data is necessary to obtain either $y_{t}^{l r}$ or $y_{t}^{s r}$.

- To filter data: Several possibilities exist.
- Most popular filter: Hodrick-Prescott filter.

Selected stylized facts of business cycles

- Hodrick-Prescott (HP) filter: Intuition
- According to the Hodrick-Prescott filter, the long-run (growth or trend) component is obtained as the solution to the following minimization problem:

$$
\begin{equation*}
\min _{\left\{y_{t}^{\prime r}\right\}_{t=1}^{T}} \sum_{t=1}^{T}\left(y_{t}-y_{t}^{\prime r}\right)^{2}+\lambda \sum_{t=2}^{T-1}\left[\left(y_{t+1}^{\prime r}-y_{t}^{\prime r}\right)-\left(y_{t}^{\prime r}-y_{t-1}^{\prime r}\right)\right]^{2} \tag{2}
\end{equation*}
$$

where the parameter λ must be chosen by the researcher.

- The higher the value of λ, the smoother the trend component becomes (Can you see why?).
- For quarterly data, $\lambda=1600$ is chosen.

Model setup: Motivation

- Build up a simple macroeconomic model which allows us to analyze the behavior of aggregate output, consumption and investment.
- Model is microfounded:
\Longrightarrow Model household and firm behavior explicitly.
- Behavior of macro variables is obtained by aggregating across households and firms.
\Longrightarrow Simplifying assumptions: All households are equal, all firms are owned by households.
\Longrightarrow It is sufficient to solve the decisions problems of the "representative" household/firm.

Model setup: Preferences

- Economy is inhabited by identical consumers.
\Longrightarrow Individual variables are identical to aggregate variables.
- Consumers have preferences over an infinite stream of consumption $c_{t}, c_{t+1}, \ldots=\left\{c_{t+s}\right\}_{s=0}^{\infty}$.
- The consumer's lifetime utility function is assumed to be time-separable and given by:

$$
\begin{equation*}
V_{t}=\sum_{s=0}^{\infty} \beta^{s} U\left(c_{t+s}\right) \tag{3}
\end{equation*}
$$

- β is the individual's subjective time discount factor. We assume that $0<\beta<1$ holds.
- $U($.$) denotes the period utility function. We assume that it is strictly$ increasing and concave.

Model setup: Preferences

- Period utility function: Graphical illustration:

\Longrightarrow Positive marginal utility: $U^{\prime}()>$.0 .
\Longrightarrow Diminishing positive marginal utility: $U^{\prime \prime}()<$.0 .

Production technology

- Output (GDP) is produced using the following production technology:

$$
\begin{equation*}
y_{t}=F\left(a_{t}, k_{t}, n_{t}\right) \tag{4}
\end{equation*}
$$

with

- y_{t} : Output
- k_{t} : Capital input
- n_{t} : Labor input
- a_{t} : Level of technology, knowledge, efficiency of work

Production technology

- Assumptions concerning the production function (continued):
- Constant returns to scale:

$$
\begin{equation*}
F(a, \phi k, \phi n)=\phi F(a, k, n) \quad \text { for all } \phi \geq 0 \tag{5}
\end{equation*}
$$

- Positive, but declining marginal products of capital and labor

$$
\begin{equation*}
\frac{\partial F(\bullet)}{\partial k}>0, \frac{\partial^{2} F(\bullet)}{\partial k^{2}}<0, \frac{\partial F(\bullet)}{\partial n}>0, \frac{\partial^{2} F(\bullet)}{\partial n^{2}}<0, \frac{\partial^{2} F(\bullet)}{\partial n \partial k} \geq 0 \tag{6}
\end{equation*}
$$

- Both production factors are necessary

$$
\begin{equation*}
F(a, 0, n)=0 \text { and } F(a, k, 0)=0 \tag{7}
\end{equation*}
$$

- Inada conditions are satisfied:
$\lim _{k \rightarrow 0} \frac{\partial F(\bullet)}{\partial k} \rightarrow \infty, \lim _{k \rightarrow \infty} \frac{\partial F(\bullet)}{\partial k}=0, \lim _{n \rightarrow 0} \frac{\partial F(\bullet)}{\partial n} \rightarrow \infty, \lim _{n \rightarrow \infty} \frac{\partial F(\bullet)}{\partial n}=0$

Production technology

- For the moment, we assume that n_{t} is constant:

$$
\begin{equation*}
n_{t}=1 \tag{9}
\end{equation*}
$$

- Then:

$$
\begin{equation*}
y_{t}=F\left(a_{t}, k_{t}, 1\right)=F\left(a_{t}, k_{t}\right) \tag{10}
\end{equation*}
$$

- Graphical illustration of the production function $(a=1)$:

Budget constraint

- Period t's budget constraint is given by:

$$
\begin{equation*}
y_{t}=c_{t}+i_{t} \tag{11}
\end{equation*}
$$

\Longrightarrow Budget constraint of a closed economy without government.

- Moreover, the household faces the following condition concerning the evolution of the capital stock:

$$
\begin{equation*}
k_{t+1}=k_{t}+i_{t}-\delta k_{t} \Longleftrightarrow i_{t}=k_{t+1}-(1-\delta) k_{t} \tag{12}
\end{equation*}
$$

- Combining the two above equations, the household's budget constraint can be rewritten as (suppressing the a_{t} in the production function):

$$
\begin{equation*}
c_{t}+k_{t+1}=F\left(k_{t}\right)+(1-\delta) k_{t} \tag{13}
\end{equation*}
$$

- In fact we assume $a_{t}=1$ for the moment.

