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Abstract

Combining an intensive labor supply margin with an extensive, productivity-

enhancing migration margin, we determine how regional inequality and la-

bor mobility shape optimal redistribution. We propose the use of delayed

optimal-control techniques to obtain optimal tax formulae with location-

dependent productivity and two-dimensional heterogeneity. Our baseline

simulations using the productivity di¤erences between large metropolitan

and other regions in the US indicate that productivity-increasing internal

migration can constitute a quantitatively important constraint on redis-

tribution. Allowing for regionally di¤erentiated taxation with location-

dependent productivity, we �nd that marginal tax rates in high- (low-

)productivity regions should be corrected downwards (upwards) relative to

a no-migration benchmark.
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1 Introduction

Regional productivity di¤erences are large in many countries. Real per capita

GDP in the New England Region was 40% higher than in the Southeast Region in

the US in 2013 (BEA, 2014), for example. In Italy, the 2011 real per capita GDP

of the Northern and Central Regions was even 71% higher than in the Southern

and Islands Region (ISTAT 2013). The spatial dispersion of wages and incomes is

well documented, and the underlying causes are still subject to debate (Barro and

Sala-i-Martin 1991, Ciccone and Hall 1996, Kanbur and Venables 2005, Acemoglu

and Dell 2010, and Young 2013, among others). Given such productivity di¤er-

ences, the e¢ ciency-enhancing potential of interregional mobility is substantial,

and increases in personal income are key drivers of this mobility; see Kennan and

Walker (2011).

Centralized redistribution schemes such as a federal income tax or federal so-

cial transfers reduce interregional migration incentives, since an individual who

migrates from a low- to a high-productivity region has to share the realized pro-

ductivity gains with the government through higher taxes or lower transfers. This

generates a trade-o¤ for an inequality-averse policy maker between redistribution

and productivity-enhancing interregional migration. Interestingly, this role of in-

ternal migration for optimal tax policy has been neglected in the literature, in

stark contrast to the role of emigration of high-income earners to low-tax coun-

tries or the immigration of welfare recipients from less generous jurisdictions.1 We

develop a conceptual framework to analyze the implications of internal migration

for an optimal tax-transfer policy and assess its quantitative importance. While

our focus is on productivity-enhancing migration between regions with permanent

productivity di¤erences, our approach may also be used to address the related

optimal-taxation problem that arises with respect to migration responses to idio-

syncratic shocks to regional labor markets, as discussed by Blanchard and Katz

(1992) and Yagan (2014).

1Studies addressing external migration include Mirrlees (1982), Wildasin (1991), Wilson
(1992), Lehmann et al. (2014), and others.
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We propose a two-dimensional optimal-taxation model which combines an ex-

tensive interregional migration decision with an intensive labor supply decision.

Our key innovation is the productivity-enhancing nature of the migration margin.

The actual or realized productivity of individuals of any given innate productivity

is location-dependent, so that individuals can increase their productivity by mi-

grating from a low- to a high-productivity region. Thus, the extensive migration

margin also a¤ects the intensive labor supply decision, since productivity and,

unless the marginal tax rate is constant, the marginal tax rate change whenever

an individual decides to migrate, even if the same tax schedule applies nationwide.

This framework allows us to determine the optimal federal tax schedule as

a function of the government�s redistributive preferences, the observed regional

earnings distributions, the earnings elasticity, and the distribution of migration

costs. Our analysis shows that optimal marginal tax rates tend to be below the

benchmark without interregional migration, since the decision to migrate to an

area with higher productivity bears a �scal externality. Its size depends on migra-

tion costs, on the income distribution, and on the tax di¤erential, which is itself

a function of regional productivity di¤erences and the tax schedule. If marginal

tax rates are positive, the �scal externality is positive, so that optimal marginal

tax rates are lower than in a situation without migration. However, for some

productivity distribution, the migration opportunity makes negative marginal tax

rates optimal. The latter result is similar to other studies that have analyzed the

optimal tax-transfer schedule with an extensive participation margin (see, e.g.,

Saez 2002 and Jacquet et al. 2013).

Our approach provides a methodological contribution to the theory of optimal

taxation, in that we endogenize individuals�type along the productivity dimension

through the extensive margin. This is a useful extension to the class of multidi-

mensional screening models, originally discussed by Rochet and Choné (1998)

and Armstrong (1996), and further developed to study the taxation of couples

by Kleven et al. (2009) in the optimal-taxation context. We argue that variants

of these models with endogenous productivity can be fruitfully studied using the
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delayed optimal-control approach as recently formally analyzed by Göllmann et

al. (2008) in its entire generality. Variations of our framework are suitable to ad-

dress a range of two-dimensional screening problems, where an extensive margin

directly a¤ects agents�productivity (their type), and thus the intensive margin.

The decision to participate in the labor market, for example, a¤ects productivity,

because nonparticipation tends to depreciate human capital. Similarly, the deci-

sion to switch to a better job also a¤ects actual individual productivity. The same

holds true for discrete education decisions such as the decision to attend college.

All these examples represent empirically relevant dimensions of the labor supply

decision. Our framework and the proposed delayed optimal-control solution can

be applied to the corresponding optimal-taxation problems.

We also study regionally di¤erentiated tax-transfer schemes. To the extent

that such schemes are explicit, they are often di¢ cult to enforce in practice in

view of the challenge of monitoring the actual place of residence of individuals,

and may also be challenged on the grounds of the violation of horizontal equity.

Despite these caveats, regional di¤erentiation of labor income taxation can be an

element of real-world tax systems. From 1971 to 1994, the German tax system, for

example, treated residents in West Berlin di¤erently from people in the rest of the

country. Another example is the current path towards a more �scally integrated

Europe. As the EU is moving towards deeper �scal integration, the option of a

regionally di¤erentiated (albeit coordinated) tax transfer remains an alternative to

uniform EU-wide taxation (e.g., Lipatov and Weichenrieder 2015a). This decision

requires understanding of the advantages and the challenges of a di¤erentiated sys-

tem vis-à-vis an integrated system.2 Finally, nominally nondi¤erentiated federal

income taxation amounts to regionally di¤erentiated taxation in real terms, due

to cost-of-living di¤erences; see Albouy (2009). We show that within our optimal-

taxation framework with productivity-increasing migration, the migration e¤ect

2To the extent that the Member States are unrestricted by the center in deciding on their
own tax-transfer schemes, additional considerations of tax competition have to be taken into ac-
count. See Lehmann et al. (2014) for the analysis of such considerations in the optimal-taxation
framework. Bargain et al. (2013) have contrasted a Member-States-based redistribution scheme
with an integrated scheme in Europe. However, they address the implications for macroeconomic
stabilization, whereas we study the e¢ ciency of redistribution.
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exerts additional downward (upward) pressure on di¤erentiated marginal tax rates

in the high- (low-)productivity region. This is the opposite of the implied di¤er-

entiation resulting from cost-of-living di¤erences and nominally undi¤erentiated

taxation.

Conceptually, we add to the debate on tagging in optimal taxation by consid-

ering the region of residence as an endogenous tag. Moreover, the tag can not only

be used by the government to relax its information constraint, but di¤erentiated

taxation can also be used to encourage productivity-enhancing migration.

The next section discusses the related literature. Section 3 introduces the

theoretical framework, and we derive our theoretical results for uni�ed and dif-

ferentiated taxation in Sections 4 and 5, respectively. We present a numerically

calibrated illustrative simulation based on US micro data in Section 6 and leave

the proofs to Appendices. A further Supplement is also available separately.

2 Related literature

The normative implications of productivity-enhancing internal migration for op-

timal redistribution have, to the best of our knowledge, not been studied to date.

The constraint of interjurisdictional or international mobility for the redistribution

policy of a single jurisdiction or country, however, has received considerable atten-

tion within the optimal-taxation literature and beyond; see, in particular, Mirrlees

(1982), Wildasin (1991), Wilson (1992), Simula and Trannoy (2011), Lehmann et

al. (2014), and Lipatov and Weichenrieder (2015b), among others. We show that

labor mobility within a su¢ ciently large jurisdiction or between regions within a

country can also be important for redistribution.

Conceptually, our analysis belongs to a class of two-dimensional screening

models that have been recently used to analyze a range of tax policy questions.

Lehmann et al. (2014) combine the intensive labor supply margin with an ex-

tensive migration margin. Their focus is on independent governments competing

for internationally mobile high-productivity individuals, and it is therefore com-

plementary to our analysis of optimal taxation by a single government. More-
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over, individual productivity is not location-dependent in their analysis, and they

only focus on the threat of migration, whereas actual, productivity-enhancing mi-

gration is at the heart of our approach. Gordon and Cullen (2012) also use an

optimal-taxation approach to study interregional migration in a model with several

states. However, they focus on the assignment problem of whether redistribution

should be carried out at the national or the subnational level and do not con-

sider productivity di¤erences. Jacquet et al. (2013) also study a two-dimensional

optimal-taxation model but focus on participation.

The structure of our approach owes much to Kleven et al. (2006, 2009), who

study the optimal taxation of couples with cooperative households. Their analysis

combines the intensive labor supply decision with the household�s choice to become

a single- or a double-earner household. However, our analysis di¤ers in several

important ways from their framework. First, we consider individuals and not

households consisting of two persons whose incomes may be taxed separately.

Secondly, in our approach, individuals originally reside in di¤erent regions, so

they di¤er not only in costs of changing the location, but also in the group they

originally belonged to. Finally and most importantly, we introduce a link between

endogenous individual productivity and the decision along the extensive margin,

and we show how models featuring this link can be solved using delayed optimal

control.

Rothschild and Scheuer (2014), Rothschild and Scheuer (2013), and Gomes

et al. (2014) also study optimal taxation of rent-seeking activities and optimal

taxation in the Roy model, using two-dimensional screening approaches. Wages

are endogenously determined in their work, either by the total labor supply in a

given sector, or by total rent-seeking activities. Similarly, Scheuer (2014) studies

entrepreneurial taxation with an endogenous decision of whether to become an

entrepreneur or a worker, where these decisions determine relative compensation

in the aggregate. In our study, individual productivity and thus market compen-

sation depend directly on the discrete decision of individuals and not on aggregate

outcomes. Accordingly, our argument for optimally adjusting marginal tax rates
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is not based on the attempt to manipulate relative wages, but on the wish to

encourage productivity-enhancing regional mobility.

Our analysis of regionally di¤erentiated taxation relates to the increased inter-

est in tagging in the design of tax-transfer schemes. The idea that the government�s

information problem can be relaxed by using additional observable characteristics

(tags) that are correlated with individual productivity goes back to Akerlof (1978)

and has recently been discussed intensively in the optimal-taxation literature; see

Immonen et al. (1998), Weinzierl (2012), Mankiw and Weinzierl (2011), Boadway

and Pestieau (2005), Cremer et al. (2010), and Best and Kleven (2013). We add

to this literature in several ways. First, we consider the region of residence as

a potential tag. Secondly, we explicitly study a tag that is endogenous and can

be adjusted by individuals subject to some cost. Moreover, changing the tag di-

rectly a¤ects productivity. In this respect, our paper is related to the literature

that studies the interplay between human capital formation and optimal taxation,

where the former shapes the productivity distribution and the latter in�uences

incentives for human capital formation; see Stantcheva (2015) and the references

therein. The endogeneity of productivity also relates our work to that of Best

and Kleven (2013), who consider a dynamic setting where individual productivity

depends on the previous intensive labor supply decisions.

Albouy (2009) has argued that nondi¤erentiated nominal federal taxation ef-

fectively implies de facto regionally di¤erentiated taxation due to cost-of-living

di¤erences. He reasons that such implicit di¤erential taxation distorts the spa-

tial allocation in the economy, and he analyzes the associated e¢ ciency costs and

the corresponding interregional redistribution, but his analysis does not consider

the question of optimal redistribution between heterogeneous individuals. Our

normative approach to regionally di¤erentiated taxation can be regarded as com-

plementary to his work, since we ask whether, and to what extent, federal taxes

should be regionally di¤erentiated for redistribution purposes, if such di¤erentia-

tion is possible. Finally, Eeckhout and Guner (2015) also study the e¤ects of a

progressive federal income tax on the spatial allocation of economic activity with a
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heterogeneous population, and also consider regionally di¤erentiated taxation, but

they do not use a Mirrleesian optimal-taxation framework and do not consider the

interaction of the intensive labor supply decision and the interregional migration

decision.

3 The framework

We consider two sources of heterogeneity across workers: innate productivity n

and migration costs q. These original individual characteristics are distributed

over [nmin; nmax] � [0;+1), and the government can observe neither of them.

