Arnd Wiedemann

Kapitel 8 - Wandelanleihen

Fallstudie 27: Bewertung einer unkündbaren Wandelanleihe

Aufgabenteil a)

Die Zerobond-Abzinsfaktoren lassen sich aus der Kupon-Zinsstrukturkurve oder aus der Nullkupon-Zinsstrukturkurve berechnen:

Risikolose ZB-AF (0,Laufzeit)	ungerundete Werte	
ZB-AF (0,1) = 0,9524	0,952381	
ZB-AF (0,2) = 0,8808	0,880841	
ZB-AF (0,3) = 0,7780	0,778043	
Risikobehaftete ZB-AF (0,Laufzeit)	ungerundete Werte	
Risikobehaftete ZB-AF (0,Laufzeit) ZB-AF (0,1) = 0,9470	ungerundete Werte 0,946970	
	•	

Aufgabenteil b)

Die Berechnung der stetigen risikolosen und risikobehafteten Forward Rates erfolgt in 2 Schritten. Zunächst werden die linearen risikolosen und risikobehafteten Forward Rates mit Hilfe der in Aufgabenteil a) ermittelten Zerobond-Abzinsungsfaktoren bestimmt. Anschließend werden die linearen Forward Rates in stetige Forward Rates umgewandelt.

Berechnung der linearen risikolosen Forward Rates	ungerundete Werte
SR (0,1) = 5,00 %	5,0000 %
FR (1,1) = (0,9524/0,8808) - 1 = 8,13 %	8,1218 %
FR (2,1) = (0,8808/0,7780) - 1 = 13,21 %	13,2124 %

Arnd Wiedemann

Kapitel 8 - Wandelanleihen

Fallstudie 27: Bewertung einer unkündbaren Wandelanleihe

Berechnung der stetigen risikolosen Forward Rates	ungerundete Werte
SR (0,1) _{stetig} = In (1+0,05) = 4,88 %	4,8790 %
FR (1,1) _{stetig} = In (1+0,0813) = 7,81 %	7,8088 %
FR (2,1) _{stetig} = In (1+0,1321) = 12,41 %	12,4095 %

Berechnung der linearen risikobehafteten Forward Rates	ungerundete Werte	
SR (0,1) = 5,60 %	5,6000 %	
FR (1,1) = (0,9470/0,8679) -1 = 9,11 %	9,1131 %	
FR (2,1) = (0,8679/0,7552) -1 = 14,90 %	14,9022 %	

Berechnung der stetigen risikobehafteten Forward Rates	ungerundete Werte
SR (0,1) _{stetig} = In (1+0,056) = 5,45 %	5,4488 %
FR (1,1) _{stetig} = In (1+0,0911) = 8,72 %	8,7215 %
FR (2,1) _{stetig} = In (1+0,1491) = 13,89 %	13,8911 %

Aufgabenteil c)

Die Volatilität der Aktienkurse der Alternativ AG beträgt 40 % p.a. Die Auf- und Abwärtsfaktoren berechnen sich wie folgt:

Aufwärtsfaktor	$u = e^{0.4} = 1,4918$	1,491825
Abwärtsfaktor	$d = e^{-0.4} = 0.6703$	0,670310

Die Auf- und Abwärtsfaktoren bleiben für alle 3 Perioden konstant.

Arnd Wiedemann

Kapitel 8 - Wandelanleihen

Fallstudie 27: Bewertung einer unkündbaren Wandelanleihe

Aufgabenteil d)

Periode von t=0 bis t=1

Der Wachstumsfaktor a beträgt 1,05.

Die implizite Eintrittswahrscheinlichkeit p berechnet sich folgendermaßen:

$$p_{1. \text{ Periode}} = \frac{1,05 - 0,6703}{1,4918 - 0.6703} = 0,4622$$
 0,462176

Periode von t=1 bis t=2

Der Wachstumsfaktor a beträgt 1,0812 (ungerundet: 1,081218).

Die implizite Eintrittswahrscheinlichkeit p beträgt:

$$p_{2. \text{ Periode}} = \frac{1,0812 - 0,6703}{1,4918 - 0.6703} = 0,5002$$
0,500178

Periode von t=2 bis t=3

Der Wachstumsfaktor a beträgt 1,1321 (ungerundet: 1,132124).

Die implizite Eintrittswahrscheinlichkeit p beträgt:

$$p_{3. \text{ Periode}} = \frac{1,1321 - 0,6703}{1,4918 - 0,6703} = 0,562$$
 0,562144

Aufgabenteil e)

Arnd Wiedemann

Kapitel 8 - Wandelanleihen

Fallstudie 27: Bewertung einer unkündbaren Wandelanleihe

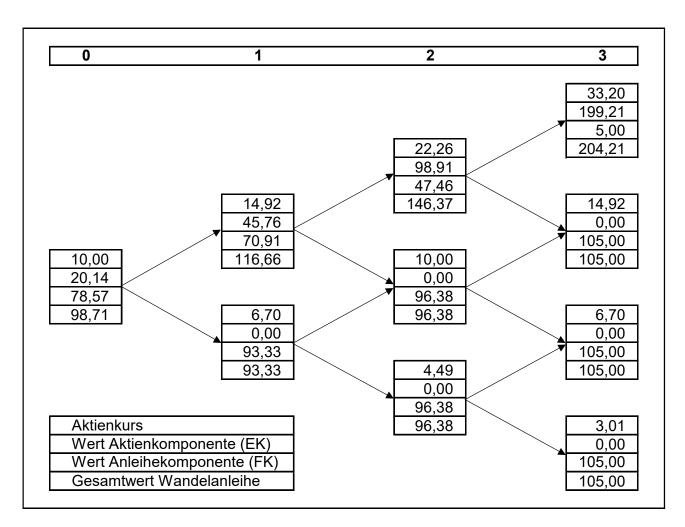


Abb. 1: Binominalbaum der 3-jähringen unkündbaren Wandelanleihe (ungerundete Werte)

Die Wandelanleihe hat folglich zum Zeitpunkt t=0 einen Gesamtwert von 98,71 EUR. Dieser setzt sich aus dem Wert der Aktienkomponente in Höhe von 20,14 EUR und aus dem Wert der Anleihekomponente in Höhe von 78,57 EUR zusammen.

Arnd Wiedemann

Kapitel 8 - Wandelanleihen

Fallstudie 27: Bewertung einer unkündbaren Wandelanleihe

Aufgabenteil f)

Der Gewinn der X-Bank bei Emission der Wandelanleihe ergibt sich aus der Differenz von:

Gewinn = Ausgabekurs Wandelanleihe – Gesamtwert Wandelanleihe in t=0

1,29 EUR = 100,00 EUR - 98,71 EUR.

Der Gewinn je 100 EUR Nominalvolumen der Wandelanleihe beträgt 1,29 EUR.