The maximization problem

- The household maximizes lifetime utility given the resource constraint: \Longrightarrow Dynamic (constrained) intertemporal optimization problem.
- The intertemporal optimization problem is given by:

$$
\begin{equation*}
\max _{c_{t}, c_{t+1}, \ldots ; k_{t+1}, k_{t+2}, \ldots} V_{t}=\sum_{s=0}^{\infty} \beta^{s} U\left(c_{t+s}\right) \tag{14}
\end{equation*}
$$

s.t.

$$
\begin{equation*}
c_{t+s}+k_{t+s+1}=F\left(k_{t+s}\right)+(1-\delta) k_{t+s}, \forall s>0 \tag{15}
\end{equation*}
$$

- Solution approaches:
- Transform constrained into unconstrained maximization problem.
- Lagrange approach.
- Dynamic programming.

Model solution: The two-period case

- To illustrate the basic intuition of the model we first solve it for the simple two-period case.
- In this case, the household's maximization problem is given by:

$$
\begin{equation*}
\max _{c_{t}, c_{t+1}, k_{t+1}, k_{t+2}} V_{t}=\sum_{s=0}^{1} \beta^{s} U\left(c_{t+s}\right)=U\left(c_{t}\right)+\beta U\left(c_{t+1}\right) \tag{16}
\end{equation*}
$$

s.t.

$$
\begin{gather*}
c_{t}+k_{t+1}=F\left(k_{t}\right)+(1-\delta) k_{t} \tag{17}\\
c_{t+1}+k_{t+2}=F\left(k_{t+1}\right)+(1-\delta) k_{t+1} \tag{18}
\end{gather*}
$$

- To solve the model we employ two different approaches:
- Approach 1: Transform constrained into unconstrained maximization problem and solve the unconstrained problem.
- Approach 2: Lagrange approach.

Model solution: The two-period case

- Solution approach 1: Transform constrained into unconstrained maximization problem and solve the unconstrained problem:
- Solving the two budget constraint for consumption yields:

$$
\begin{gather*}
c_{t}=F\left(k_{t}\right)+(1-\delta) k_{t}-k_{t+1} \tag{19}\\
c_{t+1}=F\left(k_{t+1}\right)+(1-\delta) k_{t+1}-k_{t+2} \tag{20}
\end{gather*}
$$

- Since the household no longer lives in period $t+2$ it will disinvest its complete capital stock in period $t+1$ and consume it. That is, we have:

$$
\begin{equation*}
k_{t+2}=0 \tag{21}
\end{equation*}
$$

- Period's $t+1$ budget constraint then becomes:

$$
\begin{equation*}
c_{t+1}=F\left(k_{t+1}\right)+(1-\delta) k_{t+1} \tag{22}
\end{equation*}
$$

Model solution: The two-period case

- Solution approach 1 (continued):
- Plugging the transformed budget constraints into the objective function yields:

$$
\begin{array}{r}
\max _{k_{t+1}} V_{t}=U\left(c_{t}\right)+\beta U\left(c_{t+1}\right)= \\
=U\left(F\left(k_{t}\right)+(1-\delta) k_{t}-k_{t+1}\right)+\beta U\left(F\left(k_{t+1}\right)+(1-\delta) k_{t+1}\right)
\end{array}
$$

- The first-order condition is given by (Notation: $U^{\prime}()=.\frac{\partial U}{\partial c}$):

$$
\begin{array}{r}
U^{\prime}\left(c_{t}\right)(-1)+\beta U^{\prime}\left(c_{t+1}\right)\left[F^{\prime}\left(k_{t+1}\right)+1-\delta\right] \stackrel{!}{=} 0 \tag{23}\\
U^{\prime}\left(c_{t}\right)=\beta\left[F^{\prime}\left(k_{t+1}\right)+1-\delta\right] U^{\prime}\left(c_{t+1}\right)
\end{array}
$$

\Longrightarrow Intertemporal Euler equation

Model solution: The two-period case

- Solution approach 1 (continued):
- Intuition for intertemporal Euler equation:
- Assume that consumption is reduced by a small amount (denoted by Δc) in Period t.
\Longrightarrow Utility in period t is reduced by: $U^{\prime}\left(c_{t}\right) \Delta c$.
- The amount Δc is invested in capital. In period $t+1$ this investment leads to additional output of $F^{\prime}\left(k_{t+1}\right) \Delta c$.
- Moreover, the household can transform the amount of consumption invested in period t back into consumption goods in period $t+1$. Since a proportion δ of Δc is lost through appreciation this leads to an increase in consumption by $(1-\delta) \Delta c$ in period $t+1$.
- Overall, the household can increase consumption by $F^{\prime}\left(k_{t+1}\right)+1-\delta$ in period $t+1$ which in turn leads to an increase in period's $t+1$ utility by $\left[F^{\prime}\left[k_{t+1}\right]+1-\delta\right] U^{\prime}\left(c_{t+1}\right)$.