There are two regions, i = A;B, with total population normalized to two. Origi-

nally, half of the population resides in each region, but the endogenous migration

decisions of individuals change these population shares. Our key assumption is

that the regions di¤er in their productivity. An individual�s actual or realized

productivity ni is a function of her innate productivity and her region of resi-

dence: ni = !(n; i) = !i(n), where !i is strictly increasing in n. We normalize

nA = !A(n) = n. Accordingly, the function nB = !B(n) = !(n) not only assigns

the actual productivity to all original residents of region B, but also indicates the

transformation of productivity for individuals who migrate from A to B. Without

loss of generality we assume that region B is the more productive region, so that

!(n) > n. Innate productivity is distributed in each region i according to the

unconditional probability distribution f(n) on [nmin; nmax].3 As in most of the

optimal-taxation literature, we treat wages as exogenous and independent of indi-

vidual labor supply and aggregate migration decisions. Accordingly, the analysis

applies to a situation where the e¤ect of migration �ows on wages is negligible.

The empirical evidence supports the view that, for su¢ ciently large regions, the

e¤ects of internal migration on wages are rather small; see, for the US, Boustan et

3It is straightforward to extend the analysis to the case in which regions also di¤er in their
distribution of innate productivity. Similarly, we could allow for negative migration costs for some
subset of individuals at each innate productivity level without a¤ecting the results qualitatively.
The latter can generate migration in both directions. For clarity, we abstract from these further
aspects.
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al. (2010), and for evidence from the German reuni�cation, D�Amuri et al. (2010)

and Frank (2009).4

Following Diamond (1998), we use preferences that are separable in consump-

tion and labor. The utility function of a worker of type (n; q) is similar to the

formulation in Kleven et al. (2009), but depends on the region of residence:

u (c; z; l) = ci � nih

�
zi
ni

�
� qcl + qh (1� l) ; (1)

where l is an indicator variable that takes the value 1 in case of migration. The

function h(�) is increasing, convex, and twice di¤erentiable. It is normalized so

that h0(1) = 1 and h(0) = 0. The other variables have standard interpretations.

Consumption ci equals gross income zi minus taxes Ti, the latter depending on

gross income: ci = zi � Ti (zi). Total migration costs are potentially made up of

two components: q = qc + qh, where qc is the cost of moving (the need to adapt

to new conditions, to learn a new language on moving between regions where dif-

ferent languages are spoken, the transaction costs of selling your old house and

buying a new one, etc.), and qh is the utility derived from being at home and ben-

e�ting from the existing social networks. To isolate the e¤ects of the two types

of heterogeneity, it is useful to consider them separately. The pure cost-of-moving

model sets q = qc and qh = 0; the pure home-attachment model uses q = qh and

qc = 0. Ex post (i.e., after migration has taken place), heterogeneity in qc re�ects

the di¤erences between individuals who migrate, whereas heterogeneity in qh re-

�ects the di¤erences between individuals who stay in their home region. In what

follows we focus on the cost-of-moving case, but, with some minor modi�cations,

the home-attachment case is quite analogous. However, our optimal tax schedules

and their derivations are su¢ ciently general to encompass both cases.

Each individual chooses l and zi to maximize (1) for a given tax schedule, i.e.,

she decides whether to move or not and determines her gross earnings, given that

4For similar �ndings in the case of immigration of foreigners see Borjas (1994) and Ottaviano
and Peri (2007, 2008).
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she resides in region i. The �rst-order condition for gross earnings is

h0
�
zi
ni

�
= 1� � i (zi) ; (2)

where � i is the marginal tax rate. Accordingly, ni can be interpreted as potential

income, in that individuals facing a marginal tax rate of zero would realize this

level of gross earnings. The elasticity of gross earnings with respect to net-of

tax-rate is de�ned as

"i �
1� � i
zi

@zi
@ (1� � i)

=
nih

0
�
zi
ni

�
zih00

�
zi
ni

� ;
and is a function of gross earnings and the region of residence. Finally, we require

the following property:

Assumption The function x! 1�h0(x)
xh00(x) is decreasing.

Consider now the migration decision. We denote by p (qjn) the density of q

conditional on n, and by P (qjn) the cumulated distribution of q conditional on

n. Conditional on residing in region i, the individuals�choice of gross earnings

is determined by (2), which allows us to de�ne indirect utility conditional on the

place of residence and net of the migration costs as

Vi (ni) = zi � Ti (zi)� nih

�
zi
ni

�
:

Individuals will move from i to j, j = A;B, i 6= j, whenever their migration costs

are below the net gain from moving, so that �qi � max fVj (nj)� Vi (ni) ; 0g is the

critical level of migration costs that determines the actual number of migrants for

any innate productivity level.
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3.1 The government�s optimal-tax problem

The government wants to maximize the social welfare function

X
i

Z nmax

nmin

Z +1

0

	
�
Vi (n)� qcl + qh (1� l)

�
p (q; n) f(n)dqdn; (3)

where 	(:) is a concave and increasing transformation of individual utilities. De-

noting by E the exogenous expenditure requirement, it needs to respect the budget

constraint X
i

Z nmax

nmin

Z +1

0

Ti(zi)p (q; n) f(n)dqdn � E: (4)

Moreover, the government�s tax schedule needs to be incentive-compatible. De-

noting by a dot above a variable its derivative with respect to n, this implies

_V (n) =

�
�h

�
zi
ni

�
+
zi
ni
h0
�
zi
ni

��
!0i (n) � 0: (5)

Moreover, in case of nondi¤erentiated taxation, TA (z) = TB (z). We show in

the Supplement that a path for zA and zB can be truthfully implemented by the

government using a nonlinear tax schedule.

Let � > 0 be the multiplier associated with the budget constraint (4). The

government�s redistributive tastes may be represented by region-dependent social

marginal welfare weights. In terms of income, our welfare weights will take the

form

gi(z) =
	0 (Vi (z)) (1� P (�qijz)) +

R �qj
0
	0 (Vi (z)� qc) p(qjz)dq

� (1 + P (�qjjz)� P (�qijz))

for the cost-of-moving model, where �qi (z) � max fVj (z)� Vi (z) ; 0g.

4 Optimal uni�ed taxation

We �rst investigate the optimal nondi¤erentiated tax-transfer system. The gov-

ernment maximizes (3) subject to (4) and (5) through its choice of T (z). This

problem formally amounts to a delayed optimal-control problem such as has been

analyzed by Göllmann et al. (2008) in its entire generality. In our model, though,
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the delay is a non�xed lag, given that we do not require the productivity gain from

moving to be constant. The necessary conditions for optimal control in such a set-

ting are presented in Abdeljawad et al. (2009). We describe in Appendix A how

the delayed optimal-control approach can be applied to solve the optimal-taxation

problem, and we derive all our results rigorously there. Below, however, we follow

the intuitive perturbation approach pioneered by Piketty (1997) and Saez (2001)

to derive the optimal tax scheme. This heuristic derivation disentangles the eco-

nomic forces that determine the shape of the optimal marginal tax rate schedule,

including the e¤ects generated by productivity-enhancing migration.

We denote the endogenous distribution of gross incomes in both regions by

vi (zi), and we denote by k the endogenously de�ned function that maps gross in-

come in the low-productivity region to the gross income this individual would earn

in the high-productivity region, given his innate productivity and the respective

tax treatment, i.e., zB = k(zA).5 We consider an increase in taxes for all individ-

uals above gross income z. The increase is engineered through an increase in the

marginal tax rate d� in the small band (z; z + dz), such that for all individuals

with gross earnings above z the tax payments increase by dzd� . This tax increase

gives rise to three di¤erent e¤ects.

Revenue e¤ect All taxpayers in either region with gross incomes above z pay

additional taxes of dzd� . The net welfare e¤ect of this tax payment for an a¤ected

individual in region i with gross earnings z0 is given by dzd� (1� gi (z
0)), and the

total e¤ect is then

R = dzd�

Z 1

z

f[1� gA (z
0)] vA (z

0) sA (z
0) + [1� gB (z

0)] vB (z
0) sB (z

0)g dz0;

where sA (z) � 1� P ( �qAj z) and sB (z) � 1 + P ( �qAj k�1(z)).

Behavioral e¤ect Individuals in the band (z; z + dz) will change their labor

supply in response to the increase in the marginal tax rate. Given that " �
1��
z

dz
d(1��) , each individual in the band will reduce its income by �d�"

z
1�� . There

5In terms of our previous formulation, an individual of ability n receives gross income zA =
z(n) in region A and gross income zB = z(!(n)) in region B, where this notation abstracts from
the fact that the gross income also depends on the tax schedule.
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Figure 1: The migration e¤ect comes into play for individuals for which z0A < z and
z0B � z.

are approximately dz [vA(z)sA(z) + vB(z)sB(z)] of these individuals. The total

e¤ect on tax revenue is

L = �d�dz �z"

1� �
[vA(z)sA(z) + vB(z)sB(z)] :

Migration e¤ect An increase in taxes for all individuals above gross income

z does not a¤ect the migration decision of individuals with gross income z0A � z,

and accordingly also z0B > z, such that the tax increase a¤ects them in both

regions alike. The same holds true for all individuals for which z0B = k(z0A) < z

and accordingly z0A = k�1(z0B) < z. However, as illustrated in Figure 1, for

all individuals for which z0A < z and z0B � z the migration decision is negatively

a¤ected. In this range, all individuals whose cost of moving is between �q�dzd� and

�q will now decide not to migrate. There are p ( �qj z) vA(z)dzd� a¤ected individuals

at any concerned level of income, with a resulting tax e¤ect of TA(z) � TB(k(z))
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for each of them. The total migration e¤ect is thus

M = d�dz

Z z

~z

[T (z0)� T (k(z0))] p ( �qj z0) vA(z0)dz0;

where ~z � k�1(z). Note that there is an endogenous e¤ect on the income distrib-

ution in each region. This e¤ect does not come into play explicitly here, since we

express the e¤ects in terms of the posterior distribution. The three e¤ects must

balance out in the optimum: R + L+M = 0. From this we have our �rst result.

Proposition 1 The optimal uni�ed tax schedule is characterized by

�

1� �
= A(z)B(z) [C(z) +D(z)] ; where (6)

A(z) � 1

"
, B(z) � 1

z (vA(z)sA(z) + vB(z)sB(z))
;

C(z) �
Z 1

z

f[1� gA (z
0)] vA (z

0) sA + [1� gB (z
0)] vB (z

0) sBg dz0;

D(z) �
Z z

~z

[T (z0)� T (k(z0))] p ( �qj z0) vA(z0)dz0:

Proof. This follows from the exposition above. The equivalence to the optimal,

tax formula formally derived by using the delayed optimal-control technique is

presented in Appendix A.

It is straightforward to compare the result with the alternative benchmark

without migration. The optimal tax schedule then follows the usual Diamond

(1998) and Saez (2001) results for the earnings distribution in the entire country

without a migration e¤ect. In this case, optimal marginal tax rates are determined

by
�

1� �
= A(z)B(z)C(z): (7)

With D(z) < 0, the disincentive e¤ects of higher tax rates on productivity-

increasing mobility tend to reduce marginal tax rates, but note that B(z) and

C(z) are endogenously determined by the migration �ows, so that (6) and (7)

cannot be directly compared in general. To make the result more formal, we

consider the benchmark in which the government faces the same distribution of
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realized productivity v and of population shares s as in the posterior situation

generated by the optimal tax schedule with migration. Given this posterior dis-

tribution, assume that there is, or the government believes so, no reaction with

regard to location choice from the tax system, i.e., that the posterior distribu-

tion is �xed and individuals react to the taxation through their intensive labor

supply margin only. In this case the optimal tax follows the formula (7) with

terms A(z) > 0;B(z) > 0;C(z) > 0 identical to the ones in (6). In this case,

for D(z) < 0, we have �m(z) < � o(z), where the subscripts m and o indicate the

migration and the no-migration case, respectively. This allows us to formulate the

following proposition:

Proposition 2 If marginal tax rates are positive, a government taking the e¤ect

of taxes on the migration decision into account sets lower marginal tax rates than

a government which disregards the migration decision, but faces the same posterior

income distribution generated by migration.

Proof. See appendix.

Note that positive marginal tax rates are a su¢ cient but not a necessary con-

dition for this result. Whenever D < 0 for any given level of gross income z,

marginal tax rates are lower with migration than for the no-migration benchmark

with the posterior distribution. Thus, whenever productivity-enhancing migration

implies a positive �scal externality at a given innate productivity level, marginal

tax rates should be reduced to take the �scal externality of interregional migra-

tion appropriately into account. This constrains optimal redistribution beyond

the classic adverse labor supply responses.

Another direct implication of the optimal uni�ed taxation formula (6) is stated

in the following proposition.

Proposition 3 Optimal marginal tax rates can be negative.

Proof. For D(z) < 0, it is possible that C(z) +D(z) < 0, and thus � < 0.6

6By simulative example (available upon request) it can be shown that this is the case for
certain parameter values.

15



Similarly to the �ndings of other studies that combine an extensive participa-

tion decision with the intensive labor supply decision, our setting potentially gives

rise to negative marginal tax rates.

The posterior distribution (as in Proposition 2) is our preferred benchmark, as

it allows switching migration on and o¤while keeping the productivity distribution

�xed. This benchmark also corresponds directly to the empirically observed spatial

distribution of individuals and productivity at a given point in time. Accordingly,

we also focus on it in our simulations in Section 6. However, for completeness,

another benchmark to compare our optimal solution with is an economy with the

ex ante distribution of productivity and without internal migration. As we show in

the Appendix, the comparison of optimal marginal tax rates is less clear-cut in this

case. The endogeneity of the posterior productivity distribution when allowing for

migration also a¤ectsB(z) and C(z), and these e¤ects may drive optimal marginal

tax rates in the opposite direction. Formally, we provide a su¢ cient condition

for mobility to decrease the marginal tax rates for this alternative benchmark in

Appendix AA.

Finally, we make the following remark about the welfare comparison in the

uni�ed taxation case, highlighting the desirability of productivity-enhancing mi-

gration.

Remark The welfare achieved with uni�ed taxation in the no-migration case is

not higher than the welfare achieved with migration.

Proof. Consider the tax schedule that maximizes welfare if migration is not

allowed. Migration brings a Pareto improvement, because individuals move only

if they �nd themselves better o¤. Furthermore, with migration to the richer

region only, the government budget constraint will not be violated, since the tax

schedule is nondecreasing in income without migration. Thus, under the same

tax schedule the welfare cannot decrease with the introduction of a migration

possibility. Finally, the government will change the tax schedule only if it brings

a further increase in welfare. Thus, the welfare with migration cannot be lower

than welfare with no migration.
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5 Optimal di¤erentiated taxation

We now consider the possibility that the central government can choose di¤er-

entiated tax schedules for both regions. If there were regional productivity dif-

ferences but no migration, this setting would correspond to the analysis of an

optimal tax scheme with tagging on the region of residence. However, we continue

to assume that migration between the regions is possible, that productivity is

location-dependent, and that individuals are heterogeneous with respect to their

migration costs, which are unobservable by the government. Again we employ the

perturbation approach and delegate the formal proofs to Appendix A.

We �rst study the optimal tax schedule in the low-productivity region. Con-

sider an increase of taxes in region A for all individuals above gross income zA.

The increase is engineered through an increase in the marginal tax rate d�A in the

small band (zA; zA + dzA), such that all individuals with gross earnings above zA

increase their tax payments by dzAd�A. This generates three e¤ects.

Revenue e¤ect: All taxpayers in A with incomes above zA pay additional

taxes of dzAd�A. The net welfare e¤ect of this tax payment for an individual with

gross earnings z0A is given by dzAd�A (1� gA (z
0
A)), and the total e¤ect is

RA = dzAd�A

Z 1

zA

[1� gA (z
0
A)] vA (z

0
A) sA (z

0
A) dz

0
A:

Behavioral e¤ect: Individuals in the band (zA; zA + dzA) will change their

labor supply in response to the increase in the marginal tax rate. Given that

" � 1�� i
zi

dzi
d(1�� i) , each individual in the band will reduce its income by �d�A"

zA
1��A .

There are approximately dzAvA(zA)sA(zA) of these individuals, so that the total

e¤ect on tax revenue is

LA = �d�AdzA"
�A

1� �A
zAvA(zA)sA(zA):

Migration e¤ect: An increase in taxes for all individuals above gross income

zA a¤ects the migration decision of individuals with gross income in region A above

this level. At any income level z � zA individuals whose cost of moving is between
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�q and �q + dzAd�A will now decide to migrate. There are p ( �qj zA) vA(zA)dzAd�A
a¤ected individuals, with a resulting tax e¤ect of TB(k(zA))� TA(zA) for each of

them. If the schedule results in migration from region B for people of income z,

the argument is analogous, as we show formally in the Appendix. The total e¤ect

is thus

MA = dzAd�A

Z 1

zA

[TB(k(z
0
A))� TA(z

0
A)] p ( �qj z0A) vA(z0A)dz0A:

In the optimum, these e¤ects should cancel out, so that optimal marginal tax rates

can be characterized by

�A
1� �A

=
1

"

1

zAvA(zA)sA(zA)
(8)

�
Z 1

zA

f[1� gA (z
0
A)] sA(z

0
A) + [TB(k(z

0
A))� TA(z

0
A)] p ( �qj z0A)g vA(z0A)dz0A:

We turn now to the optimal tax schedule in the high-productivity region. We

consider a small increase in taxes by dzBd�B for all individuals above zB in region

B. This again generates three e¤ects, which must balance out along the optimal

tax schedule, so that

�B
1� �B

=
1

"

1

zBvB(zB)sB(zB)
(9)

�
Z +1

zB

�
[1� gB (z

0
B)] sB(z

0
B)�

�
TB(z

0
B)� TA(k

�1(z0B)
�
p ( �qj z0B)

	
vB (z

0
B) dz

0
B:

Both optimal tax schedules are derived rigorously in Appendix A. The optimal tax

formulae not only di¤er in the average welfare weights and in the corresponding

productivity distributions above the relevant gross income level, but they also

take the �scal migration externality into account. Typically, this externality will

be negative for the high-productivity region and positive for the low-productivity

region. Accordingly, from these optimal tax schedules (8) and (9) we have the

following result.

Proposition 4 For all levels of innate productivity and the corresponding gross
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incomes, the marginal tax rate �A in the low-productivity region is increasing in the

di¤erence in total tax liability between the high- and the low-productivity regions,

and the marginal tax rate �B in the high-productivity region is decreasing in this

di¤erence in total tax liability.

Proof. The result follows directly from (8) and (9).

Intuitively, the larger the potential �scal gains are from working in the high-

productivity region instead of working in the low-productivity region, the more

the government distorts labor supply in the low-productivity region and the less

it distorts labor supply in the high-productivity region. In the Supplement we ad-

ditionally rearrange the formulae (8) and (9) to show how the migration semielas-

ticities act as a correction factor to the region-dependent marginal social welfare

weights to determine optimal marginal tax rates.

Next we consider the asymptotic properties of the di¤erentiated tax schedule.

Suppose the distribution of innate ability, f(n), has an in�nite tail (nmax =1). As

is standard in the literature, we assume that f(n) has a Pareto tail with parameter

a > 1 (f(n) = C=n1+a). Moreover, we assume that P (qjn), TB�TA; �A; �B, �qA; �qB
converge to P1(q), �T1; �1A < 1; �1B < 1, �q1A ; �q

1
B as n ! 1. Finally, we

concentrate on the case where, for su¢ ciently large n, we have !(n) = n + c,

where c � 0 is a �nite constant. In this case, the following proposition arises:

Proposition 5 Under the assumptions on convergence formulated above, (i) the

average marginal social welfare weights in the two regions converge to the same

value � =� � 0; (ii) the di¤erence between the taxes in the two regions converges

to zero, �T1 = 0; and (iii) the marginal tax rate in both regions converges to �1

with
�1

1� �1
=

1

a"1

�
1�

� 

�

�
: (10)

Proof. See Appendix AA.

The intuition for zero di¤erence of top taxes is similar to that in Kleven et al.

(2009). Starting from a wedge between TB and TA, say, with TB > TA, welfare

could be increased by marginally reducing this wedge due to the migration e¤ect.

19



In particular, consider a reform that increases TA and decreases TB above some

n, while keeping the tax revenue constant in the absence of migration. The direct

welfare e¤ects of such a reform cancel out, because gA and gB have converged to

g1. The �scal e¤ects due to the earnings responses cancel out as well, because

�T1 is constant and thus the labor supply elasticities are identical. The �scal

e¤ect due to migration is however positive, because some people would move to

region B and pay higher taxes. If the starting wedge is characterized by TB < TA,

the welfare can be improved by the opposite reform. Thus, though there are

substantial di¤erences between a di¤erentiated and a uni�ed tax schedule, they

disappear in the limit at the top of the distribution.

Finally, we consider how tax rates should be di¤erentiated if a full di¤erentia-

tion of the entire tax schedule is not feasible. First, we study a tax system that is

separable in the sense that the same income faces the same marginal tax in both

regions, but allowing for region-dependent total tax liabilities. The maximization

problem of the government is as before, except that instead of the restriction that

�T = 0 we have �T = C, where C is constant and �T := TB � TA. For this

setting, we �nd:

Proposition 6 Starting from a uni�ed taxation schedule in the two regions, if the

government is allowed to make a lump-sum transfer between regions, it will choose

to make a transfer from the less productive to the more productive region.

Proof. See Appendix AA.

While this result may appear surprising, there is a clear economic intuition

behind it. The tax on the poor region has to be higher in order to induce extra

migration, which is productivity-enhancing. The extensive margin is used to in-

crease e¢ ciency via increased labor mobility, whereas redistribution is engineered

through the intensive margin. This result is independent of the interpretation of

migration costs.

Moreover, consider a tax schedule that is separable in the sense that �A = �B.

Starting from this schedule, the following proposition shows that in the cost-of-

moving model decreasing the marginal tax in region B and increasing it in region
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A would be desirable:

Proposition 7 If 	0 is convex, q and n are independently distributed, and !0(n) �

1, then it is optimal to introduce some wedge in marginal taxes into the system of

separable taxation of the two regions. In particular, in the cost-of-moving model it

is optimal to decrease the marginal tax in the high-productivity region and increase

it in the low-productivity region.

Proof. See Appendix AA.

The proof is based on the fact that in the cost-of-moving model the di¤erence

in marginal welfare weights of residents of regions A and B is decreasing in the

productivity, if the social welfare exhibits prudence (marginal social welfare is con-

vex). Thus, it makes sense to make the lower part of the productivity distribution

in region A marginally happier than in region B, while making the upper part of

productivity distribution in region B marginally happier than in region A. Hence,

lower marginal tax rates in region B are optimal. The productivity transformation

function !(n) may however reverse this �nding, if migration in the lower part of

the distribution is subject to substantially larger productivity gains than migra-

tion in the upper part of the distribution, i.e., !0(n) < 1; hence the condition on

this function.

6 Simulation and Calibration

In this section we provide numerical simulations for the US, to gain insights into

the quantitative importance of productivity-enhancing migration for the design of

tax policy and optimal redistribution.7 We �rst focus on the di¤erence between

an optimal uni�ed tax schedule with and without migration for a given posterior

productivity distribution as in Propositions 1 and 2. To apply our framework

empirically, we divide the US into a high-productivity region (large metropolitan)

and a low-productivity region (other). We use the observable income distribution

7Our simulations use a modi�ed and extended version of the code developed by Henrik Kleven,
Claus Thustrup Kreiner, and Emmanuel Saez applied in Kleven et al. (2009). We would like to
express our gratitude to them for providing their original code to us.
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to recover the underlying productivity distributions in both regions, as well as the

implied migration gains for workers of di¤erent innate productivity. We then sim-

ulate the uni�ed optimal tax formulae with and without productivity-enhancing

migration for the posterior productivity distribution to gauge the di¤erence be-

tween them. Finally, we also simulate the optimal di¤erentiated tax schedules for

the high- and low-productivity regions. In what follows, we �rst specify functional

forms and parameters used in the simulations, and then describe the calibration.

6.1 Simulation speci�cation

For simulations we use isoelastic utility h( z
n
) = ( z

n
)1+�= (1 + �) with a constant

earnings elasticity " = 1
�
as in Saez (2001). Paralleling our theoretical deriva-

tions, we concentrate on the cost-of-moving model; hence q = qc. Moreover,

we follow Kleven et al. (2009) by assuming a power law distribution for the

costs at the extensive margin on the interval [0; qmax] with P (q) = (q=qmax)
� and

p(q) = (�=qmax) � (q=qmax)��1. This distribution of q is the same in each region and

independent of n, that is, @qmax=@n = 0. The parameter � may be interpreted

as a migration elasticity of the form � = �q
P (�qjn)

@P (�qjn)
@�q

= �qp(�qjn)
P (�qjn) . We use � = 1:5,

and additionally consider lower and higher values in a range between � = 0:2 and

� = 2 to assess the sensitivity of the results to this parameter, since there are

no reliable estimates for the migration elasticity between more and less urbanized

regions. As the social objective function, we use the constant rate of risk aversion

(CRRA) function 	(V ) = V 1�
=(1 � 
), where the parameter 
 measures the

government�s preference for equity. We choose 
 = 1; hence 	(V ) = log(V ) in

line with Chetty (2006).