Model solution: The two-period case

- Solution approach 1 (continued):
- Intuition for intertemporal Euler equation (continued):
- From today's perspective the utility gain tomorrow is "worth": $\beta\left[F^{\prime}\left[k_{t+1}\right]+1-\delta\right] U^{\prime}\left(c_{t+1}\right)$.
- In the optimum, the utility loss from saving more today must be equal to the discounted utility gain tomorrow (why?). Thus, we must have:

$$
\begin{equation*}
U^{\prime}\left(c_{t}\right)=\beta\left[F^{\prime}\left(k_{t+1}\right)+1-\delta\right] U^{\prime}\left(c_{t+1}\right) \tag{24}
\end{equation*}
$$

- Interpretation of the term $F^{\prime}\left(k_{t+1}\right)+1-\delta$:
- Assume you invest one unit of consumption in period 0 . Then, your consumption in period 1 increases by:

$$
\begin{equation*}
F^{\prime}\left(k_{t+1}\right)+1-\delta \tag{25}
\end{equation*}
$$

$\Longrightarrow F^{\prime}\left(k_{t+1}\right)+1-\delta$ represents the gross real interest rate.

Model solution: The two-period case

- Solution approach 1 (continued):
- Implications of the Euler equation (1):
- Assume that the subjective discount factor (β) is equal to the market discount factor $\left(\frac{1}{F^{\prime}\left(k_{t+1}\right)+1-\delta}\right)$.
- Then, the Euler equation becomes:

$$
\begin{equation*}
U^{\prime}\left(c_{t}\right)=\beta\left[F^{\prime}\left(k_{t+1}\right)+1-\delta\right] U^{\prime}\left(c_{t+1}\right) \Longleftrightarrow U^{\prime}\left(c_{t}\right)=U^{\prime}\left(c_{t+1}\right) \tag{26}
\end{equation*}
$$

\Longrightarrow Consumption in the two periods would be equal:

$$
\begin{equation*}
c_{t}=c_{t+1} \tag{27}
\end{equation*}
$$

\Longrightarrow Perfect consumption smoothing

Model solution: The two-period case

- Solution approach 1 (continued):
- Why do households want to smooth consumption?
- Illustrative example:
- Household has log-utility function $\left(U\left(c_{t}\right)=\ln c_{t}\right)$.
- Household lives for two periods.
- There is no discounting: $\beta=1$.
- Household can choose between two consumption patterns:
\Longrightarrow Pattern 1: $c_{t}=9, c_{t+1}=1$.
\Longrightarrow Pattern 2 (smooth pattern): $c_{t}=5, c_{t+1}=5$.
\Longrightarrow Which consumption pattern do households prefer?
- Lifetime utility from pattern 1 :

$$
\begin{equation*}
V_{t}^{1}=\ln (9)+\ln (1) \approx 2.2 \tag{28}
\end{equation*}
$$

- Lifetime utility from pattern 2 :

$$
\begin{equation*}
V_{t}^{2}=\ln (5)+\ln (5) \approx 3.2>2.2=V_{t}^{1} \tag{29}
\end{equation*}
$$

\Longrightarrow Households prefer (lifetime-maximizing) smooth pattern 2.

Model solution: The two-period case

- Solution approach 1 (continued):
- Implications of the Euler equation (2):
- How does β (= subjective discount factor) influence the consumption pattern over time?
\Longrightarrow For illustrative purposes, we assume that $U\left(c_{t}\right)=\ln c_{t}$ $\left(U^{\prime}\left(c_{t}\right)=\frac{1}{c_{t}}\right)$.
- From the Euler equation:

$$
U^{\prime}\left(c_{t}\right)=\beta\left[F^{\prime}\left(k_{t+1}\right)+1-\delta\right] U^{\prime}\left(c_{t+1}\right)
$$

we get:

$$
\frac{1}{c_{t}}=\beta\left[F^{\prime}\left(k_{t+1}\right)+1-\delta\right] \frac{1}{c_{t+1}} \Longleftrightarrow c_{t+1}=\beta\left[F^{\prime}\left(k_{t+1}\right)+1-\delta\right] c_{t}
$$

\Longrightarrow A higher value of β (everything else held constant) implies that c_{t+1} is relatively higher compared to c_{t}.

Model solution: The two-period case

- Solution approach 1: (continued):
- Implications of the Euler equation (2):
- How does $F^{\prime}\left(k_{t+1}\right)$ (= marginal product of next period's capital stock) influence the consumption pattern over time?
\Longrightarrow For illustration purposes, we again assume that $U\left(c_{t}\right)=\ln c_{t}$ $\left(U^{\prime}\left(c_{t}\right)=\frac{1}{c_{t}}\right)$.
- From above we know that the dynamics of c is then given by:

$$
\begin{equation*}
c_{t+1}=\beta\left[F^{\prime}\left(k_{t+1}\right)+1-\delta\right] c_{t} \tag{30}
\end{equation*}
$$

\Longrightarrow A higher value of $F^{\prime}\left(k_{t+1}\right)$ implies (everything else held constant) that c_{t+1} is relatively higher compared to c_{t} (= intertemporal substitution effect).