6.2 Calibration to the US

We proceed with the calibration of our economy to the US in four steps. First, we

choose regions by focusing on the considerable productivity discrepancy between

regions with di¤erent levels of urbanization in the US. To do this, we draw on

the Rural Urban Continuum Code (RUCC, also known as the Beale code) that is
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Figure 2: Split of the mainland US districts into two regions: region B consists of the
more metropolitan counties (dark), region A of all others (light). Boundaries are taken
from US Census Bureau (census.gov: Cartographic Boundary Shape�les).

provided by the US Department of Agriculture. The RUCC assigns each county to

one of nine classes. Starting with highly urban counties central in a metropolitan

area and with a population of more than 1 million (class 1), the code goes up to 9

for completely rural counties that are not adjacent to a metropolitan area and/or

exhibit a population of less than 2,500. The Panel Study of Income Dynamics

(PSID) provides the RUCC for each individual�s county of residence. We de�ne

all counties belonging to class 1 as the large metropolitan areas (region B), and

counties of classes 2 through 9 as other areas (region A), as illustrated by Figure

2.

Second, we recover the ability distributions for these regions using individuals�

maximization as given by Equation (2) with earnings elasticity " = 0:25 as sug-

gested by Saez (2001). Speci�cally, we combine the 2008 individual gross labor

income data from the 2009 PSID for working head of the householdes with the cor-

responding marginal tax rate from the NBER TAXSIM model.8 This procedure

is similar to that of Best and Kleven (2013), who di¤erentiate individuals by age,

whereas we use a regional distinction. As suggested by Diamond (1998) and Saez

(2001), very high incomes are well approximated by a Pareto distribution. There-

8The NBER TAXSIM model v9 is applied, see http://www.nber.org/taxsim/.
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fore, the skill distributions are modi�ed by assuming a Paretian shape for each

top 5% of the respective distribution corresponding to abilities above $184,717

($130,271) in the large metropolitan (other) areas, and we estimate the speci�c

Pareto parameter for both regions.9

The procedure to recover the productivity distribution is as follows: Each indi-

vidual�s innate ability is computed from the individual utility maximization, using

her income data from the PSID, and the actual marginal tax rate corresponding

to this income level from TAXSIM together with the earnings elasticity " and

the functional assumption for h( z
n
). For all potential incomes above $184,717

($130,271), the computed ability is then replaced by the respective Pareto value.

Figure 3A depicts the computed skill distributions in regions A and B. The re-

sulting descriptive statistics for both areas exhibit a median ability di¤erence of

17:1% and a mean di¤erence of 38:5% between the large metropolitan and other

areas.

Third, we estimate the transformation function !(n) from the regional ability

distributions. We compute the di¤erence in the mean ability in each per-mille of

the distribution. This di¤erence is assumed to be the productivity increase for

the mean person (sampling point) of each per-mille. The lag function �(n) =

!(n)� n is then estimated by linear interpolation using the sampling points, and

it is presented in Figure 3B.10 We �nd a substantial productivity increase from

migration to a large metropolitan district from elsewhere, in particular for the

types with potential annual incomes of around $100,000�$250,000 at their origin.

For high ability levels (above $250,000) we make the additional assumption that

�(n) is constant, because of the lack of sampling points in this range. The cuto¤

productivity level of $250,000 implies that we use more than 99% of the total mass

of the productivity distribution.

Fourth, the migration cost distribution is calibrated using the migration elas-

9Denoting by nm the average ability above, or equal to, ability n, the estimation of the
respective Pareto parameter is conducted by regressing nm=n on a constant in the interval of
ability levels between the top 10% and the top 5%. This interval corresponds to ability levels
between $135,699 ($93,487) and $184,717 ($130,271).
10The Supplement provides a detailed justi�cation of our empirical construction of !.
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Figure 3: Revealed true abilities (plot A) and revealed lag function �(n) (plot B) for
the two chosen regions of the US, based on data from PSID 2008/09 and TAXSIM.
Revealed abilities are continously smoothed.

ticity � and the parameter qmax. We choose qmax such that the average moving

costs across all productivity levels amount to approximately $8,500.11 Finally, the

simulation is done in a way such that, with the optimal tax rates obtained, the

ratio of exogenous budget expenditures E to aggregate production is 0:25 as in

Saez (2001).

6.3 Results for nondi¤erentiated taxation

Figure 4 illustrates the simulation outcomes for potential earnings up to $500,000.

In the no-migration case (dashed line in Figure 4A), which uses the posterior

productivity distribution, the government chooses a higher marginal tax rate than

in the migration case (solid lines), in line with Proposition 2. For low income

levels, there is no di¤erence in the marginal tax rate schedules. Migration-induced

productivity increases are small in this income range, and tax liabilities are rather

low as well, so that the migration e¤ect is negligible. However, this is no longer

true for higher levels of income, on account of the higher productivity gains and

progressive taxation.

11Our analysis considers migration gains on a yearly basis. Interpreting migration costs as
a perpetually accruing disutility and applying a reasonable discount rate, this cost level corre-
sponds to the range of migration-cost estimates obtained by Kennan and Walker (2011) or Bayer
and Juessen (2012).
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Figure 4: Optimal uniform tax simulations for the US, based on data from PSID
2008/09 and TAXSIM (panel A), and tax rate di¤erences of the optimal schedules with
and without migration for di¤erent values of the migration elasticity (panel B).

Moreover, di¤erences in the regional productivity distributions also matter for

the di¤erence between the two schedules, since they also determine the size of the

migration e¤ect and the corresponding �scal externality. As Figure 4A (baseline

case) shows, the migration e¤ect reduces marginal tax rates by up to six percentage

points in the higher income range.

In Figure 4B we plot the marginal tax rate di¤erences between the migration

and the no-migration case for alternative values of the migration elasticity. This il-

lustrates that the relationship between the tax rate reduction due to productivity-

enhancing migration relative to the no migration case is quite sensitive to the

migration elasticity, and that, overall, this relationship is not monotone. Con-

sistently with the theory, the di¤erences in marginal tax rates are reduced for

su¢ ciently low values of �, as can be seen from the comparison of the tax rate

di¤erences for � = 0:2 and � = 1 in 4B, respectively.12 Note also from 4B that

the marginal tax rate di¤erences may be substantially more pronounced than the

six percentage points in our baseline case, exceeding twelve percentage points for

� = 1 for some ability levels.

Finally, further simulations show that, as usual, a higher labor supply elasticity

lowers marginal tax rates throughout the ability distribution, and that this also

12Trivially, the di¤erences in marginal tax rates completely disappear for � ! 0.
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reduces the gap between the migration and the no-migration tax schedule (not

shown). Intuitively, lower progressivity tends to reduce the interregional di¤erence

in tax payments between individuals of the same innate productivity, so that the

�scal migration externality is reduced.

6.4 Results for di¤erentiated taxation

The results for di¤erentiated taxation are depicted in Figures 5 and 6. We use

the same baseline parameter settings for migration costs and the exogenous gov-

ernment expenditure requirement E as before. Figure 5A illustrates the case of

di¤erentiated taxation without migration (�xed-residence case). This is a useful

benchmark, since it corresponds to the standard tagging case with an exogenous

tag. The marginal tax rates in the high-productivity region are very similar to

those in the low-productivity region for low levels of potential income. However,

in the range of potential incomes between approximately $85,000 and $350,000

the mass of individuals in region B is substantially larger than in region A, so

that the larger potential for behavioral adjustments reduces optimal marginal tax

rates in the more productive region below the level of marginal tax rates in the low

productivity region. We compare this �xed residence benchmark with the other

three graphs of Figure 5, where we allow for productivity-increasing migration and

display the optimal di¤erentiated marginal tax rate schedules for di¤erent values

of the migration elasticity.

Figure 5B is based on a migration elasticity � = 1:5. In comparison to the

�xed-residence case, marginal tax rates are higher for intermediate abilities and for

individuals with high potential earnings in region A. The opposite is true in region

B, where marginal tax rates are substantially reduced. Additionally, we display

the optimal marginal tax rates for a lower and a higher migration elasticity, � = 2

and � = 0:5, respectively, in Figure 5C and 5D. In all cases U-shaped marginal tax

rate patterns reappear for both regions, but the regional tax rates are substantially

di¤erent. For all analyzed values of the migration elasticity, regional marginal tax

rates are relatively closely together at low potential income levels, but they begin
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Figure 5: Optimal di¤erentiated tax simulations for the US based on data from PSID
2008/09 and TAXSIM.

to diverge sharply for potential earnings above $50,000. Above this level, marginal

tax rates in the less productive region are substantially higher than those in the

more productive region, and only converge again for very high levels of potential

income. This di¤erentiation illustrates the downward pressure of the migration

e¤ect on marginal tax rates in the high-productivity region and the reverse pressure

in the low-productivity region as suggested by Proposition 4. Thus, only for very

low or high abilities do the marginal tax rates in region B approximate those in

region A, whereas for a very substantial intermediate income range lower tax rates

in region B are optimal.

With a lower migration elasticity of � = 0:5, the di¤erence in marginal tax
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Figure 6: Further simulation results for the migration baseline case of di¤erentiated
taxation, based on PSID and TAXSIM. Parameter values for all illustrations: " = 0:25,
� = 1:5, 
 = 1.

rates is even more pronounced and increases to more than 20 percentage points

(Figure 5D) whereas tax rate convergence occurs only at substantially higher abil-

ity levels (not shown). For a higher migration elasticity, as displayed in Figure 5C,

the regional marginal tax rate spread is reduced, but still larger than in the �xed

residence case. To sum up the comparison to the �xed residence case, productivity-

enhancing migration substantially alters the shape of optimal di¤erentiated tax-

ation relative to the benchmark of a purely exogenous tag of �xed productivity

di¤erences.

Figure 6 uses innate earnings �de�ned as potential income with innate pro-

ductivity, which corresponds to potential income in the low-productivity region
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�to compare the optimal tax treatment of individuals of the same innate ability

in the two regions. This takes into account that individuals will have a di¤erent

realized productivity and correspondingly a di¤erent potential income in the high-

productivity region. We depict optimal absolute tax liabilities in Figure 6A and

gross incomes in Figure 6B. We observe a basic income support of roughly $15,000

($17,000) in region B (A), which is taxed away quickly in both regions as earn-

ings increase. Gross incomes begin to considerably diverge from about $50,000

innate earnings and show a roughly constant surplus in the metropolitan region

that occurs around $250,000 innate earnings.

Figure 6C shows the same simulation results as Figure 5B, but considers the

optimal marginal tax rate schedules as functions of innate earnings. This allows

us to compare the optimal marginal tax rates an individual of a given innate

productivity should face in both regions. In addition, we show the ratio of tax

liability di¤erences to realized income di¤erences between the two regions, which

is the implicit migration tax rate. The implicit migration tax is greater than one

for low ability levels, but falls quickly over the range of $30,000�$100,000 in innate

earnings. It is roughly constant at about 44% above these levels of innate earnings.

This corresponds to the evidence from Figure 6A and B, which indicate almost

constant di¤erences of the tax liability schedules and the gross incomes for high

earnings levels.

Finally, we display the absolute migration gain net of taxes (net gain) in Figure

6D. The displayed pattern corresponds to the lag function �(n) (Figure 3B), but

additionally takes the e¤ects of di¤erentiated taxation into account. It is evident

that, except for the lowest innate earnings levels, there is a positive and increasing

net gain from migration, until the constant level of � is reached.

It is interesting to compare our optimally di¤erentiated tax schedule with the

actual regional di¤erentiation of income taxation due to cost-of-living di¤erences.

Albouy (2009) argues that undi¤erentiated federal income taxation taxes inhabi-

tants of urban agglomerations e¤ectively more heavily than those of rural areas,

resulting in a spatial distortion of economic activity. Our analysis of optimal
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redistribution with location-dependent productivity suggests that optimally dif-

ferentiated taxation should bear more heavily on low-productivity regions, with

the exception of the very low and very high income earners. Thus, the de facto

di¤erentiation in favor of low-productivity regions appears to be the opposite of

an optimally di¤erentiated tax system. The current implicit regional tax di¤eren-

tiation in the US may therefore additionally be criticized from our redistribution

perspective with location-speci�c productivity.

7 Concluding remarks

Regional inequality and the corresponding possibility of productivity-enhancing

migration can be an important determinant of the optimal redistributive tax-

transfer scheme. The migration possibility implies a �scal externality that modi�es

the equity-e¢ ciency trade-o¤ beyond the intensive labor supply margin, and our

simulations indicate that this additional constraint to redistribution can be quan-

titatively important. However, our analysis abstracts from a number of potentially

important aspects. First, we restrict the central government to the use of a uni�ed

or regionally di¤erentiated tax scheme; it is not allowed to use targeted subsidies

to migrants only. If such targeted transfers were available to the government, they

could potentially loosen the trade-o¤ between redistribution and internal migra-

tion. However, a �xed migration subsidy typically cannot eliminate the problem

completely, since the �scal migration externality di¤ers by earnings level. Even if

the migration subsidy could be adjusted by earnings level, the adjustments would

have to be incentive-compatible, implying an additional constraint for tax policy.

Secondly, regional productivity di¤erences are partly re�ected in local prices of

nontradable goods, rents, and house prices, which also reduces migration incen-

tives. While this is important, it does not challenge the main economic intuition:

The �scal migration externality still exists and should be taken into account.

Finally, we have used a static framework. One may argue that migration also

contains an inherently dynamic aspect. At the same time, to the extent that the

migration costs are recurring costs, say, because the disutility of being in a less
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preferred region accrues every period, our approach easily maps into a dynamic

framework. However, further research may explore how the potentially stochastic

evolution of regional productivity di¤erences and the option of repeated migration

may qualify our results.

Our results have immediate policy implications. Tax policy should not only

worry about external migration, but also needs to consider the potential role of

productivity-increasing internal migration for a progressive tax-transfer schedule.

This constraint is less important for countries that are characterized by low re-

gional inequality. However, in countries where regional inequality is substantial,

policy makers should carefully assess how tax progressivity may hurt productivity-

enhancing interregional migration and design their tax-transfer schemes accord-

ingly.

8 Appendix A: derivation of the optimal tax for-

mulae

We now show that the optimal tax formulae (6) and (8) and (9) can also be rigorously
derived by standard optimal control techniques. The equivalence of the expression in
terms of n and z is shown in Supplement D. We start with the di¤erentiated case, since
the uni�ed case can be interpreted as the same problem with the additional constraint
of the tax schedules to be identical in both regions.

8.1 Regionally di¤erentiated taxation

The government maximizes

W =

Z nmax

nmin

[

Z +1

�qB

	
�
VB (!(n)) + q

h
�
p(qjn)dq +

Z �qA

0
	(VB (!(n))� qc) p(qjn)dq

+

Z +1

�qA

	
�
VA (n) + q

h
�
p(qjn)dq +

Z �qB

0
	(VA (n)� qc) p(qjn)dq]f(n)dn;

where �qA = max fVB (!(n))� VA (n) ; 0g ; �qB = max fVA (n)� VB (!(n)) ; 0g ; q = qc +
qh, and either qc = 0 or qh = 0. The �rst term in this expression stands for the social
welfare from the population of region B who did not move, the second term stands for
that of the population moved from A to B, the third term is for those who stayed in A,
and the fourth term is for those who moved from B to A. Note that either the second or
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the fourth term is equal to zero, because migration in both direction at the same ability
level is not possible. The maximization is subject toZ nmax

nmin

[

�
zB � !(n)h

�
zB
!(n)

�
� VB(!(n))

�
(1 + P (�qAjn)� P (�qBjn))

+
�
zA � nh

�zA
n

�
� VA

�
(1 + P (�qBjn)� P (�qAjn))]f(n)dn � E

and the corresponding incentive compatibility constraints. Note that either P (�qAjn) or
P (�qBjn) is zero for the same reason as discussed above.

Let the Hamiltonian be H(zA; zB; VA; VB; �; �A; �B; n). The necessary conditions
are

1. There exist absolutely continuous multipliers �A(n); �B(n) such that on (nmin; nmax)
_�B(n) = �

@H(n)
@VB(n)

, _�A(n) = �
@H(n)
@VA(n)

almost everywhere with �i(nmin) = �i(nmax) = 0.
2. We have H(zi(n); Vi; �; �i; n) > H(zi; Vi; �; �i; n) almost everywhere in n for all

z. The �rst order conditions are @H
@zA

= 0; @H@zB = 0.
Uniqueness of zA and zB that solve the equations above can be established in a similar

way to Kleven et al. (2009), using the assumption that ' (x) = (1� h0 (x)) = (xh00 (x)) is
decreasing in x. The FOCs for Region A and B are presented in Supplement A, where we
also lead the reader through the derivation steps and provide additional representations
of the optimal tax formulae:

�A
1� �A

=
1

nf(n)"A (1 + P (�qBjn)� P (�qAjn))

Z nmax

n
[
�
1� gA(n0)

� �
1 + P (�qBjn0)� P (�qAjn0)

�
� (TA � TB)

�
p(�qBjn0) + p(�qAjn0)

�
]f(n0)dn0;

�B
1� �B

=
1

!(n)f(n)"B (1 + P (�qAjn)� P (�qBjn))

Z nmax

n
[
�
1� gB(n0)

� �
1 + P (�qAjn0)� P (�qBjn0)

�
� (TB � TA)

�
p(�qBjn0) + p(�qAjn0)

�
]f(n0)dn0

for the marginal rates in A and B, respectively. The formulae are similar to Kleven
et al (2009) except that two terms (rather than one) re�ect the possibility of either
immigration to or emigration from the given region. Note that for each n, there are two
mutually exclusive scenarios: either there is migration from A to B (and VB (!(n)) >
VA (n)).

8.2 Delayed optimal control

For the next section, we will need some results in delayed optimal control theory. In
particular, we adapt Göllmann et al. (2008) setting that adresses delayed arguments
of constant size. We consider variable �delays�of the size !(n) � n in both the state
variable x(n) (in our case this is V (n)) and in the control variable u(n) (in our case
this is z(n)). Consider a welfare maximization problem. Because social welfare depends
on the indirect utilities only, our objective function will not depend on control variables.
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We have the following retarded optimal control problem (ROCP):

J(u; x) =

Z b

a

L (n; x(n); x(!(n))) dn;

subject to the di¤erential equation (ICC in our context, can be formulated without
delayed variables and without states on the rhs) and inequality constraint (government
budget)

_x(n) = f (n; u(n)) ; n 2 [a; b] (11a)Z b

a

C (n; u(n); u(!(n)); x(n); x(!(n))) dn � 0: (11b)

For convenience, the functions

L : [a; b]� Rm � Rm ! R
f : [a; b]� Rn ! R
C : [a; b]� Rn � Rn � Rm � Rm ! R

are assumed to be twice continuously di¤erentiable wrt all arguments. A pair of functions
(u; x) is called an admissible pair for the problem (ROCP) if the state x and control u
satisfy (11a) and (11b). An admissible pair (û; x̂) is called locally optimal pair or weak
maximum for (ROCP), if

J(u; x) � J (û; x̂)

hold for all (u; x) admissible in a neighbourhood of (û; x̂). De�ne the Hamiltonian for
(ROCP) as

H (n; x; xw; u; uw; �; �) := L (n; x; xw) + �C (n; u; uw; x; xw) + �f (n; u) :

Göllmann et al (2008) show that a necessary condition for (u; x) to be locally optimal
is existence of a costate absolutely continuous function � : [a; b] ! R, a multiplier
function � : [a; b]! R such that the following conditions hold for all t 2 [a; b]:

(i) adjoint di¤erential equation

_�(n) = �@H (n)
@x

� I[!(a);!(b)]
@H

�
!�1(n)

�
@xw

= �@H (n; x(n); x (!(n)) ; u(n); u (!(n)) ; �(n); �(n))
@x

�I[!(a);!(b)]
@H

�
n; x(!�1(n)); x (n) ; u(!�1(n)); u(n); �(!�1(n)); �(!�1(n))

�
@xw

;

(ii) transversality condition

�(a) = �(b) = 0;
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(iii) local maximum condition

@H(n)

@u
+ I[!(a);!(b)]

@H (!�1(n))

@uw
= 0;

(iv) nonnegativity of multiplier and complementarity slackness.

8.3 Non-di¤erentiated tax schedule
In this case the tax schedules in two regions must be identical, and hence the indirect
utilities also are (there are no di¤erences in preferences). The government problem is to
maximize

W =

Z nmax

nmin

[

Z +1

0
	
�
V (!(n)) + qh

�
p(qjn)dq +

Z �q

0
	(V (!(n))� qc) p(qjn)dq

+

Z +1

�q
	
�
V (n) + qh

�
p(qjn)dq]f(n)dn;

where �q = V (!(n))�V (n) ; and either qh or qc is equal to zero. We have also dropped the
subscript B from the omega function for more parsimonious notation. The maximization
is subject to Z nmax

nmin

[

�
z (!(n))� !(n)h

�
z (!(n))

!(n)

�
� V (!(n))

�
(1 + P (�qjn))

+
�
z � nh

� z
n

�
� V

�
(1� P (�qjn))]f(n)dn � E;

where the superscript w stands for the individuals with productivity !(n). Note that in
the uniform case there cannot be migration from B to A, as this would imply V (!(n)) <
V (n) that contradicts incentive compatibility (the productivity type !(n) can pretend
to have productivity n without any costs).

Let the Hamiltonian be H(z; zw; V; V w; �; �; n). This is a delayed optimal control
problem analogous to the one formally analyzed by Göllmann et al. (2008) in its entire
generality. The di¤erence is that whereas Göllmann et al. have a lag of �xed size over
the whole domain of their functions, our lag is a smooth increasing function of n, namely
!(n) � n. The necessary conditions for optimal control in such a setting is presented
in Abdeljawad et al (2009). Namely, in our context the necessary conditions for the
maximum are:

1. There exist absolutely continuous multipliers �(n) such that on (nmin; nmax)

_�(n) = �@H(n)
@V (n)�I[!(nmin);!(nmax)]

@H(!�1(n))
@V w(n) almost everywhere with �(nmin) = �(nmax) =

0.
2. We have H(z(n); zw(n); V; V w; �; �; n) > H(z; zw; V; V w; �; �; n) almost every-

where in n for all z. The �rst order condition is

@H

@z
+ I[!(nmin);!(nmax)]

@H
�
!�1(n)

�
@zwB

= 0

The fact that this condition describes a global maximum can be established similar
to Kleven et al. (2009), using the assumption that ' (x) = (1� h0 (x)) = (xh00 (x)) is
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decreasing in x.

�

n

z

n
h00
� z
n

�
+ �

�
1� h0

� z
n

�� �
(1� P (�qjn)) f(n) +

�
1 + P (�q1j!�1(n))

�
f
�
!�1(n)

��
= 0

'
� z
n

�
= � �(n)

�n ((1� P (�qjn)) f(n) + (1 + P (�q1j!�1(n))) f (!�1(n)))

LHS is decreasing in zi=n whereas RHS is constant, which implies that zi(n) is a unique
solution and a global maximum indeed. Continuity can be then established in a way
similar to Kleven et al (2009). Further derivation is presented in the Supplement A,
whereby we arrive atZ nmax

!�1(n)

�
1� gB

�
n0)
�� �

1 + P (�qjn0)
�
f
�
n0
�
dn0 +

Z nmax

n

�
1� gA(n0)

� �
1� P (�qjn0)

�
f(n0)dn0

�
Z n

!�1(n)

�
T
�
!(n0)

�
� T (n0)

�
p(�qjn0)f

�
n0
�
dn0 =

�

1� ��

�n"
�
(1� P (�qjn)) f(n) +

�
1 + P (�q1j!�1(n))

�
f
�
!�1(n)

��
:

Additional interpretation of this formula is also left to the Supplement A.

9 Appendix AA: Further propositions and proofs

9.1 Proof of Proposition 2

Proof. Going through the derivation of the optimal tax formula in the Appendix
A under the assumption that the e¤ect of tax on migration decision is neglected,
i.e. @�q

@z
= @�q

@V
= 0, we arrive at the optimal tax formula (??) short of the term

�
Z n

!�1(n)

(T (!(n0))� T (n0)) p(�qjn0)f (n0) dn0:

If this is non-positive (that is equivalent to D(z) � 0), the result immediately
follows. If marginal tax rates are positive, this condition is always ful�lled.