Model solution: The two-period case

- Solution approach 2: Lagrange approach:
- The household's maximization problem is given by:

$$
\begin{equation*}
\max _{c_{t}, c_{t+1}, k_{t+1}, k_{t+2}} V_{t}=\sum_{s=0}^{1} \beta^{s} U\left(c_{t+s}\right)=U\left(c_{t}\right)+\beta U\left(c_{t+1}\right) \tag{31}
\end{equation*}
$$

s.t.

$$
\begin{align*}
& c_{t}+k_{t+1}=F\left(k_{t}\right)+(1-\delta) k_{t} \tag{32}\\
& c_{t+1}=F\left(k_{t+1}\right)+(1-\delta) k_{t+1} \tag{33}
\end{align*}
$$

where we have used that

$$
\begin{equation*}
k_{t+2}=0 \tag{34}
\end{equation*}
$$

Model solution: The two-period case

- Solution approach 2 (continued):
- The associated Lagrange function is given by:

$$
\begin{aligned}
\mathcal{L}= & U\left(c_{t}\right)+\beta U\left(c_{t+1}\right)+ \\
& +\lambda_{t}\left[F\left(k_{t}\right)+(1-\delta) k_{t}-c_{t}-k_{t+1}\right]+ \\
& +\lambda_{t+1}\left[F\left(k_{t+1}\right)+(1-\delta) k_{t+1}-c_{t+1}\right] \\
= & \sum_{s=0}^{1}\left\{\beta^{s} U\left(c_{t+s}\right)+\lambda_{t+s}\left[F\left(k_{t+s}\right)+(1-\delta) k_{t+s}-c_{t+s}-k_{t+s+1}\right]\right\}
\end{aligned}
$$

with $k_{t+2}=0$

Model solution: The two-period case

- Solution approach 2 (continued):
- The first-order conditions of the maximization problem are given by:
- With respect to c_{t} :

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial c_{t}} \stackrel{!}{=} 0 \Longleftrightarrow U^{\prime}\left(c_{t}\right)-\lambda_{t}=0 \Longleftrightarrow \beta^{0} U^{\prime}\left(c_{t}\right)=\lambda_{t} \tag{36}
\end{equation*}
$$

- With respect to c_{t+1} :

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial c_{t+1}} \stackrel{!}{=} 0 \Longleftrightarrow \beta U^{\prime}\left(c_{t+1}\right)-\lambda_{t+1}=0 \Longleftrightarrow \beta^{1} U^{\prime}\left(c_{t+1}\right)=\lambda_{t+1} \tag{37}
\end{equation*}
$$

- With respect to k_{t+1} :

$$
\begin{align*}
\frac{\partial \mathcal{L}}{\partial k_{t+1}} \stackrel{!}{=} 0 & \Longleftrightarrow-\lambda_{t}+\lambda_{t+1}\left[F^{\prime}\left(k_{t+1}\right)+(1-\delta)\right]=0 \tag{38}\\
& \Longleftrightarrow \lambda_{t}=\lambda_{t+1}\left[F^{\prime}\left(k_{t+1}\right)+(1-\delta)\right]
\end{align*}
$$

Model solution: The two-period case

- Solution approach 2 (continued):
- First-order conditions of the maximization problem (continued):
- With respect to λ_{t} :

$$
\begin{align*}
\frac{\partial \mathcal{L}}{\partial \lambda_{t}} \stackrel{!}{=} 0 & \Longleftrightarrow F\left(k_{t}\right)+(1-\delta) k_{t}-c_{t}-k_{t+1}=0 \tag{39}\\
& \Longleftrightarrow c_{t}+k_{t+1}=F\left(k_{t}\right)+(1-\delta) k_{t}
\end{align*}
$$

- With respect to λ_{t+1} :

$$
\begin{align*}
\frac{\partial \mathcal{L}}{\partial \lambda_{t+1}} \stackrel{!}{=} 0 & \Longleftrightarrow F\left(k_{t+1}\right)+(1-\delta) k_{t+1}-c_{t+1}=0 \tag{40}\\
& \Longleftrightarrow c_{t+1}=F\left(k_{t+1}\right)+(1-\delta) k_{t+1}
\end{align*}
$$

- Using equations (36) and (37) to replace λ_{t} and λ_{t+1} in equation (38) we obtain the intertemporal Euler equation:

$$
\begin{equation*}
U^{\prime}\left(c_{t}\right)=\beta\left[F^{\prime}\left(k_{t+1}\right)+1-\delta\right] U^{\prime}\left(c_{t+1}\right) \tag{41}
\end{equation*}
$$

Model solution: The infinite-horizon case

- In the infinite-horizon case, the household's maximization problem is given by:

$$
\begin{equation*}
\max _{c_{t}, c_{t+1}, \ldots ; k_{t+1}, k_{t+2}, \ldots} V_{t}=\sum_{s=0}^{\infty} \beta^{s} U\left(c_{t+s}\right) \tag{42}
\end{equation*}
$$

s.t.

$$
\begin{equation*}
c_{t+s}+k_{t+s+1}=F\left(k_{t+s}\right)+(1-\delta) k_{t+s}, \forall s \geq 0 \tag{43}
\end{equation*}
$$

- To solve the model we employ the Lagrange approach.
- The Lagrange function is given by:
$\mathcal{L}=\sum_{s=0}^{\infty}\left\{\beta^{s} U\left(c_{t+s}\right)+\lambda_{t+s}\left[F\left(k_{t+s}\right)+(1-\delta) k_{t+s}-c_{t+s}-k_{t+s+1}\right]\right\}$
\Longrightarrow Maximize with respect to $\left\{c_{t+s}, k_{t+s+1}, \lambda_{t+s} ; s \geq 0\right\}$

Model solution: The infinite-horizon case

- The first-order condition with respect to c_{t+s} is given by:

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial c_{t+s}}=0 \Leftrightarrow \beta^{s} U^{\prime}\left(c_{t+s}\right)=\lambda_{t+s} \tag{44}
\end{equation*}
$$

- The first-order condition with respect to k_{t+s+1} is given by:

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial k_{t+s+1}}=0 \Leftrightarrow \lambda_{t+s}=\lambda_{t+s+1}\left[F^{\prime}\left(k_{t+s+1}\right)+1-\delta\right] \tag{45}
\end{equation*}
$$

- The first-order condition with respect to λ_{t+s} is given by:

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \lambda_{t+s}}=0 \Leftrightarrow c_{t+s}+k_{t+s+1}=F\left(k_{t+s}\right)+(1-\delta) k_{t+s} \tag{46}
\end{equation*}
$$

- Additionally, the following transversality condition must be satisfied:

$$
\begin{equation*}
\lim _{s \rightarrow \infty} \lambda_{t+s} k_{t+s+1}=\lim _{s \rightarrow \infty} \beta^{s} U^{\prime}\left(c_{t+s}\right) k_{t+s+1}=0 \tag{47}
\end{equation*}
$$

Model solution: The infinite-horizon case

- Putting together the two first-order conditions yields:

$$
\begin{array}{r}
U^{\prime}\left(c_{t}\right)=\beta\left[F^{\prime}\left(k_{t+1}\right)+1-\delta\right] U^{\prime}\left(c_{t+1}\right) \Longleftrightarrow \tag{48}\\
\frac{\beta U^{\prime}\left(c_{t+1}\right)}{U^{\prime}\left(c_{t}\right)}=\frac{1}{1+F^{\prime}\left(k_{t+1}\right)-\delta}
\end{array}
$$

\Longrightarrow Intertemporal Euler equation.

- Alternative interpretation: In the optimum, the marginal rate of substitution between consumption today and tomorrow must be equal to the physical rate of transformation.

Model solution: The infinite-horizon case

- An equilibrium/The optimum of the model is characterized by the following:
- Consumption levels c_{t+s} and capital stock choices k_{t+s+1} must solve the following coupled system of non-linear difference equations

$$
\begin{equation*}
U^{\prime}\left(c_{t+s}\right)=\beta U^{\prime}\left(c_{t+s+1}\right)\left[1+F^{\prime}\left(k_{t+s+1}\right)-\delta\right] \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{t+s}+k_{t+s+1}=F\left(k_{t+s}\right)+(1-\delta) k_{t+s} \tag{50}
\end{equation*}
$$

\Longrightarrow The two equation constitute a system of two nonlinear difference equations in c and k.

- The boundary (nonnegativity) conditions, the given initial conditions k_{0} and the transversality condition must be satisfied.

Model solution: Long-run equilibrium

- In the long-run equilibrium/steady state we have:

$$
\begin{equation*}
c_{t}=c_{t+1}=c^{*} \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{t}=k_{t+1}=k^{*} \tag{52}
\end{equation*}
$$

- For the first-order conditions (equations (49) and (50)) we then obtain:

$$
\begin{equation*}
U^{\prime}\left(c^{*}\right)=\beta U^{\prime}\left(c^{*}\right)\left[1+F^{\prime}\left(k^{*}\right)-\delta\right] \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
c^{*}+k^{*}=F\left(k^{*}\right)+(1-\delta) k^{*} \tag{54}
\end{equation*}
$$

Model solution: Long-run equilibrium

- This can be simplified to:

$$
\begin{equation*}
1=\beta\left[1+F^{\prime}\left(k^{*}\right)-\delta\right] \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
c^{*}=F\left(k^{*}\right)-\delta k^{*} \tag{56}
\end{equation*}
$$

- The only unknown variable in the first equation is k^{*}.
- To obtain the steady-state value of k we thus can simply solve the first equation for k.
- The solution is given by:

$$
\begin{equation*}
F^{\prime}\left(k^{*}\right)=\frac{1}{\beta}-1+\delta \Longleftrightarrow k^{*}=F^{\prime-1}\left(\frac{1}{\beta}-1+\delta\right) \tag{57}
\end{equation*}
$$

Model solution: Long-run equilibrium

- Thus,
- a higher degree of patience (a higher value of β) corresponds to a higher value of k and
- a higher depreciation rate corresponds to a lower steady-state level of k.
- Please note that the steady-state capital stock is independent of consumption.
- The steady-state level of c^{*} is then given by:

$$
\begin{equation*}
c^{*}=F\left(k^{*}\right)-\delta k^{*} \tag{58}
\end{equation*}
$$

Model solution: Model dynamics (graphical solution)

- As shown above the dynamics of the model is determined by the two difference equations:

$$
\begin{equation*}
U^{\prime}\left(c_{t+s}\right)=\beta U^{\prime}\left(c_{t+s+1}\right)\left[1+F^{\prime}\left(k_{t+s+1}\right)-\delta\right] \tag{59}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{t+s}+k_{t+s+1}=F\left(k_{t+s}\right)+(1-\delta) k_{t+s} \tag{60}
\end{equation*}
$$

- To obtain a concrete solution we make specific assumptions concerning the utility and the production function.
- We assume that the consumer's period utility function is given by:

$$
\begin{equation*}
U\left(c_{t}\right)=\ln \left(c_{t}\right) \tag{61}
\end{equation*}
$$

- The production technology of the economy is Cobb-Douglas and thus given by:

$$
\begin{equation*}
y_{t}=\underset{\text { Dynamic Macroeconomics }}{F\left(k_{t}\right)=k_{1}^{\alpha} \text { with } 0<\alpha<1} \tag{62}
\end{equation*}
$$

Model solution: Model dynamics (graphical solution)