9.2 Proof of Proposition 5

Proof. Under the assumptions formulated in the text, VA(n) and VB(n) are increasing
in n without bound, because �1A < 1; �1B < 1. As 	0 > 0 is decreasing, it converges to
some � � 0. Then, we have

gA(n) =

R +1
�qA

	0
�
VA (n)+q

h
�
p(qjn0)dq +

R �qB
0
	0 (VA (n)�qc) p(qjn)dq

� (1 + P (�qBjn)� P (�qAjn))
;

gB (n) =

R +1
�qB

	0
�
VB (!(n

0))+qh
�
p(qjn0)dq +

R �qA
0
	0 (VB (!(n))�qc) p(qjn)dq

� (1 + P (�qAjn)� P (�qBjn))
;
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which converge to

g1A = g1B =
� 

�
:

If TB � TA converges, it must be that �1A = �1B = �1. But since

h0
�
zi
ni

�
= 1� � i (zi) ;

zi=ni converges and hence elasticities converge to the same limit "1. Moreover, limn!1
zA
n
=

limn!1
zB
!(n)

. Because P (qjn) and �qA; �qB converge, P (�qijn) and p(�qijn) converge to
P1(�q1i ) and p

1(�q1i ). The Pareto distribution implies that (1� F (n))=(nf(n)) = 1=a
in the tail. Take the limit of our optimal tax formulae to get

1

a"1
[1�

� 

�
+
�T1 (p1(�q1B ) + p

1(�q1A ))

1 + P1(�q1B )� P1(�q1A )
] =

�1

1� �1 ;

1

a"1
[1�

� 

�
� �T

1 (p1(�q1B ) + p
1(�q1A ))

1 + P1(�q1A )� P1(�q1B )
] =

�1

1� �1

for the marginal rates in Region A and B, respectively. The right hand sides are equal,
so we need �T1 = 0 for the left hand sides to be equal as well.13

9.3 Proof of Proposition 6
Proof. The maximization problem of the government with the restriction that �T = C
is constant in n is

W =

Z nmax

nmin

[

Z +1

0
	
�
V (!(n)) + qh

�
p(qjn)dq +

Z �q

0
	(V (!(n))� qc) p(qjn)dq

+

Z +1

�q
	
�
V (n) + qh + C

�
p(qjn)dq]f(n)dn;

where �q = V (!(n))� V (n)� C; and either qh or qc is equal to zero, and we assume C
is small enough not to induce �reverse�migration (to the low productivity region). The
maximization is subject toZ nmax

nmin

[

�
z (!(n))� !(n)h

�
z (!(n))

!(n)

�
� V (!(n))

�
(1 + P (�qjn))

+
�
z � nh

� z
n

�
� V � C

�
(1� P (�qjn))]f(n)dn � E:

13Note that the optimal tax formula for the uniform case simpli�es to

2"1
�1

1� �1 =
1� F (n)
nf(n)

�
2�

� 

�

�
;

which is identical to (10) under the Pareto distribution and proper rescaling of the Lagrange
multiplier.
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Note that we express everything here in terms of Region B taxes - that is why C appears
in the expressions for Region A as a correction term to increase indirect utility (in the
objective function) or to reduce the tax revenue (in the government budget constraint).
By the envelope theorem,

@W �

@C
=

Z nmax

nmin

[
h
	
�
V (n) + �qh + C

�
�	(V (!(n))� �qc)

i
p(�qjn)

+

Z +1

�q
	0
�
V (n) + qh

�
p(qjn)dq � � (1� P (�qjn))

�� (T (!(n))� T (n) + C) p(�qjn)]f(n)dn:

@W �

@C
jC=0 =

Z nmax

nmin

[

Z +1

�q

�
	0
�
V (n) + qh

�
� �

�
p(qjn)dq�� (T (!(n))� T (n)) p(�qjn)]f(n)dn;

which is negative, if 	0
�
V (n) + qh

�
=� = gA � 1 and T (!(n)) > T (n) (a su¢ cient

condition is that the marginal tax rate is positive everywhere).

9.4 Proof of Proposition 7
Proof. A separable tax schedule implies that TB � TA is constant. Since zA=n =
zB=!(n), we have

�qA = VB � VA = (!(n)� n)
� z
n
� h

� z
n

��
� (TB � TA) ;

so we can write
_qA =

�
!0(n)� 1

� � z
n
� h

� z
n

��
�
�
T 0B � T 0A

�
:

In particular, under separable taxation and !0(n) = 1, we have _qA = 0. At that point,
for the cost-of-moving model

d (gA � gB)
dn

=

"
	00 (VA (n))

�
�
	00 (VA + �qA) +

R �qA
0 	00 (VA + �qA � qc) p(q)dq
� (1 + P (�qA))

#
_VA < 0

i¤ 	0 is convex.
Similar to Kleven et al. (2006, 2009) we can consider a tax reform introducing

a little bit of �negative jointness� (a lower marginal tax for the higher productivity
region). This reform has two components. Above ability level n, we increase the tax in
Region A and decrease the tax in Region B. Below ability level n, we decrease the tax
in Region A and increase the tax in Region B. These tax burden changes are associated
with changes in the marginal tax rates on earners around n. The direct welfare e¤ect
created by redistribution across regions at each income level:

dW =
dT

F (n)

Z n

nmin

�
gA(n

0)� gB(n0)
�
f(n0)dn0

� dT

1� F (n)

Z nmax

n

�
gA(n

0)� gB(n0)
�
f(n0)dn0:

Because gA � gB is decreasing, dW > 0. Second, there are �scal e¤ects associated
with earnings responses induced by the changes in �A and �B around n. Since the
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reform increases the marginal tax rate in Region A around n and reduces it in Region
B, the earnings responses are opposite. As we start from �A = �B, and hence identical
elasticities, "A = "B, the �scal e¤ects of earning responses cancel out exactly. Finally,
the reform creates migration responses. Above n, migration to B will be induced. Below
n, migration to B will be inhibited. The �scal implications of these responses cancel
out exactly only if !0(n) = 1. The elasticity � is constant in this case and since initially
TA � TB is constant, the revenue gain from migrants above n will be compensated by
the revenue loss from migrants below n. By the same logic, for !0(n) > 1 the gain from
migration will be stronger then the loss from it, so we will have another positive e¤ect.
With !0(n) < 1 the revenue gain from migration is smaller than the loss, so a bit of
negative jointness is not necessarily optimal. To complete the proof, our reasoning needs
to hold for !0(n) > 1, i.e. _gA � _gB < 0 also for this case. Di¤erentiating gA � gB in this
case, we have

_gA � _gB = _VA
	00 (VA)

�
� !0(n) _VA

	00 (VA + �q) +
R �q
0 	

00 (VA + �q � qc) p(q)dq
� (1 + P (�q))

� gA � gB
1 + P (�q)

p(�q)
�
!0(n)� 1

�
_VA < 0;

The �rst two terms are negative, because 	0 is convex by assumption. The third term

is negative, because gA > gB (which follows from concavity of 	).

9.5 Two propositions using the alternative benchmark of
the ex ante productivity distribution

Proposition 8 In a country with regional productivity di¤erences and internal migra-
tion, the optimal non-di¤erentiated marginal tax rates may be higher or lower relative
to a benchmark without internal migration and the ex ante productivity distribution.
Assuming exogenous marginal welfare weights, they are lower ifZ n

!�1(n)

(1� gB(n
0))P (�qjn0)f (n0) dn0 �

Z n

!�1(n)

(T (!(n0))� T (n0)) p(�qjn0)f (n0) dn0

(14)

<
P (�q1j!�1(n))f (!�1(n))� P (�qjn)f(n)

f(n) + f (!�1(n))

Z nmax

n

[1� gA (n
0)]f(n0)dn0

+

Z nmax

n

[gB(n
0)� gA (n

0)]P (�qjn0)f(n0)dn0

Proof. The optimal tax formula in case of uni�ed taxation is presented by (??). For a
government that does not take into account the possibility of migration, optimal marginal
tax rates are implicitly de�ned byZ nmax

n

[2� gA (n
0)� gB(n

0)]f(n0)dn0 +

Z n

!�1(n)

(1� gB(n
0)) f (n0) dn0

= "
�

1� �

�
f(n) + f

�
!�1(n)

��
:

39



Comparing the two expressions, we arrive at the condition (14).

Proposition 9 Starting from two identical regions, introducing a marginal di¤erence
in productivity distribution lowers optimal marginal tax if and only if

1� gB(n)

2
+

R nmax
n

[2� gA(n
0)� gB(n

0)] f(n0)dn0

4 (f (n))2

�
P (�qjn)
@n

f (n) + f 0 (n)

�
< 0:

(15)
Proof. We express the marginal tax rate �

1�� from the optimal tax formula (??) under
the assumption that !(n) = n + �, take a derivative of it with respect to �, and
evaluate it at � = 0, keeping in mind that there is no migration at this point. The
resulting expression is proportional to the left hand side of (15). Correspondingly, the
marginal tax rate decreases with the introduction of marginal productivity di¤erences if
this expression is negative and it increases in case it is positive.

We can see that the terms in (15) related to the revenue e¤ect are always positive.
Thus, a su¢ cient condition for an increase in marginal tax is that P (�qjn)

@n
f (n)+f 0 (n) �

0. This is satis�ed for independent distribution of costs (P (�qjn)
@n

= 0) and a uniform
distribution of ability. On the other hand, if the distribution of ability is su¢ ciently
�decreasing�, like the Pareto distribution, for example, then introducing marginal pro-
ductivity di¤erences puts downward pressure on marginal taxes.

For a linear approximation, T 00 (z) = 0, so we get n _z (n) = z(n) indeed. This
completes the proof of equivalence for the case of non-di¤erentiated taxation. The
derivation for di¤erentiated taxation is analogous.
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1 Overview

Section A provides the details of derivations of optimal tax formulae in di¤erentiated

and uniform cases. Section B shows that a given path of earnings (zA (n) ; zB (!(n))) is

implementable. Section C provides the conditions for the existence of a solution to the

maximization problem. Section D establishes the equivalence of representation via earn-

ings or via productivity. Section E explains further aspects of the simulation procedure.

2 Supplement A: detailed derivation of optimal tax

formulae

2.1 Regionally di¤erentiated taxation

We have presented the maximization problem in Appendix A. The FOCs for Region A and B,

respectively, can be rewritten as

�A(n)

n

zA
n
h00
�zA
n

�
+ �

�
1� h0

�zA
n

��
(1 + P (�qBjn)� P (�qAjn)) f(n) = 0;

'
�zA
n

�
= � �A(n)

�nf(n) (1 + P (�qBjn)� P (�qAjn))

�B(n)

!(n)

zB
!(n)

h00
�
zB
!(n)

�
+ �

�
1� h0

�
zB
!(n)

��
(1 + P (�qAjn)� P (�qBjn)) f(n) = 0

'

�
zB
!(n)

�
= � �B(n)

�!(n)f(n) (1 + P (�qAjn)� P (�qBjn))

1



for Region B. In both cases, LHS is decreasing in zA=n (zB=!(n)) whereas RHS is constant,

which implies that zi(n) is a unique solution and a global maximum. Continuity can be then

established in a way similar to Kleven et al (2009). The conditions for _�i(n) imply

� _�A(n) = f(n)[

Z +1

�qA

	0
�
VA (n) + q

h
�
p(qjn)dq +

Z �qB

0
	0 (VA (n)� qc) p(qjn)dq

�� (1 + P (�qBjn)� P (�qAjn))

+� (TA � TB) (p(�qBjn) + p(�qAjn))];

� _�B(n) = f(n)[

Z +1

�qB

	0
�
VB (!(n)) + q

h
�
p(qjn)dq +

Z �qA

0
	0 (VB (!(n))� qc) p(qjn)dq

�� (1 + P (�qAjn)� P (�qBjn))

+� (TB � TA) (p(�qBjn) + p(�qAjn))];

Integrating this, we get for Regions A and B, respectively,

��A(n)
�

=

Z nmax

n
[� 1
�

�Z +1

�qA

	0
�
VA (n) + q

h
�
p(qjn0)dq +

Z �qB

0
	0
�
VB
�
!(n0)

�
� qc

�
p(qjn0)dq

�
+1 + P (�qBjn0)� P (�qAjn0)

� (TA � TB)
�
p(�qBjn0) + p(�qAjn0)

�
]f(n0)dn0;

��B(n)
�

=

Z nmax

n
[� 1
�

�Z +1

�qB

	0
�
VB
�
!(n0)

�
+ qh

�
p(qjn0)dq +

Z �qA

0
	0
�
VB
�
!(n0)

�
� qc

�
p(qjn0)dq

�
+
�
1 + P (�qAjn0)� P (�qBjn0)

�
� (TB � TA)

�
p(�qBjn0) + p(�qAjn0)

�
]f(n0)dn0:

De�ning by gA(n) the average marginal social welfare weight of the region A residents with

inborn ability n, by gB(n) the average marginal social welfare weight of the region B initial

residents with inborn ability n, we have

gA(n) =

R +1
�qA

	0
�
VA (n) + q

h
�
p(qjn)dq +

R �qB
0 	0 (VA (n)� qc) p(qjn)dq

� (1 + P (�qBjn)� P (�qAjn))
;

gB (n) =

R +1
�qB

	0
�
VB (!(n)) + q

h
�
p(qjn)dq +

R �qA
0 	0 (VB (!(n))� qc) p(qjn)dq

� (1 + P (�qAjn)� P (�qBjn))
:

Using these, we can rewrite the optimality conditions as

��A(n)
�

=

Z nmax

n
[
�
1� gA(n0)

� �
1 + P (�qBjn0)� P (�qAjn0)

�
� (TA � TB)

�
p(�qBjn0) + p(�qAjn0)

�
]f(n0)dn0;
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��B(n)
�

=

Z nmax

n
[
�
1� gB(n0)

� �
1 + P (�qAjn0)� P (�qBjn0)

�
� (TB � TA)

�
p(�qBjn0) + p(�qAjn0)

�
]f(n0)dn0:

Inserting into the FOCs, we get

�A
1� �A

=
1

nf(n)"A (1 + P (�qBjn)� P (�qAjn))

Z nmax

n
[
�
1� gA(n0)

� �
1 + P (�qBjn0)� P (�qAjn0)

�
� (TA � TB)

�
p(�qBjn0) + p(�qAjn0)

�
]f(n0)dn0;

�B
1� �B

=
1

!(n)f(n)"B (1 + P (�qAjn)� P (�qBjn))

Z nmax

n
[
�
1� gB(n0)

� �
1 + P (�qAjn0)� P (�qBjn0)

�
� (TB � TA)

�
p(�qBjn0) + p(�qAjn0)

�
]f(n0)dn0

for the marginal rates in A and B, respectively. The formulae are similar to Kleven et al

(2009) except that two terms (rather than one) re�ect the possibility of either immigration to

or emigration from the given region. Note that for each n, there are two mutually exclusive

scenarios: either there is migration from A to B (and VB (!(n)) > VA (n)) so that the formulae

take the form

�A
1� �A

=
1

nf(n)"A (1� P (�qAjn))

Z nmax

n
[
�
1� gA(n0)

� �
1� P (�qAjn0)

�
� (TA � TB) p(�qAjn0)]f(n0)dn0;

�B
1� �B

=
1

!(n)f(n)"B (1 + P (�qAjn))

Z nmax

n
[
�
1� gB(n0)

� �
1 + P (�qAjn0)

�
� (TB � TA) p(�qAjn0)]f(n0)dn0;

or there is migration from B to A (and VB (!(n)) < VA (n)) so that the formulae turn to

�A
1� �A

=
1

nf(n)"A (1 + P (�qBjn))

Z nmax

n
[
�
1� gA(n0)

� �
1 + P (�qBjn0)

�
� (TA � TB) p(�qBjn0)]f(n0)dn0;

�B
1� �B

=
1

!(n)f(n)"B (1� P (�qBjn))

Z nmax

n
[
�
1� gB(n0)

� �
1� P (�qBjn0)

�
� (TB � TA) p(�qBjn0)]f(n0)dn0:
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The average marginal tax rate is then

f(n)[n
�A

1� �A
"A (1 + P (�qBjn)� P (�qAjn))

+!(n)
�B

1� �B
"B (1 + P (�qAjn)� P (�qBjn))] =

Z nmax

n

�
2� �g

�
n0
��
f(n0)dn0; where

�g (n) := gA(n) (1 + P (�qBjn)� P (�qAjn)) + gB(n) (1 + P (�qAjn)� P (�qBjn))

is the average social marginal welfare weight of the individuals with innate ability n and we have

2 instead of 1 because total population is of measure 2. Clearly, �A (nmax) = 0 = �B (! (nmax))

and �A (nmin) = 0 = �B (! (nmin)) from the transversality conditions.

De�ne migration semi-elasticities �+i (n) :=
1

1+P (�qijn)
@P (�qijn)
@�q

= p(�qijn)
1+P (�qijn) for the region with

in�ow of population and ��i (n) :=
1

1�P (�qijn)
@P (�qijn)
@�q

= p(�qijn)
1�P (�qijn) for the region with an out�ow.

De�ne the migration elasticity as �i := �i (TA � TB), whereby normalizing in terms of the tax
rather than the utility di¤erential VB�V A is for notational conviniency. We have

�A
1� �A

=
1

nf(n)"A (1� P (�qAjn))

Z nmax

n

[1� gA(n
0)� ��A (n0) ]

�
1� P (�qAjn

0)
�
f(n0)dn0; and

�B
1� �B

=
1

!(n)f(n)"B (1 + P (�qAjn))

Z nmax

n

[1� gB(n
0) + �+A (n

0) ]
�
1 + P (�qAjn

0)
�
f(n0)dn0:

The e¤ect of the migration elasticity as a top-up to the marginal social welfare weight is

evident from the resulting formulae. Indeed, the marginal tax rate in region A (source region)

is reduced by the migration elasticity in the same way it is reduced by the welfare weight of

region A citizens. Conversely, the marginal tax rate in region B (recepient region) is increased

by migration elasticity in the same way it is reduced by the welfare weight of region B citizens.

Intuitively, marginal increase of tax for all skill levels above n in region A will lead to out�ow

of people resulting in the loss of revenue di¤erential TA�TB between two regions, properly

accounted for by the term ��A (n
0) at each skill level n0. In region B, the same mechanism is

in action, only the loss of revenue di¤erential is properly accounted for by the term ��+A (n0).
From the formulae above we can also see that more elastic migration response leads to higher

marginal tax rates in region A and lower marginal tax rates in region B (migration elasticity is

negative whenever TA < TB).
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2.2 Non-di¤erentiated tax schedule

We have presented the maximization problem in Appendix A. Multiplier evolution can be written

as

� _�(n) = f(!�1(n))

Z +1

0
	0
�
V (n) + qh

�
p(qj!�1(n))dq

+f
�
!�1(n)

� Z �q1

0
	0 (V (n)� qc) p(qj!�1(n))dq

+f(n)

Z +1

�q
	0
�
V (n) + qh

�
p(qjn)dq

+�[� (1� P (�qjn)) f(n)�
�
1 + P (�q1j!�1(n))

�
f(!�1(n))

�
�
zw � nwh

�
zw

nw

�
� V w �

�
z � nh

� z
n

�
� V

��
p(�qjn)f(n)

+

�
z � nh

� z
n

�
� V �

�
z�w � n�wh

�
z�w

n�w

�
� V �w

��
p(�q1j!�1(n))f(!�1(n))];

where superscript �w stands for the argument !�1(n) of corresponding functions. Also, �q1 =

V (n)� V
�
!�1(n)

�
and �q = V (!(n))� V (n). Rewriting in terms of taxes, we have

� _�(n) = f(!�1(n))

�Z +1

0
	0
�
V (n) + qh

�
p(qj!�1(n))dq +

Z �q1

0
	0 (V (n)� qc) p(qj!�1(n))dq

�
+f(n)

Z +1

�q
	0
�
V (n) + qh

�
p(qjn)dq

+�[� (1� P (�qjn)) f(n)�
�
1 + P (�q1j!�1(n))

�
f(!�1(n))

� (T (!(n))� T (n)) p(�qjn)f(n)

+
�
T (n)� T (!�1(n))

�
p(�q1j!�1(n))f(!�1(n))]

De�ning by gi(n) the average marginal social welfare weight of the region i residents with inborn

ability n, we have

gA(n) =
1

�

R +1
�q 	0

�
V (n) + qh

�
p(qjn)dq

1� P (�qjn) ;

gB
�
!�1(n)

�
=

1
�

�R �q1
0 	0 (V (n)� qc) p(qj!�1(n))dq +

R +1
0 	0

�
V (n) + qh

�
p(qj!�1(n))dq

�
1 + P (�q1j!�1(n))

:

Thus, we can write

� _�(n)
�

=
�
gB
�
!�1(n)

�
� 1
� �
1 + P (�q1j!�1(n))

�
f
�
!�1(n)

�
+(gA(n)� 1) (1� P (�qjn)) f(n)

� (T (!(n))� T (n)) p(�qjn)f(n)

+
�
T (n)� T (!�1(n))

�
p(�q1j!�1(n))f(!�1(n))
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and integrating

��(n)
�

=

Z nmax

n
[
�
1� gB

�
!�1(n0)

�� �
1 + P (�q1j!�1(n0))

�
f
�
!�1(n0)

�
+
�
1� gA(n0)

� �
1� P (�qjn0)

�
f(n0)

+
�
T
�
!(n0)

�
� T (n0)

�
p(�qjn0)f(n0)

�
�
T
�
n0
�
� T (!�1(n0))

�
p(�q1j!�1(n0))f(!�1(n0))]dn0

and substituting into the FOC (using the de�nition of elasticity " = nh0=zh00),

1

n"

1

(1� P (�qjn)) f(n) + (1 + P (�q1j!�1(n))) f (!�1(n))
�Z nmax

n
[
�
1� gB

�
!�1(n0)

�� �
1 + P (�q1j!�1(n0))

�
f
�
!�1(n0)

�
+
�
1� gA(n0)

� �
1� P (�qjn0)

�
f(n0)

+
�
T
�
!(n0)

�
� T (n0)

�
p(�qjn0)f(n0)�

�
T
�
n0
�
� T (!�1(n0))

�
p(�q1j!�1(n0))f(!�1(n0))]dn0 =

�

1� � :

Simplifying the integral expression, we get1Z nmax

!�1(n)

�
1� gB

�
n0)
�� �

1 + P (�qjn0)
�
f
�
n0
�
dn0 +

Z nmax

n

�
1� gA(n0)

� �
1� P (�qjn0)

�
f(n0)dn0

�
Z n

!�1(n)

�
T
�
!(n0)

�
� T (n0)

�
p(�qjn0)f

�
n0
�
dn0 =

�

1� ��

�n"
�
(1� P (�qjn)) f(n) +

�
1 + P (�q1j!�1(n))

�
f
�
!�1(n)

��
De�ning by �g (n) the average marginal social welfare weight of the people with observed pro-

ductivity n as

�g (n) := gA(n) (1� P (�qjn)) + gB(n) (1 + P (�qjn)) ;

we can rewrite the optimal tax formula asZ nmax

n

�
2� �g(n0)

�
f(n0)dn0 +

Z n

!�1(n)

��
1� gB(n0)

� �
1 + P (�qjn0)

�
�
�
T
�
!(n0)

�
� T (n0)

�
p(�qjn0)

�
f
�
n0
�
dn0

(1)

=
�

1� � n"
�
(1� P (�qjn)) f(n) +

�
1 + P (�q1j!�1(n))

�
f
�
!�1(n)

��
which is analogous to the celebrated Mirrlees formula apart from the integral from !�1(n) to

n that takes care of the revenue e¤ect ((1� gB(n)) (1 + P (�qjn)) term) and the migration e¤ect
((T (!(n0))� T (n0)) p(�qjn0)). If n 2 [nmin; !(nmin)], only non-migrated region A inhabitants

1Note that we have assumed !(nmax) = nmax, that is why !�1(nmax) = nmax and we
get the expressions below. In a more general setting, we would have upper limit of the
�rst integral term equal to !�1(nmax), and we would also have an additional integral termR nmax
!�1(nmax)

(T (!(n0))� T (n0)) p(�qjn0)f (n0) dn0:
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have this productivity, so the formula becomesZ nmax

n
[1� gA

�
n0
�
]f(n0)dn0 = "

�

1� � nf(n);

which is exactly the Mirrleesean formula. Note that the additional terms admit straightforward

interpretation:
R n
!�1(n)

��
T (!(n0))�T (n0)

�
p(�qjn0)

�
f (n0) dn0 is the tax paid by all migrants

with skill from !�1(n) to n over and above the tax they would have paid if remaining in their

home region. This characterizes a distortion that the government creates on extensive margin,

stimulating (T (!(n))< T (n)) or discouraging (T (!(n))< T (n)) migration. The need for

distortion comes from di¤erences in social marginal welfare weights; its magnitude is determined,

among other things, by the shape of the transformation function ! (n).

The other additional term,
R n
!�1(n)

�
1� gB(n

0)
� �
1 + P (�qjn0)

�
f (n0) dn0, stands for the wel-

fare e¤ect of marginally increasing the tax for all productivity levels between n and ! (n) who

migrate from region B to region A becasue of this increase (and thus realize productivity from

!�1(n) to n). Using the elasticity de�ned as �(n) := (T (!(n))�T (n)) p(�qjn)
1+P (�qjn) , we can rewrite

the optimal tax formula asZ nmax

!�1(n)

�
1� gB

�
n0)
��
(1 + P (�qjn)) f

�
n0
�
dn0 +

Z nmax

n

�
1� gA(n0)

� �
1� P (�qjn0)

�
f(n0)dn0

�
Z n

!�1(n)
�(n0)

�
1 + P (�qjn0)

�
f
�
n0
�
dn0 =

�

1� ��

�n"
�
(1� P (�qjn)) f(n) +

�
1 + P (�q1j!�1(n))

�
f
�
!�1(n)

��
:

More elastic migration puts downward pressure on marginal tax rates whenever the migration

elasticity is positive on [!�1(n); n].

3 Supplement B: Implementability

We follow the supplementary material to Kleven et al. (2009). The same reasoning applies. In

particular, an action pro�le (zA (n) ; zB (!(n)))n2(nmin;nmax) is implementable if and only if there

exist transfer functions (cA(n); cB(!(n)))n2(nmin;nmax) such that (zi (ni) ; ci (ni))i2fA;Bg;n2(nmin;nmax)

is a truthful mechanism. A mechanism is called truthful if there is a f�qA(n); �qB(n)g such
that (i) for q < maxi2fA;Bg �qi(n), the set (i

0 = argmini2fA;Bg �qi(n); n
0 = n) maximizes

u(zi0(n
0); i0; ci0(n

0); (n; q)) over all (i0; n0); (ii) for q � maxi2fA;Bg �qi(n), the set (i
0 = argmaxi2fA;Bg �qi(n); n

0 =

n) maximizes u(zi0(n0); i0; ci0(n0); (n; q)) over all (i0; n0). The usual implementability theo-

rem for the one-dimensial case also applies in our setting.