- The two first-order conditions then become:

$$
\begin{aligned}
\qquad \begin{aligned}
& U^{\prime}\left(c_{t+s}\right)=\beta U^{\prime}\left(c_{t+s+1}\right)\left[1+F^{\prime}\left(k_{t+s+1}\right)-\delta\right](63) \\
& \frac{1}{c_{t+s}}=\beta \frac{1}{c_{t+s+1}}\left[1+\alpha k_{t+s+1}^{\alpha-1}-\delta\right] \Longleftrightarrow \\
& c_{t+s+1}=\beta\left[1+\alpha k_{t+s+1}^{\alpha-1}-\delta\right] c_{t+s} \Longleftrightarrow \\
& c_{t+s+1}-c_{t+s}=\Delta c_{t+s+1}=\beta\left[1+\alpha k_{t+s+1}^{\alpha-1}-\delta\right] c_{t+s}-c_{t+s} \Longleftrightarrow \\
& c_{t+s+1}-c_{t+s}=\Delta c_{t+s+1}=\left\{\beta\left[1+\alpha k_{t+s+1}^{\alpha-1}-\delta\right]-1\right\} c_{t+s} \\
& \text { and }
\end{aligned}
\end{aligned}
$$

$$
\begin{align*}
& c_{t+s}+k_{t+s+1}=F\left(k_{t+s}\right)+(1-\delta) k_{t+s} \Longleftrightarrow \tag{64}\\
& k_{t+s+1}-k_{t+s}=\Delta k_{t+s+1}=F\left(k_{t+s}\right)-\delta k_{t+s}-c_{t+s}
\end{align*}
$$

Model solution: Model dynamics (graphical solution)

- To illustrate the dynamics of the model we can use a phase diagram.
- To construct such a diagram we proceed as follows:
- First, set the left-hand side of the Euler equation equal to zero and solve for the right-hand side for c_{t+s}. This yields:

$$
\begin{gather*}
\left\{\beta\left[1+\alpha k_{t+s+1}^{\alpha-1}-\delta\right]-1\right\} c_{t+s}=0 \Longleftrightarrow \tag{65}\\
k_{t+s+1}=k^{*}=\left(\frac{\alpha}{\frac{1}{\beta}-1+\delta}\right)^{\frac{1}{1-\alpha}}
\end{gather*}
$$

\Longrightarrow Plot this "function" in a c-k diagram.

- Secondly, set the left-hand side of the budget constraint equal to zero and solve for the right-hand side for c_{t+s}. This yields:

$$
\begin{array}{r}
F\left(k_{t+s}\right)-\delta k_{t+s}-c_{t+s}=0 \Longleftrightarrow \tag{66}\\
c_{t+s}=F\left(k_{t+s}\right)-\delta k_{t+s}
\end{array}
$$

\Longrightarrow Plot this "function" in a c-k diagram.

Model solution: Model dynamics (graphical solution)

- Construction of a phase diagram (continued):
- The intersection of both steady-state relations defines the steady state of the system. At this steady state, all first-order conditions of households and firms as well as the budget and resource constraints are satisfied.
- To characterize the dynamics around steady state, consider the dynamics of capital if consumption is below/above the level that would stabilize k, i.e., below/above the steady-state budget constraint:
\Longrightarrow A low/high level of c_{t} implies that k_{t} is increasing/falling.
- Next, consider the dynamics of c_{t} if k_{t} is below/above the level that would stabilize consumption, i.e., "below/above the steady-state Euler equation:"
\Longrightarrow A low/high level of k_{t} implies that c_{t} is increasing/falling.
- Indicate the just derived dynamics of c_{t} and k_{t} apart from the zero-movement lines with corresponding arrows.

Model solution: Model dynamics (graphical solution)

- Phase diagram for model solution:

Model simulation and discussion

- To draw quantitative implications the model is simulated.
- Unfortunately, the system of the two nonlinear difference equations in c and k which characterize the dynamics of the economy in the optimum does not have an analytical solution.
\Longrightarrow To simulate the model the nonlinear difference equations are linearly approximated around the long-run equilibrium.
- Basic procedure:
- First, compute the long-run steady state.
- Secondly, log-linearize the system around the steady-state (All variables are expressed in terms of percentage deviations from the steady state).
- Thirdly, calibrate the model (i.e. determine values for the model parameters.)
- Forthly, simulate the model and compare its dynamic properties with those found in the data.

Model simulation and discussion

- Model setup:
- The consumer's period utility function is given by:

$$
\begin{equation*}
U\left(c_{t}\right)=\ln \left(c_{t}\right) \tag{67}
\end{equation*}
$$

- The production technology of the economy is Cobb-Douglas and thus given by:

$$
\begin{equation*}
y_{t}=a_{t} F\left(k_{t}\right)=a_{t} k_{t}^{\alpha} \tag{68}
\end{equation*}
$$

- We assume that $0<\alpha<1$.
- (Log) Total factor productivity is random and follows an $\operatorname{AR}(1)$ process

$$
\begin{equation*}
\ln \left(a_{t+1}\right)=\rho \ln \left(a_{t}\right)+\varepsilon_{t+1} \tag{69}
\end{equation*}
$$

where $0<\rho<1$ and ε_{t+1} is Gaussian white noise with initial realization ao given.

Model simulation and discussion

- Calibration:
- We assume that the parameters take the following values:

$$
\begin{align*}
& \alpha=0.33 \tag{70}\\
& \delta=0.04 \tag{71}\\
& \beta=0.99 \tag{72}\\
& \rho=0.95 \tag{73}
\end{align*}
$$

Model simulation and discussion

- Effects of a one-time increase in total factor productivity:

\Longrightarrow Positive effect on output, consumption and investment.
\Longrightarrow Investment reacts stronger than consumption.