Lemma 1 (Kleven-Kreiner-Saez) An action pro�le (zA(n); zB(!(n)))n2(nmin;nmax) is im-

plementable if and only if zA(n) and zB(!(n)) are both nondecreasing in n.
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Proof. The utility function c � nh(z=n) (and also c � !(n)h(z=!(n))) satis�es the usual
single crossing condition. Indeed, it is equivalent to xh00(x) > 0 for all x > 0, which is ensured

by convexity of h. That is why from the one-dimensional case we know that z(n) (and z (!(n)))

is implementable, which means that there is some c(n) such that c (n) � nh(z (n) =n) �
c (n0)� nh(z(n0)=n) for all n; n0 if and only if z(n) is nondecreasing.2

Suppose (zA (n) ; zB (!(n))) is implementable, so that there exists (cA (n) ; cB (!(n))) such

that (zi (ni) ; ci (ni))i2fA;Bg;n2(nmin;nmax) is a truthful mechanism. This implies that cA (n) �
nh(zA (n) =n) � cA (n0)�nh(zA(n0)=n) and cB (!(n))�!(n)h(zB (!(n)) =!(n)) � cB (!(n0))�
!(n)h(zB(!(n

0))=!(n)) for all n; n0, and so by one-dimensional result zA (n) and zB (!(n)) are

nondecreasing. Conversely, suppose zA (n) and zB (!(n)) are nondecreasing. One-dimensional

result implies then that there exist such cA (n) and cB (!(n)) that cA (n) � nh(zA (n) =n) �
cA (n

0)�nh(zA(n0)=n) and cB (!(n))�!(n)h(zB (!(n)) =!(n)) � cB (!(n0))�!(n)h(zB(!(n0))=!(n))
correspondingly. We have to show that the mechanism (zi (ni) ; ci (ni))i2fA;Bg;n2(nmin;nmax) is

actually truthful . We have

�qA = max fVB (!(n))� VA (n) ; 0g ;

�qB = max fVA (n)� VB (!(n)) ; 0g ;

where we de�ne VB (!(n)) := cB (!(n)) � !(n)h(zB (!(n)) =!(n)) and VA (n) := cA (n) �
nh(zA (n) =n).

In case �qA > 0, for all n; n0; q � �qA (n) we have

uA (zA (n) ; cA (n) ; 0; (n; q)) = VA (n) � VB (! (n))� q � uB
�
zB
�
n0
�
; cB

�
n0
�
; 1; (n; q)

�
;

for all n; n0; q � �qA (n) we have

uB (zB (! (n)) ; cB (! (n)) ; 1; (n; q)) = VB (! (n))� q � VA (n) � uA
�
zA
�
n0
�
; cA

�
n0
�
; 0; (n; q)

�
:

In case �qB > 0, for all n; n0; q � �qB (n) we have

uB (zB (! (n)) ; cB (! (n)) ; 0; (n; q)) = VB (! (n)) � VA (n)� q � uA
�
zA
�
n0
�
; cA

�
n0
�
; 1; (n; q)

�
;

for all n; n0; q � �qB (n) we have

uA (zA (n) ; cA (n) ; 1; (n; q)) = VA (n)� q � VB (! (n)) � uB
�
zB
�
!
�
n0
��
; cB

�
!
�
n0
��
; 0; (n; q)

�
:

As in Kleven et al (2009), the separability of q in the utility speci�cation allows to get

these simple results. The proof for the uniform tax is analogous, with the restriction zA (n) �
2Clearly, the same is true if !(n) rather than n is the appropriate argument.
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cA(n) � zB (n)� cB(n).

4 Supplement C: Existence

We follow Kleven et al (2009) to establish similar conditions for our problem with di¤erential

taxation. Formally, our maximization problem is the optimal control problem _V = b(n; V; z)

with the objective B0 =
nmaxR
nmin

b0 (n; V (n)) dn and constraint
nmaxR
nmin

b1 (n; z(n); V (n)) � 0, where

b(n; V; z) =

�
�h

�zA
n

�
+
zA
n
h0
�zA
n

�
;�h

�
zB
!(n)

�
+

zB
!(n)

h0
�
zB
!(n)

��
;

b0 (n; V ) = [

Z +1

maxfVA�VB ;0g
	
�
VB + q

h
�
p(qjn)dq +

Z maxfVB�VA;0g

0

	(VB � qc) p(qjn)dq

+

Z +1

maxfVB�VA;0g
	
�
VA + q

h
�
p(qjn)dq

+

Z maxfVA�VB ;0g

0

	(VA � qc) p(qjn)dq]f(n);

b1 (n; z(n); V (n)) = [

�
zB � !(n)h

�
zB
!(n)

�
� VB

�
� (1 + P (max fVB � VA; 0g jn)� P (max fVA � VB; 0g jn))

+
�
zA � nh

�zA
n

�
� VA

�
� (1 + P (max fVA � VB; 0g jn)� P (max fVB � VA; 0g jn))]f(n)� E

The functions b; b0; b1 are continuous and continuously di¤erentiable in (z; V ) by construc-

tion. Analogously to Kleven et al (2009), if we assume that there is an a priori bound on the

path of admissible z, we need to show that the sets B(n; V; �) = f(y; b(n; V; z)jz0 � 0; z1 �
0; y � �b0 � �b1g are convex for all n; V and � � 0, then there exists an optimal control z

measurable on (nmin; nmax). We have

B(n; V; �) = f(y;�h
�zA
n

�
+
zA
n
h0
�zA
n

�
;

�h
�
zB
!(n)

�
+

zB
!(n)

h0
�
zB
!(n)

�
)jzA � 0; zB � 0;

y � �b0 (n; V )

��f(n)[
�
zB � !(n)h

�
zB
!(n)

�
� VB

�
(1 + PB � PA)

+
�
zA � nh

�zA
n

�
� VA

�
(1 + PA � PB)]
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We denote by K(:).the inverse of the strictly increasing function x ! �h(x) + xh0(x) with
K(0) = 0, so we can write

B(n; V; �) = f(y; xA; xBjxA � 0; xB � 0;

y + b0 (n; V ) � �f(n)[!(n) (h (K(xB))�K(xB) + VB) (1 + PB � PA)

+n (h (K(xA))�K(xA) + VA) (1 + PA � PB)]:

Therefore, B(n; V; �) is convex when x ! h (K(x)) � K(x) � �(x) is convex, which it

is by the same reasoning as in Kleven et al (2009). In particular, by de�nition of K(:),

�h(K(x)) + K(x)h0(K(x)) � x, so that di¤erentiation gives us K(x)h00(K(x))K 0(x) � 1.

Consider �0(x) = (h0 (K(x))� 1)K 0(x). By our previous result,K 0(x) = 1= [K(x)h00(K(x))].

Therefore, we can write �0(x) = � (1� h0 (K(x))) = [K(x)h00(K(x))]. By assumption 1, �0(x)
is an increasing function of K(x). Since x ! K(x) is strictly increasing, �0(x) is increasing

and thus �(x) is convex.

5 Supplement D: Equivalence of representations via

income and via ability

Here we show that the optimal tax formulae obtained in the text are equivalent to those in the

appendix. Consider the formula for non-di¤erentiated taxation in the text:

�

1� � =
1

z" (vA(z)sA(z) + vB(z)sB(z))
�

[

Z 1

z

��
1� gA

�
z0
��
vA
�
z0
�
sA +

�
1� gB

�
z0
��
vB
�
z0
�
sB
	
dz0

+

Z z

~z

�
T (z0)� T (k(z0))

�
p
�
�qj z0

�
vA(z

0)dz0];

where sA(z) � 1 � P ( �qj z(n)) = 1 � P ( �qjn) and sB � 1 + P ( �qj z0) = 1 + P
�
�q1j!�1(n)

�
and

vA(z (n)) = f(n)= _z(n), vB(z (n)) = f(!�1(n))= _z(n). Further, T (z (n)) = T (n); T (k(z(n))) =

T (!(n)) and ~z = k�1(z(n)) = z
�
!�1(n)

�
; gi (z(n)) = gi(n). Plugging into the expression above,

we get

�

1� � =
1

z(n)
_z(n)" ((1� P (�qjn)) f(n) + (1 + P (�q1j!�1(n))) f (!�1(n)))

[

Z nmax

n
f
�
1� gA

�
n0
�� f(n0)
_z(n0)

�
1� P

�
�qjn0

��
+
�
1� gB

�
n0
�� f(!�1(n))

_z(n0)

�
1 + P

�
�q1j!�1(n)

��
g _z(n0)dn0

+

Z n

!�1(n)

�
T (n0)� T (!(n0))

�
p
�
�qjn0

� f(n0)
_z(n0)

_z(n0)dn0];

10



compared to

1

n"

1

(1� P (�qjn)) f(n) + (1 + P (�q1j!�1(n))) f (!�1(n))
�Z nmax

n
[
�
1� gB

�
!�1(n0)

�� �
1 + P (�q1j!�1(n0))

�
f
�
!�1(n0)

�
+
�
1� gA(n0)

� �
1� P (�qjn0)

�
f(n0)]dn0

�
Z n

!�1(n)

�
T
�
!(n0)

�
� T (n0)

�
p(�qjn0)f

�
n0
�
dn0 =

�

1� � :

The expressions are identical, if z(n)_z(n) = n. To prove that this is indeed the case for the tax

schedule linearized around the optimum in our model, simply totally di¤erentiate the �rst order

condition (2):

h00
� z
n

� n _z (n)� z
n2

= �T 00 (z) _z (n) :

For a linear approximation, T 00 (z) = 0, so we get n _z (n) = z(n) indeed. This completes the

proof of equivalence for the case of non-di¤erentiated taxation. The derivation for di¤erentiated

taxation is analogous.

6 Supplement E: Simulation notes

Simulations are done with the Matlab software package and a modi�ed and extended version of

the program of Kleven et al (2009) which is documented in their corresponding supplementary

material. Hence, their iterative procedure applies in general. In a similar way, we use a two

dimensional grid of 1000 elements from nmin to nmax. The second dimension carries abilities in

Region B. Integration of the variable n and !(n) is done by means of the Matlab trapezoidal

approximation routine, integration along the variable q is implemented using the incomplete beta

function as described in the supplementary material to Kleven et al (2009). Given the ability

distribution, each routine starts with a given vector of T 0A, T
0
B in the di¤erentiated taxation

case and computes the vectors zA, zB, VA, VB, q, gA, gB, TA, TB, and so on, according to

the given restrictions on budget and transversality. Using this outcome, new marginal tax rate

vectors are computed by applying the optimal tax equations. The next loop of the routine starts

with marginal tax rate vectors T 0A, T
0
B that are the adaptive weighted average of the current

vectors and the new vectors of each region, respectively. This looping procedure is done until it

has converged. The weighting is adaptive in the sense that new marginal tax rate vectors have

more weight if the procedure converges and vice versa. In contrast, in the uniform case only one

marginal tax rate vector T 0 together with only one tax schedule T is calculated, and all vectors

are computed satisfying the additional constraint of equal tax liability for the same income level

in both regions. The �xed residence case is simulated by prohibiting migration �ows.
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Our empirical construction of ! may be justi�ed as follows. By the de�nition of the trans-

formation function !, the cumulative distribution functions of ability in two regions are re-

lated as FB(n) = FA(!(n)) 8n 2 [nmin; nmax]. Then, at each �-percentile it is true that

FB(n�) = FA(!(n�)) = �. From the assumed properties of the cdfs (strictly increasing) it

follows that the function ! can be reconstructed from FA and FB at any point n� 8� 2 [0; 1]
or, equivalently, 8n 2 [nmin; nmax]. In our simulation, we do not observe the true cdfs, but only
their empirical counterparts, F̂A and F̂B. The proof of the statistical properties of our approach

is beyond the scope of this paper. Note, however, that under the assumption that we actually

observe the true cdfs at a limited number of data points m, a smooth interpolation is the best

way to �ll in the missing values in the estimates of FA and FB, because the cdfs are smooth by

continuity of the pdfs. Once we have the estimates of cdfs de�ned over the whole domain, we

can recover the function ! for any point in the domain. We apply linear interpolation of the

sampling points employing the Matlab routine �interp1�. The only remaining problem then are

the corners. Whereas theoretically we should observe abilities starting from nmin in one region

and !(nmin) in the other region, empirically we observe only the lowest income category and

hence nA (zmin) = nB(zmin). For the upper corner, a �xed migration gain is assumed. For the

lower corner, we assume that the lowest ability in Region A receives the median migration gain

which is 17:1%, hence !(nmin) = 1:171nmin.
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