Model simulation and discussion

- Model simulation over 500 periods:

\Longrightarrow Positive comovements: $\operatorname{corr}(y, c) \approx 0.73, \operatorname{corr}(y, i) \approx 0.71$
\Longrightarrow Relative volatilities: $\frac{\sigma_{c}}{\sigma_{y}} \approx 0.77, \frac{\sigma_{i}}{\sigma_{y}} \approx 2.01$

Labor in the basic model

- Thus far, we assumed that the household supplies a fixed amount of labor, n_{t}, in every period.
- More specifically, we assumed that the overall amount of time in a given period is 1 and that

$$
\begin{equation*}
n_{t}=1 \tag{74}
\end{equation*}
$$

- In this subsection, we model the labor supply decision explicitly.
- To this end, we include labor (leisure) both into the period-utility function and the production function.
- The period-utility function is now given by:

$$
\begin{equation*}
U(.)=U\left(c_{t}, I_{t}\right) \tag{75}
\end{equation*}
$$

where I_{t} denotes leisure time.

Labor in the basic model

- We continue to assume that the overall amount of time is normalized to 1.
- Then we have:

$$
\begin{equation*}
n_{t}+I_{t}=1 \tag{76}
\end{equation*}
$$

- We assume that the period-utilitiy function satisfies the following conditions:

$$
\begin{equation*}
\frac{\partial U(c, I)}{\partial c}=U_{c}(c, I)>0, \quad U_{c c}(c, l)<0 \tag{77}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{l}(c, l)>0, \quad U_{l l}(c, l)<0, \quad U_{c l}(c, l)=0 \tag{78}
\end{equation*}
$$

Labor in the basic model

- Output (GDP) is produced using the following production technology:

$$
\begin{equation*}
y_{t}=F\left(a_{t}, k_{t}, n_{t}\right) \tag{79}
\end{equation*}
$$

- The production function is assumed to satisfy all the conditions stated above.
- For simplicity of notation we assume $a_{t}=1$.

Labor in the basic model

- The household's maximization problem is given by:

$$
\begin{equation*}
\max _{c_{t}, c_{t+1}, \ldots ; k_{t+1}, k_{t+2}, \ldots ; l_{t}, l_{t+1}, \ldots} V_{t}=\sum_{s=0}^{\infty} \beta^{s} U\left(c_{t+s, I_{t+s}}\right) \tag{80}
\end{equation*}
$$

s.t.

$$
\begin{equation*}
c_{t+s}+k_{t+s+1}=F\left(k_{t+s}, n_{t+s}\right)+(1-\delta) k_{t+s}, \forall s \geq 0 \tag{81}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{t}+I_{t}=1 \tag{82}
\end{equation*}
$$

- To solve the model we employ the Lagrange approach.

Labor in the basic model

- The Lagrange function is given by:

$$
\begin{aligned}
\mathcal{L}= & \sum_{s=0}^{\infty}\left\{\beta^{s} U\left(c_{t+s}, I_{t+s}\right)+\lambda_{t+s}\left[F\left(k_{t+s}, n_{t+s}\right)+(1-\delta) k_{t+s}-c_{t+s}\right.\right. \\
& \left.\left.-k_{t+s+1}\right]+\mu_{t+s}\left[1-n_{t+s}-I_{t+s}\right]\right\}
\end{aligned}
$$

\Longrightarrow Maximize with respect to
$\left\{c_{t+s}, I_{t+s}, n_{t+s}, k_{t+s+1}, \lambda_{t+s}, \mu_{t+s} ; s \geq 0\right\}$

Labor in the basic model

- The first-order condition with respect to c_{t+s} is given by:

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial c_{t+s}}=0 \Leftrightarrow \beta^{s} U_{c}\left(c_{t+s}, I_{t+s}\right)=\lambda_{t+s} \tag{83}
\end{equation*}
$$

- The first-order condition with respect to I_{t+s} is given by:

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial I_{t+s}}=0 \Leftrightarrow \beta^{s} U_{l}\left(c_{t+s}, I_{t+s}\right)=\mu_{t+s} \tag{84}
\end{equation*}
$$

- The first-order condition with respect to n_{t+s} is given by:

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial n_{t+s}}=0 \Leftrightarrow \lambda_{t+s} F_{n}\left(k_{t+s}, n_{t+s}\right)=\mu_{t+s} \tag{85}
\end{equation*}
$$

Labor in the basic model

- The first-order condition with respect to k_{t+s+1} is given by:

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial k_{t+s+1}}=0 \Leftrightarrow \lambda_{t+s}=\lambda_{t+s+1}\left[F_{k}\left(k_{t+s+1}, n_{t+s+1}\right)+1-\delta\right] \tag{86}
\end{equation*}
$$

- The first-order condition with respect to λ_{t+s} is given by:

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \lambda_{t+s}}=0 \Leftrightarrow c_{t+s}+k_{t+s+1}=F\left(k_{t+s}, n_{t+s}\right)+(1-\delta) k_{t+s} \tag{87}
\end{equation*}
$$

- The first-order condition with respect to μ_{t+s} is given by:

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \mu_{t+s}}=0 \Leftrightarrow n_{t+s}+I_{t+s}=1 \tag{88}
\end{equation*}
$$

Labor in the basic model

- Combining the first-order condition with respect to consumption (equation (83)) with the first-order condition with respect to capital (equation (86)) yields:

$$
\begin{aligned}
U_{c}\left(c_{t+s}, I_{t+s}\right)= & \beta\left[F_{k}\left(k_{t+s+1}, n_{t+s+1}\right)+1-\delta\right] U_{c}\left(c_{t+s+1}, I_{t+s+1}\right) \\
& \frac{\beta U_{c}\left(c_{t+s+1}, I_{t+s+1}\right)}{U_{c}\left(c_{t+s}, I_{t+s}\right)}=\frac{1}{1+F_{k}\left(k_{t+s+1}, n_{t+s+1}\right)-\delta}
\end{aligned}
$$

\Longrightarrow Intertemporal Euler equation.

- Combining equations (83), (84) and (85) yields:

$$
\begin{array}{r}
\beta^{s} U_{l}\left(c_{t+s}, I_{t+s}\right)=\beta^{s} U_{c}\left(c_{t+s}, I_{t+s}\right) F_{n}\left(k_{t+s}, n_{t+s}\right) \Leftrightarrow \tag{89}\\
U_{l}\left(c_{t+s}, I_{t+s}\right)=F_{n}\left(k_{t+s}, n_{t+s}\right) U_{c}\left(c_{t+s}, I_{t+s}\right)
\end{array}
$$

\Rightarrow Interpretation?

Labor in the basic model

- Example:
- The consumer's period utility function is given by:

$$
\begin{equation*}
U\left(c_{t}, I_{t}\right)=\ln \left(c_{t}\right)+b \ln I_{t} \tag{90}
\end{equation*}
$$

- The production technology of the economy is Cobb-Douglas and given by:

$$
\begin{equation*}
y_{t}=F\left(a_{t}, k_{t}, n_{t}\right)=a_{t} k_{t}^{\alpha} n^{1-\alpha} \tag{91}
\end{equation*}
$$

- We assume that $0<\alpha<1$.
- The first derivatives of the utility function are given by:

$$
\begin{equation*}
U_{c}\left(c_{t}, l_{t}\right)=\frac{1}{c_{t}} \text { and } U_{l}\left(c_{t}, l_{t}\right)=\frac{b}{l_{t}} \tag{92}
\end{equation*}
$$

- The first derivatives of the production function are given by:

$$
F_{k}\left(a_{t}, k_{t}, n_{t}\right)=\alpha a_{t} k_{t}^{\alpha-1} n_{t}^{1-\alpha} \text { and } F_{n}\left(a_{t}, k_{t}, n_{t}\right)=(1-\alpha) a_{t} k_{t}^{\alpha} n_{t}^{-\alpha}
$$

Labor in the basic model

- Example (... continued):
- For the optimality condition

$$
\begin{equation*}
\frac{U_{I}\left(c_{t+s}, I_{t+s}\right)}{U_{c}\left(c_{t+s}, I_{t+s}\right)}=F_{n}\left(a_{t+s}, k_{t+s}, n_{t+s}\right) \tag{94}
\end{equation*}
$$

we then get:

$$
\begin{equation*}
\frac{b c_{t}}{I_{t}}=(1-\alpha) a_{t} k_{t}^{\alpha} n_{t}^{-\alpha} \Leftrightarrow I_{t}=\frac{b c_{t}}{(1-\alpha) a_{t} k_{t}^{\alpha} n_{t}^{-\alpha}} \tag{95}
\end{equation*}
$$

- Using $n_{t}=1-I_{t}$ we obtain:

$$
\begin{equation*}
1-n_{t}=\frac{b c_{t}}{(1-\alpha) a_{t} k_{t}^{\alpha} n_{t}^{-\alpha}} \Leftrightarrow n_{t}=1-\frac{b c_{t}}{(1-\alpha) a_{t} k_{t}^{\alpha} n_{t}^{-\alpha}} \tag{96}
\end{equation*}
$$

\Rightarrow Interpretation? Exercise: Calculate the result for the other optimality condition.

Labor in the basic model

- An equilibrium/The optimum of the model (assuming general functional forms) is characterized by the following:
- Consumption levels c_{t+s}, leisure $\left(l_{t+s}\right)$ and labor $\left(n_{t+s}\right)$ decisions and capital stock choices k_{t+s+1} must satisfy the following system of equations

$$
\begin{gathered}
U_{c}\left(c_{t+s}, I_{t+s}\right)=\beta U_{c}\left(c_{t+s+1}, I_{t+s+1}\right)\left[1+F_{k}\left(k_{t+s+1}, n_{t+s+1}\right)-\delta\right] \\
\frac{U_{l}\left(c_{t+s}, I_{t+s}\right)}{U_{c}\left(c_{t+s}, I_{t+s}\right)}=F_{n}\left(k_{t+s}, n_{t+s}\right) \\
c_{t+s}+k_{t+s+1}=F\left(k_{t+s}\right)+(1-\delta) k_{t+s}
\end{gathered}
$$

and

$$
\begin{equation*}
n_{t}+I_{t}=1 \tag{97}
\end{equation*}
$$

\Longrightarrow The first and third equation represent two nonlinear difference equations in c and k, the second and forth equations are "intra-temporal" equations.

Labor in the basic model

- An equilibrium/The optimum of the model is characterized by the following (... continued):
- The boundary (nonnegativity) conditions, the given initial conditions k_{0} and the transversality condition must be satisfied.

